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Concepts and Transformational Knowledge
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The effect of exposure to principled change in concept formation was investigated
in four experiments. In Experiment 1, participants were trained on either patterns
that transformed systematically or control patterns that were distorted randomly.
Training on transformational patterns produced concepts that were more resistant
to false intrusions and decay. Experiment 2 separated the relative influences of trans-
formational knowledge and pairwise similarity. Participants were able to identify
the next pattern in a transformational sequence even though the foils were closer
to the training patterns. Experiment 3 investigated whether participants use transfor-
mational information in a speeded categorization task. Participants were faster at
classifying patterns that continued a transformational path than patterns that fell off
the path, only if they had trained on the transformational patterns in a systematic
order. Experiment 4 used multidimensional scaling to explore the psychological
structure of transformational knowledge following training. Analyses revealed clear
evidence of a transformational path with systematic training. Implications for theo-
ries of similarity and categorization are discussed.  1999 Academic Press

Objects in the natural environment evolve in form. Things change their
shape and appearance as they grow. Weathering of the environment produces
systematic changes in our landscapes. The seasons result in predictable se-
quential alterations in plant life. Not only is change a constant in our environ-
ment, change is often constrained in its magnitude and direction. In other
words, change is often principled. The aim of this research is to explore the
effect of exposure to this systematic change on categorization behavior.

We believe that knowledge of how objects change is a largely overlooked
but fundamental component of conceptual knowledge. Consider for a mo-
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ment the changes that a tadpole undergoes before it reaches the final stages
of becoming a frog. If one were to look at these entities separately, having
no knowledge of the nature of these changes, one might find it difficult to
classify them as belonging to the same category. However, given the interme-
diate steps between the tadpole and the frog, it becomes easier to identify
the two examples as being different forms of the same category.

For years, researchers have studied systematic changes in a variety of do-
mains. For example, some researchers have argued that facial changes that
occur with aging closely follow the precise mathematical specification of
two factors (Cutting, 1978; Pittenger & Shaw, 1975). Biologists have ex-
pended great effort in tracking the progression of growth and in recent years
a variety of biological growth models have received considerable attention
(Grierer & Meinhardt, 1972; Meakin, 1986). Indeed, the branch of biology
called morphogenesis (Phillips, 1975) deals explicitly with the epigenetic
influences that are responsible for the development of an organism, noting
that some characteristics of the adult unfold at various times during its devel-
opment (Ebeling, 1991). Often, the diagnosis of disease depends on the pro-
gression of the disease as opposed to the symptoms at any one time, as in the
bifurcation of cellular development of normal and cancerous cells (Muller,
Rambaek, Hovig, & Hovig, 1991).

The utility of understanding transformations appears to be fundamental,
yet only a handful of studies have addressed the cognitive effect of pro-
cessing these transformations. Alexander and Enns (1988) used transforma-
tions to explore developmental changes in category boundaries, using exem-
plars that spanned a continuum separating two distinct categories. Findings
suggested that category boundaries became less fuzzy with age. DeRosa and
Tkacz (1976) demonstrated that memory search was speeded if the memory
set was composed of sequenced, rather than nonsequenced, elements. Hull
(1920) may be said to have used quasitransformations, demonstrating that
concepts were learned more rapidly when learned in the order from simple
to complex. In the face perception literature, considerable attention has been
given to the transformation of a face as it ages. For example, Pittenger and
Shaw (1975) demonstrated that participants were highly sensitive to changes
in a cardioidal strain of a profile of a face. The degree of this strain, which
is a nonlinear topological transformation, was correlated with the relative
age rating of a face. Also, Pittenger, Shaw, and Mark (1979) showed that
participants perceived this strain as growth even when it was applied to inani-
mate objects, suggesting that subjects have abstract knowledge of the growth
transformation.

Certainly, researchers have explored the ability to extrapolate (Brehmer,
1974; Busemeyer, Byun, DeLosh, & McDaniel, 1997; DeLosh, Buse-
meyer, & McDaniel, 1997; Koh & Meyer, 1991) beyond the training items
seen. However, the literature base lacks studies that investigate how exposure



TRANSFORMATIONAL KNOWLEDGE 71

to principled change affects conceptual knowledge when the changes are
identified as transformations of the same object.

Researchers in perception have also explored the importance of transfor-
mations on a percept. For example, studies in representational momentum
(e.g., Finke & Freyd, 1985; Freyd, 1987; Pinker, Choate, & Finke, 1984)
suggest that the representation of an object in motion includes both actual
and implied states. When a pattern is seen to change its orientations so that
rotation is implied, participants are perceptually biased to extend the path
of an object undergoing temporal change (e.g., Freyd & Johnson, 1987) and
these implied states are determined by the global path, rather than by local
changes, of a stimulus (Verfaillie & D’Ydewalle, 1991). However, this line
of research has focused on the memory and momentum of the representation
as opposed to the knowledge of the transformation.

Finally, theories in object perception have explored whether depth rotated
objects may be represented by viewer invariant (Biederman & Gerhardstein,
1993) or viewer sensitive information, (Lawson & Humphreys, 1996). Re-
cently others have suggested that the spatiotemporal character of visual stim-
uli is used in object recognition (Stone, 1997; Ullman, 1979). For example,
Stone showed that when the order of images in a learned sequence was re-
versed, the ability to recognize the object decreased significantly. Stone sug-
gests that the ability to utilize simple spatiotemporal sequences may be
deeply imbedded in the biological visual system. These researchers view
static object recognition as a special case of the ability to recognize objects
from sequences of their motion.

An apparent exception to the paucity of research on transformations
and their affect on category performance is research conducted by Rips
(1989). In his experiments, Rips describes transformations to his participants
through the telling of a story. These stories would, for example, describe an
imaginary animal undergoing certain transformations that caused many
of its surface or essential properties to resemble those of another animal.
These changes were either a result of maturation (essence condition) or
the result of some catastrophe (accident condition). Participants then rated
the typicality, similarity, and likelihood of category membership of the
resultant animal. His findings indicated that participants would sometimes
rate the stimulus as being more similar to one category but more likely to
belong to another. If the changes were a result of maturation, then the item
would be rated as a member of the new category but similar to the old. If
the changes were a result of an accident then the participants would show
the reverse effect.

Therefore, although Rips manipulated transformations, the focus of his
study was more on the essential versus accidental properties and whether
similarity and categorization can be dissociated, rather than on the results
of exposure to transformations. In addition, his participants were exposed to
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the transformations by way of a story but were not given visual illustrations
of these changes.

CATEGORIES, COHERENCE, AND CAUSALITY

Our assumption is that transformational knowledge contributes to the co-
herence of a concept; a subject, once exposed to a succession of changes,
may make the inference that these various states cohere into the definition
of a single object, one that has the potential for dynamic change. This ap-
proach may be contrasted with research that has similarly explored the ques-
tion of what makes a concept coherent, or, alternatively, what provides the
glue that binds the members of a category together.

One approach, following failures to observe ‘‘common features’’ of mem-
bers of a category (e.g., Rosch, 1975b; Hampton, 1987), has been to posit
perceived causality, naı̈ve theories, and/or goals as the basis for the coher-
ence of members of a category. For example, Medin, Wattenmaker, and
Hampson (1987) suggest that an underlying concept or cause helps to struc-
ture what would otherwise be independent properties within a category. Mur-
phy and Medin (1985) argue that concepts are coherent to the extent that
they fit peoples’ background knowledge about things. This view asserts that
conceptual coherence is important but is derived from influences that are
external to the stimulus set (e.g., Murphy & Medin, 1985; Rips & Collins,
1993; Medin et al., 1987) viz., two members of a category are similar to the
extent that they fit one’s personal theory or goal.

There is little question that category coherence is an inference that arises
early in the development of concepts. Demonstrations of successful distinc-
tions between inanimate and animate objects by children as young as 3 years
of age (e.g., Keil, 1989), primitive reasoning about creation and beginning
(Gelman & Kremer, 1991), and even support for scientific rationality in
childhood (Samarapungavan, 1992) suggest that inferences about what
makes concepts coherent begins at an early age and that internal mechanisms
are responsible for this outcome.

We suggest that transformational knowledge provides one fundamental
type of conceptual coherence. Exposure to the successive changes of an ob-
ject facilitates the gluing of those states into a single concept. Our view of
transformational knowledge, with its emphasis on successive change from
a common origin, bears a parallel to the Aristotelian views of categories.

Nature means . . . the generation of ‘‘growing’’ things. It means also an inherent
something out of which a thing begins to grow . . . that in natural beings there
inheres a source of their motion, things are said to ‘‘grow’’ when they increase . . .
as in the case of embryos. . .What all beginnings have in common is that they are
points of departure either for being, or becoming, or knowing. (all passages from
The Metaphysics, book Delta, translated by Hope, 1968)
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TRANSFORMATIONAL KNOWLEDGE AND MODELS
OF CATEGORIZATION

Research in categorization theory has concentrated on two broad lines of
inquiry, the identification of those variables thought to shape concepts, and
the development of quantitative models that capture categorization perfor-
mance. Variables such as category size, distortion level, and number of cate-
gories have been found to be critical in determining performance (Homa,
1984). For example, greater category size has been shown to increase correct
classification in transfer tests, especially when coupled with increased distor-
tions of the patterns from their central tendency (Homa & Vosburgh, 1976).
Instance frequency is important to subsequent classification (Nosofsky,
1988), although its importance may be restricted to low and intermediate
levels of learning, especially for small category sizes (Homa, Dunbar, &
Nohre, 1991).

The proliferation of formal quantitative models, especially within the past
10 years, has largely evolved around whether categorical representations are
dominated by specific exemplars (e.g., Nosofsky, 1986, 1988; Shin & Nosof-
sky, 1992), abstractions (e.g., Knapp & Anderson, 1984; Posner & Keele,
1968, 1970), features (e.g., Estes, 1986; Hintzman, 1986), or decision bounds
(Ashby & Maddox, 1994b; Maddox & Ashby, 1993). Another relatively re-
cent advance has been the implementation of neural network/adaptive mod-
els (e.g., Kruschke, 1992) to categorization data, using back-propagation and
hidden nodes as a means of adjusting performance during learning. None of
these models, however, has addressed the utility of transformational knowl-
edge.

Although the focus of this paper is not on the models of categorization,
but on a phenomenon of human cognition that has gone for the most part
unstudied, it is important to consider how the various models might account
for a demonstration of enhanced categorization performance as a function
of exposure to principled change. Consider three general cases that capture
the essence of some of the conditions explored in the following experiments.
In condition 1, the participant observes a stimulus that undergoes systematic
change from initial to final form; in condition 2, the participant observes the
same stimuli but in a random order; in condition 3, the participant observes
stimuli that are matched in terms of distance from the prototype but which
have no systematic relationship to each other. Exemplar models of classifi-
cation (e.g., Medin & Schaffer, 1978; Nosofsky, 1988) must predict that the
transformational conditions (conditions 1 and 2) would produce identical
transfer performance because the learning and transfer stimuli are identical,
with the learning conditions differing only in their order of presentation.
Specifically, the classification algorithm for the Generalized Context Model
(Nosofsky, 1988) contains only interexemplar similarities, exemplar fre-
quencies, and sometimes bias parameters. Nonetheless, these models would
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probably predict an overall advantage of the transformational conditions (1
and 2) relative to the random condition (3) since the transformational condi-
tions are likely to have more extreme within-category, interitem similarities
than the random condition.

Feature models (e.g., Gluck & Bower, 1988; Hayes-Roth & Hayes-Roth,
1977) appear to make predictions similar to the exemplar models since the
transformational conditions would have identical feature sets and therefore
similar transfer predictions. Again, the feature sets (including higher order
featural configurations) for the transformational conditions might be packed
with more extreme feature similarities than the random condition, thereby
favoring transformational performance over a random condition.

A pure prototype model, in which only similarities of the transfer instances
to the prototypes are critical to transfer, predicts no difference between trans-
formational and random presentations since the exemplar distances to the
prototype (but not among the patterns) are identical in all conditions. If the
participant abstracts not only the prototype (mean) and breadth (variance)
of the category (Homa & Vosburgh, 1976) but a vector for distortions, then
the participant could, conceivably, generate distortions that are systemati-
cally removed from the prototype. However, even this model would not pre-
dict differences among the transformational conditions.

Decision-bound models postulate that participants learn to assign re-
sponses to different regions of the perceptual space. When categorizing an
object, the participant determines the region in which the percept falls and
appropriately emits the response. The bound is the region between these
two response regions. Exemplar information is not needed for classification
decisions but is necessary to construct the bound. Predictions of how deci-
sion-bound models might fare are difficult without knowing the exact or even
approximate location of the bound. However, there are no a priori reasons
to predict differences in performance as a function of the order of presenta-
tion in learning.

Certainly, a generative model, in which the participant abstracts a rule for
how patterns can systematically change, would predict differences among
the transformational conditions. In effect, the participant must have knowl-
edge of more than the central tendency, variance, and/or specific instances
should differences emerge among the transformational conditions.

EXPERIMENT 1

Experiment 1 investigated how the knowledge of the way in which an
entity can change may aid future classification and recognition. It is useful
at this point to operationalize what we mean by a transformation. In this and
the following experiments, we define it to be the successive change that
interpolates the states between two endpoints. In these experiments, we used
nine-dot patterns where the transformations were interpolated states between
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the prototype and some high level distortions. Anecdotal evidence from in-
formal piloting of these stimuli produced the impression from many subjects,
at least following systematic exposure, of an unfolding of an event and that
even the highest levels of distortion were now readily comprehended and
seen to have a common origin. As it is operationalized in these experiments,
a transformation is assumed to be linear. This is just one possible kind of
transformation that we have chosen to investigate in the article, but clearly
other types of transformations exist and are processed by people. For exam-
ple, the changes that occur in a face over time are not always linear (Cutting,
1978; Pittenger & Shaw, 1975).

The main goals of the first experiment were as follows. We wanted to
compare conditions that received training on patterns that were distorted
from some initial form to a final form to conditions in which the patterns
were equally distorted but where no guiding principle governed successive
distortions. In addition, we wanted to investigate the effect of viewing these
transformations in a systematic or scrambled order.1

We trained subjects on three categories of patterns that were either ran-
domly distorted patterns or stages in the transformation of the prototype into
a high level distortion. Subjects were explicitly told that items within a cate-
gory were different manifestations of the same object. In the transformational
conditions, each category had multiple paths or vectors of transformations.
This was motivated by the concern that transformations of real world objects
may manifest themselves along several possible paths. In order to assess the
affects of order, subjects either saw these patterns scrambled within a cate-
gory, scrambled within a transformational path, or in an ordered fashion
within a transformational path.

Subjects in the random conditions were trained on patterns that were yoked
to be at a distance2 from the prototype equal to a corresponding pattern in
the transformational conditions. However, the fundamental difference be-
tween the two types of conditions was that these distortions were not system-
atic in nature. Because pilot studies suggested that subjects in the random
conditions took longer to learn the category, we decided to run two random
conditions. In one random condition, all participants received a specified
number of learning blocks. In another random condition, participants re-
ceived a variable number of learning blocks so that their terminal learning
performance would approximately match that of the participants in the trans-
formational conditions.

After training was completed, subjects received a transfer test that in-
cluded a variety of old and new patterns. The new patterns included the

1 We use the word ‘‘scrambled’’ rather than the word ‘‘random’’ to refer to a random order
of presentation. This wording was chosen so as to avoid confusion between random distortions
of stimuli and random ordering of stimuli.

2 We use the word ‘‘distance’’ to refer to Euclidean distance in this paper.
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FIG. 1. A schematic representation of the training and transfer patterns for the transforma-
tional and random conditions. (Notice that the high level distortions are shared by both types
of conditions.)

prototypes of three categories. The prototype provided an additional contrast
among the conditions since the prototype was equidistant from all the old
patterns in the five conditions. We also included new randomly generated
exemplars of the three categories. In addition, we included foils, which were
patterns that were not members of the three categories. The midpoint patterns
between two successive transformations, which we will call gappers, were
also shown. Gappers were included to test performance on new items embed-
ded along a transformational path. Figure 1 gives a schematic representation
of the patterns included in the transfer test as well as the learning set. The
rings represent the various levels of distortion of the patterns. Note that this
representation is of only one of the three categories and that the three high
level distortions are actually at arbitrary distances from each other on the
outer ring.

The subjects made categorization and recognition judgments to this set of
patterns in an immediate test. Subjects returned to the laboratory 1 week later
for a delayed test that also included these patterns. A delayed test permitted
a separate analysis of how decay might interact with the different training
conditions.

Expected Results

The following predictions are motivated by the idea that transformational
knowledge is acquired when subjects see a progression of change within a
category. For this transformational knowledge to be used, the transformation
must be understood by the observer. Therefore, the change must be system-
atic and cumulative. The knowledge of this change causes the organization
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of the category such that things along the path are more salient. This in-
creased salience of the path of change results in enhanced categorization and
recognition performance.

The first set of predictions concerns contrasts between the transformational
conditions and the random conditions. In general, we predicted an advantage
for the transformational groups, relative to the random groups, in learning
and subsequent transfer. These predictions are made by exemplar and fea-
ture-based models of classification but not by pure prototype models. A sec-
ond set of predictions involves the relative performance of the different trans-
formational conditions. That is, if subjects are acquiring transformational
knowledge and using this knowledge in a categorization task, then systematic
training should result in superior classification and recognition performance
compared with random presentation of the transformational items.

One of the more interesting predictions concerns the gappers on the trans-
fer test. Although research on scripts is semantically based, there is direct
relevance to the present study. Much like the false recognition of the parts
of the semantic scripts (e.g., Bower, Black, & Turner, 1979), we hypothe-
sized that the gappers, or the implied states of the transformations, would
be recognized as old (i.e., falsely recognized) at levels comparable to the
training patterns by participants in the transformational conditions. That pre-
diction is in line with models that allow similarity of the old instances to
play a role in subsequent categorization judgments. Moreover, if subjects
have more explicit knowledge of the transformation in the most ordered or
systematic transformational condition, then we expect that the degree of false
recognition of the gappers would be elevated in this condition when com-
pared with the other transformational conditions.

Method

Participants. The participants were 80 undergraduate students at Arizona State University
enrolled in an introductory psychology course. Participation in this experiment was for course
credit.

Stimuli. The stimuli that were used in this experiment were nine-sided forms, similar to the
dot patterns used by Posner, Goldsmith, and Welton (1967). These patterns appeared as white
forms on a black background. The dots were connected in an arbitrary order that was kept
consistent for all patterns in a category.

The learning set for all the conditions consisted of three categories of 15 patterns. For
the transformational conditions these patterns were composed of three sets of five successive
distortions of each of the three prototypes. The fifth distortion of any of these sets was a high
level distortion. For these stimuli, a high level distortion is about 5.0 units/dot from the proto-
type and is approximately midway between a prototype and a random pattern (Homa, 1984).

For the two random conditions, each pattern in the learning set was distorted to a level equal
to the level of distortion of a corresponding pattern in the transformational group. However, the
distortions of each point of these patterns were not constrained to be in a certain direction
and therefore the distortions bore no systematic relationship to one another. The three high
level distortions were the same patterns used in the transformational conditions. Figure 2
illustrates the two types of learning patterns, as well as the prototype, for the two types of
conditions.
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FIG. 2. An example of the patterns used in training in the two types of conditions. (The
prototype is included in this diagram although this pattern was not shown to the participants
during training.)

In the transfer set, a total of 111 old and new patterns were shown. In addition to the
old stimuli, participants saw the three prototypes, 27 ‘‘gappers’’ (midpoint of two successive
transformations), 27 new exemplars (low, medium, and high level distortions of the three
prototypes), and nine foils (new random patterns).

Stimulus construction. To construct the transformational patterns and the gappers, the dis-
tance between each dot in the prototype and the corresponding dot in the high level distortion
was calculated. For each dot, this distance was divided by ten and the result was added to
the corresponding dot in each successive transformation. There were therefore nine patterns
constructed between the prototype and the high level distortion. Four of these patterns were
used as transformational patterns. The three patterns interspersed between each successive
transformation were designated gappers. Two patterns remained that were not used in the
present experiment.
The yoked patterns were constructed so that they maintained the same distances from the
prototype as did the transformational patterns but the dots were free to move to any location
within the allowed distance. The dots in the low, medium, and high level new exemplars
moved, on average, 1.2, 2.8, and 5.0 units, respectively.

Procedure. Participants were randomly assigned to one of the five conditions. In each of
these conditions, participants were given a series of study/test blocks that constituted the
learning phase. Each of the study blocks consisted of serial presentation of the patterns in an
order specific to the condition. Patterns were shown for 3 s each. The three groups of patterns
(called A, B, and C) were block presented in each of the conditions, with patterns in group
A appearing in a block of 15 followed by groups B and C. The subjects were told that all
patterns within a category were different manifestations of the same object. The patterns were
identified to the participant by the appearance of the appropriate letter in the upper right corner
of the screen. The order of presentation of the categories was counterbalanced across the
learning blocks. After all patterns for each of the three groups were shown, the participants
were given their first test. Participants were shown all patterns in random order and were asked
to indicate the category to which they believed each pattern belonged. Corrective feedback was
given on every trial. This procedure was repeated for each of the study/test blocks.

The five conditions were the transformational systematic, transformational scrambled within
radius, transformational scrambled within category, random with three blocks, and random to
criterion. Participants in each of the first four conditions were given three study/test blocks.
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(1) Transformational SYSTematic (T-SYST): The patterns in the learning trials for this
condition consisted of forms on the three radii for each of the three categories. These patterns
were presented sequentially within each series of five transformations, from low to high distor-
tion.

(2) Transformational SCrambled within RADius (T-SC-RAD): The patterns used in the
learning phase were identical to those used in the first condition. The patterns were block
presented within each radius of five transformations. Within these blocks, the patterns appeared
in random order. In effect, the participants saw five transformations (or states) on a radius
but not in systematic order.

(3) Transformational SCrambled within CATegory (T-SC-CAT): The patterns used in the
learning phase were the same patterns used in the other two transformational conditions. These
patterns appeared in random order within each blocked category. For any particular participant,
the same random order within a category was used on every study block.

(4) Random with an equal number of blocks (R-3BLOCK): The patterns used in the learning
phase of this condition were yoked to be at an equal level of distortion to the learning patterns
in the three transformational conditions. They were shown in a random order within each
category. For a given participant, the same random order within a category was used on every
study block.

(5) Random with criterion learning (R-CRIT): Participants in this condition saw the same
patterns in the learning phase that were shown in the other random condition. We attempted
to bring these participants to the same terminal level of learning as that of participants in the
transformational conditions using learning curves obtained from a pilot study. These patterns
appeared in random order within blocks of categories. For a particular participant, the same
random order within a category was used on every study block.

After completion of the study/test blocks, participants were given instructions for the transfer
test. Participants were asked to give two responses to each pattern. The first judgment was
an old/new judgment with a confidence rating. The confidence rating scale ranged between one
and three, with three indicating the most confidence. The second judgment was a classification
judgment. The participants were informed that some patterns shown in the transfer test be-
longed to none of the categories and that the appropriate classification in such a case would
be ‘‘none.’’ No feedback was given in this part of the experiment. One week after initial
testing, each participant was given the transfer test once again. The procedure was identical
to the one used in the immediate transfer test.

Results

Results are organized by learning, classification, and recognition perfor-
mance, for contrasts between the transformational and random conditions,
and among the transformational conditions. For each of the dependent vari-
ables, global tests for the five conditions are presented first, followed by
contrasts among the transformational conditions.

Learning phase data. The mean probabilities of correct classification on
the terminal learning trial were .963, .964, .950, .892, and .921 for the T-
SYST, T-SC-RAD, T-RAD, T-SC-CAT, R-3BLOCKS, and R-CRIT condi-
tions, respectively, F(4, 75) 5 4.35, MSE 5 .0035, p , .05. A Newman–
Keuls posthoc test indicated that the random condition with three learning
blocks (R-3BLOCKS) was significantly different at the .05 level than the
transformational groups, whereas the random group taken to criterion (R-
CRIT), which required an average of 4.5 learning blocks, did not differ sig-
nificantly from the transformational conditions. Therefore, the attempt to
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equate the degree of learning in the R-CRIT condition to the transformational
conditions was at least partly successful.

Classification data for random and transformational conditions. Appen-
dix A contains the mean observed probabilities of correct classification of
all transfer items in each of the five conditions. An analysis was conducted
for the overall accuracy of classification of patterns in both transfer tests
across the two types of conditions (transformational and random). A signifi-
cant main effect of condition was found, with the transformational groups
showing an advantage on all patterns but the new instances, F(1, 78) 5
14.22, MSE 5 .065, p , .001. The mean advantage (average across transfer
test) for the transformational versus random conditions on the prototypes,
old patterns, new instances, and foils was .014, .080, 2.103, and .215, re-
spectively. This effect is qualified by a three-way interaction between condi-
tion and type of pattern and delay, F(3, 234) 5 11.50, MSE 5 .018, p ,
.001.

The mean probabilities of correct classification of the old patterns and the
new exemplars in both transfer tests across the five conditions are displayed
in Fig. 3. An analysis of the old patterns, as a function of two types of condi-
tions, distortion level, and time of test revealed a significant advantage for
the transformational conditions, F(1, 78) 5 12.79, MSE 5 .096, p , .001,
which increased as a function of increased distortion, F(4, 78) 5 12.02,
MSE 5 .012, p , .01.

In the analysis of the classification of the new exemplars, a significant
main effect of condition was found, with the random conditions displaying
an advantage, F(1, 78) 5 5.56, MSE 5 .220, p , .05, which increased as
a function of distortion, F(2, 156) 5 9.13, MSE 5 .033, p , .05. Finally,
an interaction of condition by time was found in which the transformational
conditions showed improvement as a function of delay (overall .024 increase
in accuracy), while the random groups showed a decline in accuracy levels
(.023 overall decrease), F(1, 78) 5 6.22, MSE 5 .041, p , .05.

The advantage of the random conditions in classification of new instances
is probably illusory since the conditions differed dramatically in their assign-
ment of foils into the categories. Ineffect, participants in the random conditions
were far more likely to assign patterns, including foils, into the learned catego-
ries, especially on an immediate test. The mean rate of (erroneously) assigning
foils into the learned categories was .649 for the random conditions versus .308
for the transformational conditions, immediate test; on the delayed test, these
values were .472 and .384, respectively. An analysis based on signal detection
theory suggested that in fact accuracy for the classification of new instances
now slightly favored the transformational conditions (d′ 5 1.91 versus 1.88);
for T-SYST, T-SC-RAD, T-SC-CAT, R-3BLOCKS, and R-CRIT these values
were d′ 5 2.12, 1.86, 1.75, 1.82, and 1.94, respectively.3

3 A similar analysis was done on the classification accuracy of the other types of patterns
as well. However, there were no deviations from the patterns of results previously reported.
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FIG. 3. The observed probabilities of correct classification of the old patterns and the
new exemplars given by the five conditions in both transfer tests.

Comparison of classification among the transformational conditions.
Comparison of T-SYST, T-SC-RAD, and T-SC-CAT revealed slight, but
nonsignificant, advantages of the T-SYST and T-SC-RAD conditions rela-
tive to the T-SC-CAT condition in classification accuracy of the old, proto-
type, and gappers stimuli. As for the T-SYST and the T-SC-RAD conditions,
although new patterns were consistently sorted more accurately following
T-SYST training for both immediate and delayed tests, only the difference
on the delayed tests proved significant; for medium distortions (T-SYST 5
.750; T-SC-RAD 5 .597), t (30) 5 1.83; for high distortions (T-SYST 5
.535; T-SC-RAD 5 .382), t(30) 5 2.08, both ps , .05, one-tailed test.

Recognition data for random and transformational conditions. The old/
new ratings were combined with the confidence ratings to produce a six-
point oldness scale. On this scale, a judgment of ‘‘old’’ combined with a
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confidence level of three yielded a value of six, ‘‘old’’ with a confidence of
two was scored as five, and ‘‘old’’ with a confidence of one yielded a four.
In contrast, a judgment of ‘‘new’’ combined with a confidence of one yielded
a value of three, ‘‘new’’ with a confidence of two yielded a two, and finally
‘‘new’’ with a confidence of one was scored as one. The cell means of the
oldness ratings of the various types of patterns given by the different condi-
tions are contained in Appendix A.

An analysis of the oldness ratings as a function of condition, type of pat-
tern (prototypes, old, new, foils), and the time of test revealed a significant
interaction between condition and type of pattern, with the transformational
groups providing the higher oldness ratings to all patterns except the new
exemplars and foils, F(12, 225) 5 5.46, MSE 5 6889.73, p , .001. The
transformational conditions had higher oldness ratings for the old patterns,
F(1, 78) 5 12.41, MSE 5 3.47, p , .001. The decrease of oldness ratings
as a function of time (collapsed over distortion level) was greater in the
random conditions (0.48) than the transformation conditions (0.14), F(1, 78)
5 11.66, MSE 5 .446, p , .001. Finally, the interaction between distortion
level and condition was also statistically reliable; the random conditions
showed a precipitous decline after the second distortion level, whereas the
decline was gradual across the five levels of distortion for the transforma-
tional conditions, F(4, 312) 5 27.04, MSE 5 .270, p , .001. Figure 4 shows
the oldness ratings given to the old and new exemplars for the five conditions,
shown separately for each transfer test.

Finally, the analysis of the oldness ratings of the foil patterns indicated a
significant main effect of condition, with the transformational conditions be-
ing less likely to falsely recognize these patterns, F(1, 78) 5 17.97, MSE 5
.558, p , .001.

Comparison of recognition among the transformational conditions. Figure
5 shows, for each transformational condition, the amount of forgetting as
measured by a decrease in oldness ratings across the week delay for the old
patterns as a function of the level of the training pattern. The values in Fig.
5 are differences between immediate and delayed oldness ratings. Overall,
the amount of forgetting was least for the T-SYST condition (2.035), most
for the T-SC-CAT condition (2.322), and intermediate for the T-SC-RAD
condition (2.081), F(2, 45) 5 3.60, MSE 5 0.53, p , .05.

Analysis of performance on the gappers revealed a significant main effect
of distortion level, with patterns furthest from the prototype being rated as
less familiar, F(2, 45) 5 4.67, MSE 5 17.35, p , .01. However, contrary
to our predictions, there was no main effect of condition, F(2, 45) 5 1.76,
MSE 5 181.38, p . .10.

Discussion

Comparisons between the transformational and random conditions. Expo-
sure to transformational knowledge enhances the learning of concepts. The
transformational conditions exhibited a higher rate of learning compared to
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FIG. 4. Oldness ratings given by the different conditions to the old patterns and the new
exemplars in both transfer tests.

the random conditions. Not only was the rate of learning superior for these
participants, but the level of learning that they achieved could not be emu-
lated by some participants in the random conditions with as many as eight
blocks. These asymptotic levels of learning of the transformational patterns
with so few exposures to the stimuli are scarce in the literature in experiments
with nine-sided forms. (See, for example, Homa et al., 1991.) Although not
the major focus of the present study, we believe the rapid and elevated learn-
ing in the transformational conditions is notable.

Similarly, the transformational conditions showed an overall advantage
in classification and recognition performance. The transformational groups
performed at higher levels of accuracy and were more confident in their
recognition of old patterns in both immediate and delayed tests. The classifi-
cation advantage increased at higher levels of distortion and also as a func-
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FIG. 5. The amount of forgetting of the old patterns across the week delay by each of
the transformational conditions.

tion of delay. Participants in the transformational conditions were also more
accurate in classifying the foils and were less susceptible to false recognition
of these patterns. An apparent exception was the classification responses to
the new instances, where the random conditions exhibited marginally supe-
rior performance on these patterns. However, closer inspection using a signal
detection analysis suggested that the uncorrected performance was due to
the adoption of a more liberal criterion, by participants in the random condi-
tions, for incorporating patterns into the category. Evidently, participants
who were exposed to transformations tended to be more conservative in
terms of allowing new patterns into the categories. In sum, transformational
training produced concepts that were more tightly knit and resistant to decay.

Comparisons among the transformational conditions. Although the effects
of systematic versus random ordered training were generally in the right
direction, only a few of the comparisons made among the transformational
conditions reached statistical significance. For example, participants who
were trained on the transformational items in a systematic order were more
accurate at classifying new patterns than participants who were trained on
the same patterns in a random order. Possibly, other effects were masked
by levels of performance that were close to or at ceiling. Nonetheless, the
trends, although not significant, were suggestive.

Our prediction that the gapper stimuli would be falsely recognized as old
was confirmed, a result somewhat analogous to the false recognition of im-
plied actions in scripts (Bower et al., 1979). In fact, these new stimuli re-
ceived oldness ratings that were comparable to the training patterns, an out-
come that did not change with a week’s delay. Contrary to our predictions,
false recognition of these stimuli did not vary among the transformational
conditions. Specifically, we had anticipated that the systematic training con-
dition would produce a memorial representation that was tightly sequenced,
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thereby precluding accurate oldness ratings of the gappers. Presumably, these
sequenced events would be difficult to reassemble in the scrambled condi-
tions, resulting in somewhat lower oldness ratings. Either our hypothesis
was wrong or the effect of old–new similarity (comparable among the three
transformational conditions) was sufficiently strong to mask potential differ-
ences in transformational knowledge. An alternative test, which might sepa-
rate the influences of old–new similarity from transformational knowledge,
would be to extend the transfer test beyond the final training stimuli, with the
critical stimuli either falling on or off the training radius but at a comparable
distance to the old instances. This was the purpose of Experiment 2.

EXPERIMENT 2

Experiment 2 attempted to separate two influences that may have contrib-
uted to the general advantage of the transformational conditions to the ran-
dom conditions, as well as to the slight advantage of the Transformational
Systematic relative to the Transformational Scrambled within Category con-
dition. According to one view, the participant learns the transformational
sequence and this knowledge enhances conceptual decisions. According to
an alternative explanation, the participant simply stores the individual stimuli
of the transformation but the transformation itself plays no role in subsequent
category judgments. Rather, within-category pattern similarity is the critical
component, i.e., at the time of test, the participant’s judgment is based on
the collection of stored instances (e.g., Nosofsky, 1988; Shin & Nosofsky,
1992). This view suggests that the average similarity between the test probe
and the learning patterns is greater when the learning patterns fall along a
transformational path than when they do not. This alone would be sufficient
to explain the advantage of the transformation conditions relative to the ran-
dom conditions. Although the advantage of the T-SYST condition relative
to the T-SC-CAT condition for selected contrasts is inconsistent with this
view (since the same patterns are used), the relative comparability of perfor-
mance of the T-SYST and T-SC-RAD conditions is in line with this notion.

In Experiment 2, a direct test of these two potential influences for the
Transformational Systematic condition was provided by pitting within-cate-
gory similarity against transformational knowledge. The participants were
trained on sequences of transformations in the first phase of this experiment.
The participant’s task in the transfer phase was not a standard categorization
task but was instead to select that pattern which was most consistent with
the previous sequence of patterns. The transfer test consisted of an array of
three patterns, one of which continued the sequence (the transformational
pattern) and two equidistant patterns that diverged from the sequence. The
patterns in each test array were constructed such that each was equidistant
from the nearest pattern of the learning set. A graphical representation of
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FIG. 6. Construction of a transformational path (T1–T4) from the prototype (P) to a high
level distortion (T5), along with patterns displaced from the path but equidistant from the
terminal T4 pattern (T5′, T5″). The x and y axes indicate only one of the nine (x,y) coordinates
of a pattern, but the procedure was performed on all nine points of each pattern.

how these controls were invoked is shown in Fig. 6. Note, the two patterns
that diverged from the transformational path were closer than the transforma-
tional pattern to the remaining patterns of the sequence. In short, if partici-
pants based their choice on pattern similarity, the test was biased against
selection of the transformational pattern. That is, if participants preferred the
transformational pattern, their choice must reflect continuation of the se-
quence and not similarity alone.

In Fig. 6, only one of the nine points for the learning sequence (prototype,
T1, T2, T3, and T4) and the test array (T5, T5′, T5″) is shown; in the experi-
ment proper, the procedure described here was performed for each of the
nine points of a pattern. T5 is a high level distortion of the prototype that
falls along the transformational path had the path been extended; T5′ and
T5″ are the corresponding points for the other two patterns on the transfer
test. Each pattern was constructed such that, for each of the pattern points,
T5, T5′, and T5″ were equally close to T4 (the nearest pattern of the learning
sequence for all patterns in the test array). In fact, the two patterns that di-
verged from the transformation fell on a line orthogonal to the transforma-
tional path, intersecting the path at the T4 pattern. In addition, T5 was further
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TABLE 1
Interpattern Distances for the Learning Set (P, T1, T2, T3, T4) and Test Array

(T5, T5′, T5″), Experiment 2

P T1 T2 T3 T4 T5 T5′

T1 0.98
T2 1.95 0.98
T3 2.93 1.95 0.98
T4 3.91 2.93 1.95 0.98
T5 4.89 3.91 2.94 1.96 0.98
T5′ 4.03 3.09 2.18 1.38 0.98 1.39
T5″ 4.03 3.09 2.18 1.38 0.98 1.38 1.95

from the remaining patterns of the learning sequence (P, T1, T2, and T3)
than either T5′ and T5″. Table 1 shows the within-category distances of a
typical test array (T5, T5′, and T5″) to each of the learning patterns (P, T1,
T2, T3, T4).

Construction of the test array, described more fully in Appendix B, was
applied to all nine points of each pattern, and therefore, the overall distance
of the transformational pattern was identical to the two alternatives for the
most similar pattern and less similar than the two alternative patterns for the
remaining patterns of a sequence. The hypothesis was straightforward: if
participants prefer T5 to T5′ or T5″, then transformational knowledge, and
not pairwise similarity, is responsible for the judgment; if T5 is not preferred,
then similarity, rather than transformational knowledge, is guiding perfor-
mance.4

Two other points should be noted. First, as shown in Table 1, the similarity
among the three test patterns in an array was quite high, corresponding to
a low level distortion of each other (e.g., Homa, 1978; Posner, Goldsmith, &
Welton, 1967). Due to this high level of similarity, we anticipated that slight
differences would likely be obtained and we opted to run a sizable number
of participants. Second, the procedure adopted for generating the test array
actually ensured more than the pattern differences noted in Table 1: a compa-
rable matrix for each of the nine points of a pattern would reflect the pattern
shown in Table 1. For example, Table 1 shows that the average distance
moved per dot between the prototype and T5 was 4.89 units; it was 4.03
units between the prototype and T5′ or T5″. These means are derived by
averaging the nine points of each pattern, e.g., the distance for each of the
nine corresponding points between the prototype and T5 was 4.58, 2.51,
9.26, 4.15, 1.46, 3.88, 0.93, 10.28, and 6.97; the corresponding distances for
T5′ to the prototype were 3.76, 2.08, 7.64, 3.42, 1.21, 3.19, 0.76, 8.46, and

4 This hypothesis assumes that psychological similarity is monotonically related to objective
distance.
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5.74. Note that each corresponding value was greater for the prototype-to-
T5 contrast than for the prototype-to-T5′ contrast. In effect, each point of
T5 was further from the corresponding points of the prototype, T1, T2, and
T3 than was T5′ or T5″. Therefore, if the participant encodes each pattern
as either composed of nine features (one for each point) or as an entire pat-
tern, or any feature-combination intermediate between these extremes, the
similarity advantage of T5′ and T5″ relative to T5 is maintained.

Method

Participants. The participants were 74 Arizona State University undergraduates, drawn from
the same pool as in Experiment 1. None of the participants in Experiment 2 had participated
in Experiment 1.

Materials and apparatus. The same types of patterns used in Experiment 1 were used in
Experiment 2. In the learning phase, all patterns were shown via a Kodak Carousel projector.
In the test that followed learning, participants were shown 18 patterns in booklet form with
each pattern appearing on a separate page. In the transfer phase, participants were shown, via
Carousel projector, the patterns corresponding to a given radius (e.g., P, T1, T2, T3, T4) and
then turned over a page in a prepared booklet. Each page of the booklet contained a test array
of 3 patterns, including the transformational pattern (T5) and two foils (T5′ and T5″). Each
booklet contained 18 pages of test arrays.

Procedure. A modified Transformational Systematic procedure was used in the learning
phase of Experiment 2. Participants ran in groups of two to eight and observed the projected
patterns on a screen about 8–10 ft away. Each participant observed, in sequence, the prototype,
T1, T2, T3, and T4 patterns for a given radius. Patterns were shown for 2 s, and six radii
were presented for each category in succession, i.e., 30 consecutive patterns for a given cate-
gory (e.g., category A). The procedure was repeated for another category (e.g., category B)
and then the third category (e.g., category C). The entire procedure was then repeated and
followed by a brief test. On the test, 18 patterns, 6 from each category, were quasi-randomly
selected and presented in booklet form, with each pattern appearing on a separate page. The
participant’s task was to write the appropriate category label (A, B, or C) in response to each
pattern. No feedback was given.

The transfer task followed immediately. As before, the participants observed a sequence
of patterns from a given radius (prototype, T1, T2, T3, T4) but they were followed by an
instruction to turn to the first page of the booklet. Each test array contained three patterns,
including T5, with its position (left, middle, right) determined randomly. The participant was
instructed to ‘‘first choose the pattern you believe is the next step in the sequence that you
have just seen.’’ In addition, the participant indicated a goodness rating on a 10-point scale
(1 5 does not fit the sequence well; 10 5 fits the sequence well) for each of the three patterns.
The procedure was repeated for all 18 sequences (radii), again blocked by category.

Results

The mean rate of correct classification on the test following the two study
blocks was moderately high (.777), with 39 of the 74 participants making
no more than two errors.

We evaluated the likelihood of selection of the transformational T5 pattern
in a variety of ways. First, the mean goodness ratings for T5, T5′, and T5″
patterns were 6.58, 6.18, and 6.06, respectively. The goodness ratings were
significantly higher for the T5 patterns than for the average of the T5 and
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T5″ patterns. t (73) 5 4.60, p , .001. Second, 36 participants had mean
goodness ratings that favored T5, 13 participants favored T5′, and 18 partici-
pants favored T5″; of the 13 participants with tied ratings, 5 favored T5, 5
favored T5′, and 3 favored T5″, z(approximation to binomial) 5 3.54, p ,
.01. Third, an item analysis, computed on the 18 transfer stimuli (and col-
lapsed across participants), again favored T5 relative to T5′ and T5″, t (17)
5 2.26, p , .05.

Discussion

Experiment 2 demonstrated that when transformational knowledge and
interpattern similarity are put into conflict, participants can select the trans-
formational pattern. In fact, the impact of transformational knowledge might
have been greater had pattern similarity been equivalent, rather than so favor-
able, to the alternative patterns. At least a few participants apparently relied
on interpattern similarity since they performed considerably below chance
in selecting the transformational pattern. Thus, one participant who never
selected the transformational pattern (in 18 trials) was clearly below chance
(6 of 18) and probably relied on interpattern similarity rather than transfor-
mational knowledge. Nonetheless, the results of Experiment 2 provide sup-
port for the hypothesis that transformational knowledge can be separated
from interpattern similarity and that participants can select the transforma-
tional pattern at rates significantly greater than chance.

EXPERIMENT 3

Although Experiment 2 suggests that participants are able to access trans-
formational information, we cannot assert that this information is normally
utilized in a categorization task. An alternative hypothesis is that participants
can access transformational knowledge when the instructions explicitly sug-
gest it but that this knowledge plays no role in categorization judgments.
Another concern is that the effects of order of presentation were not investi-
gated in Experiment 2. If participants can use the knowledge of a transforma-
tion in a categorization task, then it follows that this transformational effect
would be greater in the situation in which the stimuli that constitute a trans-
formation are presented in a systematic order.

Experiment 3 explored the effects of systematic exposure to transforma-
tional stimuli akin to Experiment 1, but with modified transfer stimuli similar
to those employed in Experiment 2. In Experiment 3, participants were
trained on the transformations of three categories. All participants trained
on the same items, but their training consisted of either systematic presenta-
tion within a transformational path or random presentation of the items
within a category. After participants reached learning criterion, they received
a transfer task in which they made speeded categorization judgments to pat-
terns similar to those used in the test array in the second experiment.
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Three additional modifications were also incorporated into Experiment 3
in an attempt to increase the strength of the transformational knowledge.
First, participants were more thoroughly trained on the patterns so as to in-
crease their knowledge of the transformation. In the previous experiments,
there were multiple radii in each category with no indication of where one
began and another ended. Therefore, the second modification was to train
participants on only one radius per category with more transformational steps
within the radius in order to make the transformation more salient. Finally,
this radius extended further than the radii in previous experiments in hope
that with such high distortion levels, the participants would rely more on the
knowledge of the path to guide their judgments.

In addition, the distance of the test item from the end of the transforma-
tional path was manipulated. This was done for two reasons. First, we were
uncertain how transformational knowledge and similarity might interact with
distance. For example, one could argue that transformational knowledge
might increasingly dominate similarity as distance to the test patterns in-
creased. Alternatively, the impact of transformational knowledge might di-
minish as distances increased, thereby fostering greater reliance on pairwise
similarity. Second, by manipulating this distance it was possible to decrease
the similarity among the test items.

The speeded categorization judgments were used since the ceiling effects
obtained in Experiment 1 may have masked performance differences among
the transformational conditions. Although in assessing models of categoriza-
tion, researchers have traditionally investigated accuracy of response, there
has recently been more attention to the reaction time predictions that certain
models might make (e.g., Ashby, Boynton, & Lee, 1994; Ashby & Maddox,
1994a; Lamberts, 1998; Nosofsky & Palmeri, 1997). However, even now,
relatively few specific hypotheses can be found in the category literature to
predict reaction times of categorization judgments. A noteworthy exception
is the RT–distance hypothesis, which predicts that reaction time decreases
as a function of distance of the stimulus in the perceptual space from the
decision bound (Ashby & Maddox, 1994a). As the organization of the psy-
chological space, including the location of the decision bounds, is unknown,
it is difficult to test the predictions of this model in the present experiment.
Another recent advance has been Nosofsky and Palmeri’s (1997) Exemplar-
Based Random Walk model of speeded classification. This model assumes
that exemplars enter into a race to be retrieved in memory. These retrieval
rates are a function of the similarity of the test items to items in memory.
This model does not predict an advantage of the transformational systematic
relative to the transformational scrambled order conditions, assuming con-
stant similarity representations.

Instead, the prediction concerning response time was motivated by the
literature that shows that participants react faster to stimuli that are expected
than ones that are not (e.g., Rosch, 1975a; 1975b). For example, research in
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attention has demonstrated that stimuli are reacted to more quickly when
participants are cued to the location of the upcoming target (Jonides, 1981;
McLean & Shulman, 1978; Posner & Snyder, 1975). If, in fact, the partici-
pants have knowledge of the implicit path, then items located on this path
should have higher expectancy values and participants should therefore be
slower when categorizing the foils versus the equidistant transformational
patterns. In addition, participants should be more accurate in classifying the
patterns that continue the path.

The main prediction again concerns the variable of systematic training. If
systematic training is fundamental to this process, then the advantage shown
to the patterns that lie on the transformational path should be present only
for the systematic condition and not for the scrambled condition.

Method

Participants. A total of 96 students at Arizona State University participated in this experi-
ment as part of an introductory psychology course requirement. Each participant was randomly
assigned to one of six conditions. These participants had not participated in the previous experi-
ments.

Stimuli. There was one radius in each of three categories. In the learning phase the partici-
pants were trained on nine transformational patterns in each category (T1–T9). The transfer
stimuli consisted of the three critical patterns for each category at each of three distortion
levels of test items. There were 27 transfer items in total.

Stimulus construction. New foils were constructed using the principles of coordinate trans-
formation. Basically, the idea was to place a hypothetical circle around each point in the T9
pattern. This circle had a radius of the average displacement per transformation. As shown
in Fig. 7, the new foils (45°) were patterns whose points fell on this circle and were located
at a 45° angle in either direction from the transformational path. This procedure created pat-
terns that are off the transformational path, equidistant from T9, but were less biased in terms
of similarity to the patterns earlier on in the path.

For each of three categories, stimuli were constructed so as to fall on only one radius or
transformational path. These transformational paths, however, extended further than the paths

FIG. 7. A schematic diagram of the relationship between the 90° foils, the 45° foils, and
the transformational patterns.
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FIG. 8. A schematic diagram of one of the categories in Experiment 3.

in the previous experiments. More specifically, the learning stimuli in Experiment 3 spanned
the distance equal to approximately twice a high level distortion (10 units/dot). In addition
to patterns being further apart on the path they were also more numerous. There were nine
patterns in each radius seen in the training phase as well as the set of test items seen in transfer.

The transfer test consisted of three sets of test items at various distances from the last item
seen in training. Each of these sets contained two tangent patterns and a transformational
pattern. The three patterns were equidistant from the last item seen in training. (See Fig. 8
for a schematic diagram of one of the categories.)

Procedure. The experiment was run on IBM-compatible computers using a program with
1-ms timing resolution. Each participant experienced five learning blocks, each of which in-
cluded a study and a test phase, just as in Experiment 1. In the study phase, subjects were
asked to simply observe the patterns that appeared with their appropriate category labels. Each
pattern remained on the screen for 3 s. Each study phase was followed by a test phase in
which participants categorized the training items and received feedback on each of their re-
sponses. The order of items in this phase was randomized.

There were six between-subject conditions which corresponded to the order of learning
(systematic vs. scrambled) factorially combined with the distance of the test items from the
last item seen in training (three levels). In the systematic conditions, participants trained on
the patterns blocked within radii with the prototype first, followed by the next eight transforma-
tional patterns, in consecutive order.5 In the scrambled conditions, the participant trained on
the same patterns in a random order within each category. The random ordering of items
within a category was kept consistent in each study block for a particular participant.

The learning phase was immediately followed by a transfer test in which participants were
asked to categorize the previously unseen transfer items. The participants were tested at one
of the three levels of the critical items. Participants were asked to make categorization judg-
ments as quickly as possible, without sacrificing accuracy, by pressing a key indicating the
category (A, B, or C) of each of the 27 transfer items. Subjects received no feedback in this
part of the experiment.

Results

Participants in both conditions reached a high and equivalent level of
learning by the fifth learning block (scrambled conditions 5 .968 and system-
atic conditions 5 .974). The transfer data were analyzed in terms of reaction

5 Note that although the pattern referred to as the prototype was the prototype in Experiment
2, a recalculated prototype would be very distant from this pattern. It would lie in the middle
of the transformational path.
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time and accuracy performance. In this and all subsequent reaction time anal-
yses, incorrect responses were discarded and reaction times more than twice
the value of the mean of that condition were replaced with the cutoff value.
In addition, reaction times under 100 ms were discarded. Finally, because
of the lack of practice trials, the response to the first pattern that appeared
in transfer was also discarded.6,7

The mean reaction time data are shown in the top panel of Fig. 9. The
reaction time analysis did not yield a significant main effect of pattern type,
F(1, 120) 5 1.36, MSE 5 47624, or organization of learning, F(1, 120) 5
2.15, MSE 5 151210, both ps . .10. However, there was a main effect of
distance of test items from the training path, with mean reaction time increas-
ing as a function of increased distance of the test items from the last pattern
seen in training, F(2, 120) 5 6.10, MSE 5 151210, p , .01. This variable
did not interact with organization of learning or type of pattern.

The interaction between pattern type and organization of learning was
marginally significant, F(1, 120) 5 2.85, MSE 5 47624, p , .10. Subjects
in the systematic condition responded 78 ms faster to the transformational
than the tangential patterns, F(1, 60) 5 4.02, MSE 5 48184, p , .05. This
contrast was not significant for subjects in the scrambled conditions, with
mean reaction times to the transformational patterns slowed by 14 ms relative
to the tangent patterns, F(1, 60) 5 .14, MSE 5 47065, p . .10.

The accuracy data are shown in the lower panel of Fig. 9. There was a
decrease of accuracy as a function of increased distance of items in the test
array from the training patterns, F(2, 120) 5 3.02, MSE 5 .03, p , .05.
However, there were no main effects of pattern type, F(1, 120) 5 .26, MSE 5
.007, or organization of learning, F(1, 120) 5 1.41, MSE 5 .03, both ps .
.10. In addition, none of the interaction terms were significant (all Fs , 1).

Discussion

Experiment 3 demonstrated that given equal levels of accuracy, partici-
pants who were trained on the transformational stimuli in the sequence in
which they transformed were faster at categorizing patterns that continued
the path than patterns that diverged from the path. Participants who were
trained on these same stimuli in a random order did not demonstrate this
effect. In addition, there appeared to be an overall drop in performance with
increased distance of the test items from the last training pattern. Interest-
ingly, this variable did not appear to influence the magnitude of the transfor-

6 When a response to a transformational pattern was dropped, the responses to the corre-
sponding tangent patterns were also dropped in order to maintain the controlled distances from
the transformational path. However, since there were two tangent patterns in every radius,
when the response to one of the tangent patterns was discarded, the response to the transforma-
tional pattern was not. In this case the second tangent pattern maintained the necessary control.

7 An analysis of the median reaction times yielded essentially the same pattern of results,
with reaction times being on average 20 ms slower.
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FIG. 9. Accuracy and mean reaction time performance in Experiment 3.

mational knowledge effect. The results of Experiment 3 provide support for
the transformational knowledge hypothesis.

EXPERIMENT 4

Experiment 1 supported the idea that interpattern similarity can be sepa-
rated from transformational knowledge. Experiment 2 demonstrated that par-
ticipants could separate pairwise distance and transformational knowledge.
Experiment 3 suggested that participants do use transformational knowledge
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in a categorization task if they are trained on these patterns in a systematic
manner. Given the differences in performance between the scrambled and
systematic conditions and assuming that interpattern similarity remains con-
stant across the two learning situations, it is easy to argue that the various
models of categorization cannot predict differences between these two condi-
tions.

An interesting idea is that perhaps the interpattern perceptual similarity
does not remain constant across both training procedures. The idea that con-
cepts change as a function of experience is certainly not new (Goldstone,
1994; Hull, 1920; Nosofsky, 1986, 1987). Clearly, experience can modify
our categories. Some theorists have argued convincingly that similarity and
categorization are interdependent (Murphy & Medin, 1985). Therefore, as
categorization performance changes, the underlying similarity relationships
could change as well.

A number of studies point to the effects of making certain stimulus dimen-
sions more salient. For example, Homa, Rhoads, and Chambliss (1979) in-
vestigated the effect of learning on similarity relationships. Participants gave
pairwise similarity ratings for categorical patterns before learning, after
learning to criterion, or after extreme category training. Multidimensional
solutions were found for the similarity ratings and were compared across
conditions. The results suggested that clustering of categories increases as
a function of learning. Another example of increased salience of stimulus
dimensions comes from studies of chick sexing. Distinguishing the sex of
newly hatched chicks is an extremely difficult task, but with a high level of
training sorters can reach levels of accuracy as high as 99.5% correct (Lunn,
1948, in Gibson, 1969) and can be trained to attend to the relevant stimulus
dimensions (Biederman & Shiffrar, 1987).

The purpose of Experiment 4 was to use multidimensional scaling as a
means of uncovering the psychological structure of categories formed after
systematic, scrambled, and no training in the transformational categories.
Multidimensional scaling (Kruskal, 1964; Shepard, 1962) is a technique
which finds points in a multidimensional space so that distances in the space
correspond to rated similarity. It is a tool that allows for modeling similarity
in a way that uncovers relationships that are difficult to observe from raw
similarity ratings.8

Participants either trained on the transformational stimuli in a systematic
manner, the transformational stimuli randomly presented within a category,

8 There are some limitations of MDS worth noting (e.g., Ashby, Maddox, & Lee, 1994b;
Tversky, 1977). For example, Tversky argued that certain distance axioms, such as symmetry,
are often violated in similarity ratings. Also, Ashby, Maddox, and Lee have demonstrated that
averaging subject data can result in systematic changes in the computed MDS configuration.
However, despite some of these problems, MDS still functions as a useful data reduction
technique. Also, any bias should not favor one training technique over another.
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FIG. 10. A schematic diagram of one of the categories used in Experiment 4.

or received no training at all. In the rating phase that followed, participants
gave pairwise similarity ratings to the training patterns in addition to some
of the critical stimuli of Experiment 3. These critical stimuli were included
so as to be able to determine whether the distance controls that were invoked
in the physical space in Experiment 3 were maintained in a psychological
space. Multidimensional scaling solutions were obtained for the three condi-
tions.

One critical concern is whether the presumed transformational paths are
realized in psychological space and whether they are better formed following
systematic training. Specifically, there is no guarantee that the technique de-
veloped here for generating a sequence of patterns that systematically trans-
form in N-dimensional space would be revealed as a clear path in psychologi-
cal space. Furthermore, if the psychological spaces for the systematic and
scrambled conditions are virtually identical, then the models have no a priori
reason to suspect that similarity can account for results that suggest enhanced
performance as a function of sequential learning. If, however, the similarity
structure does change as a function of condition, then this can be taken as
support for the idea that similarity and categorization are, to a certain degree,
interdependent. It may also leave a way open by which models based on
interpattern similarity can account for the results of Experiment 3 but would
necessitate a more complex theory of similarity.

Another goal, as alluded to above, is to investigate whether the distance
controls that were invoked in Experiment 3 are maintained in psychological
space. An interesting possibility is that the critical stimuli will be rated as
more similar to the last transformational pattern when they fall on the trans-
formational path than when they fall off the transformational path. In other
words, although the distances in physical space are controlled, perhaps the
distances in psychological space are not.

Method

Participants. There were 30 participants who were predominantly graduate students at Ari-
zona State University. Participants were paid $10 and randomly assigned to one of three condi-
tions.

Stimuli. A subset of the stimuli used in Experiment 3 was used for this experiment. Figure
10 is a schematic diagram of the patterns used in Experiment 4. As in the training phase of
Experiment 3, participants were shown nine patterns from each of three categories in the
training or familiarization phase of this experiment. This training set was identical to the
training set used in Experiment 3. The rating phase consisted of the training stimuli (T1–T9)
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in addition to the critical patterns (T10, T10′, and T10″) used in the third experiment for a
total of 36 patterns. These critical stimuli consisted of the three test patterns (two 45° foils
and one transformational pattern) for each category.

Procedure. For participants in the two learning conditions, the training procedure was identi-
cal to the procedure used in the third experiment. Participants were taken through five study/
test blocks and, as in Experiment 3, participants either trained on the patterns in a systematic
or scrambled fashion. In the no-learning condition, the training phase was replaced by a famil-
iarization phase in which the participants were allowed to view all the training patterns once,
for 3 s each, in a random order, but were given no information about any of the categories.
This was done in order to familiarize these participants with the range of patterns so that they
could gauge their rating scale accordingly.

After this initial phase was complete, the participants were asked to make similarity judg-
ments to the stimuli. Each possible pair of stimuli appeared on the computer screen with left/
right placement randomly determined and stayed on the screen until the participant made a
response. In addition to the stimuli, a nine-point scale appeared on the screen to remind the
participants of the range to use. Participants were instructed to use as much of the scale as
possible to indicate the different shades of similarity, with ‘‘9’’ indicating extremely dissimilar
stimuli and ‘‘1’’ indicating very similar stimuli. The trials were self-paced, and the whole
session lasted approximately 1 h on average.

Results

Multidimensional scaling (MDS). For each of the learning conditions, the
data matrices were averaged and the resultant matrix was used to find a
scaling solution. A program called KYST (Kruskal, Young, & Seery, 1973)
finds solutions in N-dimensions while minimizing a value called stress. Stress
is essentially an indication of the fit of the model that is based on normalized
residual sums of squares. Although a more dramatic drop in stress values
occurred at two dimensions, the addition of a third dimension improved the
fit considerably (the range of stress values [Kruskal’s (1964) stress formula
1] for three dimensions was .054 to .08). In addition, a three-dimensional
fit still allows a visual analysis of the data that higher dimensions do not. For
these reasons, three-dimensional solutions were chosen for further analysis.

The resultant spaces provided by the three learning procedures can be
compared in their overall organization. Generally, the spaces are very simi-
lar. A program called CONGRU (Olivier, computer program) was used to
rotate the spaces so that they are maximally similar by minimizing sum of
squared deviations. The program then computes a Spearman correlation co-
efficient indicating the degree of correspondence of the x and y values in the
different solutions. The resultant ρ values from this analysis were .993 for
the scrambled and systematic spaces, .980 for the systematic to no-learning
mapping, and .985 for the no-learning to scrambled mapping. Figure 11
shows the three-dimensional plots for the three conditions, rotated to be max-
imally similar.

Computing structural ratios for the different learning conditions provides
a measure of the degree of organization of these spaces (Homa et al., 1987).
These ratios were obtained by calculating the distance from each pattern in
the space to other patterns in the same category and dividing that distance



FIG. 11. MDS solutions for the three conditions.
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by the distance to the patterns in the other categories. Smaller ratios indicate
a greater degree of structure. This ratio was larger in the scrambled condition
(.429 within/1.69 between 5 .254) than in the systematic condition (.402
within/1.69 between 5 .237), suggesting an increased organization of pat-
terns in the systematic condition. Consistent with expectations, this ratio was
highest for the no-learning condition (.571 within/1.658 between 5 .344).
Since the distributional characteristics are not clear, we do not report any
statistics for these analyses.

A more fine-grained analysis consisted of examining distances between
the last transformational pattern seen in learning (T9) and the critical stimuli
(T10, T10′, and T10″) for the three conditions. One possibility is that the
distance between T9 and T10 will be smaller than each of the distances
between T9 and the foils (T10′, T10″), despite what would be predicted by
physical distances. In addition, this discrepancy between physical and psy-
chological distances may be greater for the systematic condition than the
scrambled condition. (Refer to Fig. 10 for a clarification of the relationship
among these patterns.)

The top part of Table 2 gives the values of these comparisons for the three
conditions. Physical similarity alone predicts that the distances in the two
columns should be equal. However, contrary to what similarity-based models
might predict given the ordering of mean reaction times in Experiment 3,
except for the no-learning condition, the distance between T9 and T10 seems
to be greater than the distance between T9 and the foils. Interestingly, this
difference is greater for the scrambled condition than for the systematic con-
dition. One must caution, however, that the reliability of these findings is

TABLE 2
Fine-Grained Comparisons in the Computed KYST Configurations

Condition Foils (T10′, T10″) Transformation (T10)

Distance to last training item (T9)
Systematic .085 .107
Scrambled .113 .163
No-learning .100 .096

Average distance to all within-category training items (T1–T9)

Systematic .459 .469
Scrambled .497 .556
No-learning .658 .678

Average distance to all between-category training items (T1–T9)
Systematic 3.13 3.11
Scrambled 3.13 3.16
No-learning 3.08 3.16
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unknown because it is not possible to do a statistical test with only three
measurements (one for each category) of each of the comparisons. An analy-
sis of the raw similarity ratings, which does allow for statistical comparison,
produced the same general pattern of results, with no significant differences
between the similarity ratings of the two types of patterns and the training
sequence for any of the conditions.

Another comparison included in Table 2 is the distance of the critical items
(foils and transformational patterns) to all the other items in the path. These
distances were calculated by averaging the distance of the items in the path
to the two kinds of patterns. These values are an indication of the ‘‘perceptual
length’’ of the path. Note that, consistent with the calculated structural ratios,
the transformational path appears shortest for the systematic condition. As
these are not an exact measure of the length of the path, the distance between
the first and last training items was calculated to confirm this finding. As
expected, this distance was shortest for the systematic (0.843) condition fol-
lowed by the scrambled condition (0.893) and the no-learning condition
(1.183).

INDSCAL analysis. Each of the individual participant matrices was
next entered into a program called INDSCAL (Carroll & Chang, 1970).
INDSCAL has one major advantage over other MDS programs. In addition
to providing the group stimulus space, in which the stimuli are represented
in terms of their similarity to one another, it also provides a weight space,
in which each subject’s dimension weights used in the scaling are given. In
a sense, a plot of these weights represents the similarity of each participant’s
ratings with regard to other participants in terms of their shared dimensions
of perceptual analysis. INDSCAL allowed us to investigate whether the par-
ticipants in the different conditions were likely to cluster as a function of
training procedure.

Each individual participant’s matrix for the three conditions was entered
into the program. The resulting subject weight space in three dimensions is
depicted in Fig. 12. Notice that the participants do seem to cluster as a func-
tion of training procedure. One way to quantify this apparent clustering is
to first calculate the distances from each participant to other participants in
the same condition as well as the distance for each participant to participants
in the other conditions. Participants were closer within a condition (.146
units) than between conditions (.154 units).

Discussion

In general, the psychological spaces were very similar across conditions.
The spaces were highly structured, with clearly visible transformational
paths. There was even a surprising degree of structure in the no-learning
condition. It appears that much of the transformational event can be recon-
structed without explicit knowledge of the categories or exposure to the
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FIG. 12. The INDSCAL subject space.

transformation. That is, the perceptual similarity between items is enough
to reconstruct the transformational order.

The results of Experiment 4 support the notion that similarity is modified
as a function of training procedure. Despite the consistency across condi-
tions, there were small but significant differences in the expected directions.
The structural ratio analysis and the INDSCAL analysis indicate that partici-
pants in the systematic conditions have different similarity relationships than
participants in the other conditions. Systematic training provided for more
structured categories, with within-category distances being smaller than in
the scrambled condition. In addition, systematic training resulted in the short-
est path. The no-learning condition showed the highest structural ratios, indi-
cating that as learning progressed, the categories become increasingly struc-
tured.

Finally, the fine-grained comparisons allowed an examination of how the
critical patterns that were used in the last two experiments were perceived
as a function of training procedure. These comparisons are important in that
they provide the basis of predictions by models that rely on interpattern simi-
larity. Two basic findings emerged. Although this trend was not significant
in an analysis of the similarity ratings, the physical distances were more
closely matched in the no-learning condition than in either of the learning
conditions. Second, despite faster mean reaction times to the transforma-
tional patterns in the third experiment by subjects in the systematic training
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groups, these patterns maintained the controlled distances from the last item
seen in training.

GENERAL DISCUSSION

Basic Findings

The goal of the present research was to investigate the importance of expo-
sure to transformations in category learning. Objects in the environment
evolve in a way that is principled. We hypothesized that exposure to this
principled change should enhance categorical knowledge.

Experiment 1 demonstrated that learning is speeded, classification is en-
hanced, and forgetting is reduced for participants trained on transformational
patterns versus those trained on random patterns equated for distance to the
category prototype. Although many differences between the transformational
conditions in Experiment 1 were in the right directions, the performance of
these subjects was high and the differences were slight and only significant
on a few comparisons. One advantage of systematic training was in the clas-
sification of new patterns. Participants who were trained on the transforma-
tional items in a systematic order were more accurate at classifying new
patterns than participants who were trained on the same patterns in a random
order. Another advantage was in the recognition of the old patterns with
the systematic training providing higher levels of recognition of the training
patterns.

Experiment 2 demonstrated that participants can access explicit knowl-
edge of the transformation. After training on systematically distorted se-
quences, participants were able to pick out the next step in the sequence
from an array of patterns in which this step was the least similar to the train-
ing instances. This indicated that participants were not guided solely by simi-
larity judgments, but were able to use transformational knowledge when in-
structed to do so. This result also suggests that the cognitive representation
of the transformation is a viable construct, separate from pairwise pattern
similarity.

Experiment 3 demonstrated that participants, trained on principled change,
categorize novel patterns more quickly if they lie on the transformational
path. Importantly, this outcome was only obtained for subjects training on
transformational patterns in a systematic order. When training occurred with
the same distortions in random order, no advantage in speed of response
occurred to path-continuing versus path-violating patterns. It is possible that
systematic training creates expectancies of forthcoming patterns that are then
more quickly classified.

Experiment 4 showed that the effects of systematic transformational train-
ing are readily apparent in a psychological space, as determined by multidi-
mensional scaling. In particular, transformational paths are shorter and the
entire categorical structure is more structured when participants train on pat-
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terns in a systematic manner. In addition, the INDSCAL analysis indicated
that there were systematic differences among the conditions as manifested by
clustering of participants in the weight space. Finally, fine-grained analyses
revealed that the patterns that were controlled in terms of their distance from
the path in a physical space maintained this control in the psychological
space. The patterns that continued the transformational paths versus control
patterns that diverged from the path were roughly equidistant to the most
similar training pattern. Therefore, the speed advantage of the systematic
condition on the transformational patterns in Experiment 3 was not due to
a psychological shortening of the transformational paths.

A Theory of Transformational Knowledge

These results suggest that the human mind is receptive to and can profit
from systematic changes in patterns. This ability is fundamental. It is neces-
sary, for example, for identification of constantly changing objects; for rec-
ognizing an old friend after time has significantly changed her appearance;
and it is essential for being able to see that tadpoles and frogs belong to the
same category. The work of Seamon and his colleagues (Seamon, 1982;
Seamon, Stoltz, Bass, & Chatinover, 1978) provides evidence that partici-
pants are able to recognize faces that have changed dynamically. They argue
that it is a cognitive ability that occurs in both incidental and intentional
learning. We contend that this ability is not limited to faces or any other
‘‘special’’ stimuli, but is about the knowledge of permissible transforma-
tions. We further argue that this knowledge is crucial to our understanding
of objects in the environment.

This combination of what must be both extrapolation and interpolation
processes causes heightened status for things along the path of change and,
at least implicitly, for the path itself. As a result, objects that continue the
path are expected, and when they are seen, categorization judgments proceed
faster. The sensitization of the path also makes things that are on the path
seem more similar, as was evidenced by the shorter paths in the systematic
condition.

Others have argued for phenomena that resemble this process. The idea
that people can extrapolate beyond their experiences is well documented
(e.g., Brehmer, 1974; Koh & Meyer, 1991). For example, Koh and Meyer
demonstrated that participants in their experiments could induce certain func-
tions involving stimulus-response relations well beyond what they had expe-
rienced in learning. In addition, although the focus of this paper has not been
to examine changes in memory as a function of implied momentum, our
findings certainly have some parallels to the representational momentum lit-
erature in that both phenomena are tied to perceiving the course of change.
However, there are also some fundamental differences. First, the representa-
tional momentum effect is found only in small temporal durations after the
last item is seen. Second, if the test items are more than slightly distorted,
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the effect disappears. These two differences indicate that although these ap-
pear to be related phenomena, they may draw on somewhat different pro-
cesses.

The question of how information about transformations is developed and
represented is an interesting one. Any processing account must include an
explanation of the importance of sequencing of the items to transformational
knowledge. One possibility is that transformational knowledge is induced
by the co-occurrences of similar items in memory early on in the transforma-
tion. This makes higher order invariances of the stimuli more salient thereby
guiding expectations of upcoming stimuli. The notion that commonalties be-
tween stimuli seen early in training guide future categorization performance
has recently received support (Ross, Perkins, & Tenpenny, 1990). In addi-
tion, Medin and Bettger (1994) have demonstrated that sequencing items so
that there is minimal change between any two consecutive items results in
better recognition of category items. Therefore, in this sense, the transforma-
tional knowledge is a function of the display of information in a sequenced
way. Transformational knowledge is not only about the sequencing of stim-
uli, however, because subjects in the systematic conditions are only faster
in classifying the items that continue the path rather than being faster on all
items.

As for the representation of transformational knowledge, one possibility is
that knowledge of transformations allows for the development of additional
features or dimensions of objects along a transformational path, as suggested
by perceptual learning theory (Gibson, 1969). For example, Goldstone and
colleagues have recently demonstrated that participants in laboratory experi-
ments can be sensitized to both existing (Goldstone, 1994) and arbitrary
(Goldstone, Steyvers, & Larimer, 1996) dimensions.

Implications for Theories of Categorization

Findings of enhanced categorization performance as a function of expo-
sure to principled change are important to understanding the categorization
process in general and, therefore, to any theory of categorization. Not only
has this variable gone unstudied, it indicates a necessity to consider a higher
order of organization among the stimuli.

There have been some recent advances in developing models that make
predictions of the timing of categorization judgments (e.g., Ashby & Mad-
dox, 1994a; Lamberts, 1998; Nosofsky & Palmeri, 1997) but none of the
timing models predict an advantage of the transformational patterns for the
systematic condition. Instead of assessing specific models, we can assume
that reaction time instantiations of the models follow the general flavor of
the representation models on which they are based (i.e., that the exemplar
models would require only knowledge of the similarity relationships between
exemplars or that prototype models would predict response times as a func-
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tion of distance from the prototype). This type of approach was recently
taken by Ashby, Boynton, and Lee (1994).

Given these assumptions, the data indicating that only the systematically
trained groups were faster in classifying the transformational patterns would
not be predicted by any of the models. Take, for instance, exemplar-based
models. At first glance, the data showing modified similarity as a function
of learning seems to support this group of models. Perceived similarity is
systematically different across conditions, as would be necessary for these
models to predict the obtained reaction time results. However, the similarity
ratings do not capture the entire story. The transformational patterns are in
fact further apart (although not significantly further) from the last item in
the training set than are the control patterns, even in the systematic condition.
Although this was more evident in the scrambled condition than in the sys-
tematic condition, it still contradicts the ordering of the mean reaction times.
A model that considers the order of presentation of stimuli, such as the Ratio-
nal Model of Classification (Anderson, 1991), may be able to make different
predictions for the conditions solely as a function of order. That is, an itera-
tive algorithm that is order-sensitive might result in categorical structure that
could vary based on the order of instance presentation. Indeed, order effects
have been documented in the literature (e.g., Medin & Bettger, 1994). How-
ever, a model such as this would not be able to predict the advantage for
the systematic conditions only on the transformational patterns. What seems
to be necessary is a model that takes advantage of redundancies in close
temporal slots. More research is needed before such a model can be formal-
ized and tested.

Similarity and Categorization

The results and theoretical perspective of the present study are relevant
to recent concerns regarding similarity and its sufficiency in explaining cate-
gorization or conceptual coherence (Medin, Goldstone, & Gentner, 1993;
Murphy & Medin, 1985; Rips, 1989). The focus of Experiment 4 was to
investigate the possibility of fundamental changes in the similarity relation-
ships as a function of learning the transformational categories. Yet, research-
ers generally attempt to explain categorization behavior in terms of similarity
relationships that are measured after categories are learned. Given the flexi-
bility of similarity, its utility as an explanatory construct has been questioned.
For example, Murphy and Medin make the argument that similarity and cate-
gorization are considerably interdependent and that similarity may be more
useful as the dependent rather than the independent variable. It appears from
Experiment 4 that the similarity relationships across the three conditions
have a lot in common. However, there are significant systematic changes in
the psychological space as a function of learning the categories, suggesting
some interdependence between similarity and categorization.
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Does this mean that similarity is a vacuous construct? We argue that al-
though similarity and categorization may at times be interdependent, that is
not to say that similarity cannot be useful. Clearly, even with changes in
the learning procedure, there was a core of similarity relationships that was
common across the three conditions. Although some would argue that there
are no perfect taxonomies (e.g., Lakoff, 1987), others have demonstrated
(e.g., Sneath & Sokal, 1973) that animal and plant classification can be func-
tionally achieved via unambiguous physical measurement such as skeletal
properties (bone length and angles). For example, Wood (1982) has provided
a demonstration that the 17 species of stork can be recaptured by precise
measurement of numerous characteristics (skull, humorous, sternum, etc.)
from these species. Furthermore, ‘‘classification based on skeletal morphol-
ogy are highly congruent with those recalculated with behavioral data’’
(Wood, 1982, p. 88). Thus, similarity can be a useful construct, but a clear
operational definition of similarity is necessary. We advocate that the prob-
lem lies in providing an adequate, noncircular definition for similarity or
noting that its implementation may take on different forms depending upon
the particular stimulus domain (a view recently expressed by Heit & Rubin-
stein, 1994). We are sympathetic with Murphy and Medin’s (1985) argument
that ‘‘. . . the notion of similarity must be extended to include theoretical
knowledge’’ (p. 291) and that ‘‘. . . much of our reasoning about concepts
may be based on constraints about operations that are permissible’’ (p. 295).
The present study is an attempt on our part to capture permissible operations
that are not exclusively based on physical similarity among specific mem-
bers. However, it is clear from findings of this and other studies (Homa,
Rhoads, & Chambliss, 1979; Murphy & Medin, 1985; Rips, 1989; Rips &
Collins, 1993) that using similarity to predict the categorization is explana-
tory only at a certain level. Perhaps more focus could be placed on investigat-
ing the types of variables that affect both similarity and categorization instead
of simply explaining changes in categorization behavior as being a result of
changes in similarity relationships. Hopefully, the present study, with its
focus on categorization and similarity relationships as a function of transfor-
mational knowledge, represents a step in the right direction.

Representation

The potential performance differences among the transformational condi-
tions may be less serious for theories of category representation than a theo-
retical dilemma raised by the transformational conditions themselves—what,
precisely, is the representation of a category? To take exemplar models as
an example, a tacit assumption of all studies exploring these models of classi-
fication is that each manipulated pattern results in an encoded exemplar,
perhaps modified by bias or attentional demands. If that stimulus is shown
a second or third time, different exemplar representations are likely formed.
However, this perspective is mute to the very real issue of how one should
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define an exemplar which changes its appearance in real time. For example,
what is the exemplar or exemplars when one observes a face that changes
expression over some time period, such as 20 s? Logically a single exemplar
representation cannot be formed in this period unless that exemplar is either
a weighted average over the time period or the exemplar is the most salient
representation during this interval. If the former, then the stored exemplar
is really an abstraction; if the latter, then the argument must assert the dubi-
ous claim that the remaining potential exemplars are neither selected nor
stored for representation. If the argument is made that multiple exemplars
are formed during the time period (say 20 s), then it becomes necessary to
posit a mechanism similar to the perceptual moment hypothesis, (e.g., every
100 ms or so, a different exemplar is encoded or stored). If we accept this
hypothesis that multiple exemplars are stored during continuous viewing,
then two problems emerge: what are the time units for formation? And are
these exemplars also abstractions over a shorter interval? Regardless, models
of classification make the tacit assumption that an exemplar is simply an
internalized representation of the stimulus, without addressing the problems
inherent with the reality of changing expressions and time. Change of the
representation over time is a serious issue for all models of categorization
but more so for models which do not incorporate abstraction processes.

Future Directions

An interesting idea is brought on by the contrast to the representational
momentum research (e.g., Finke & Freyd, 1985; Freyd, 1987; Pinker,
Choate, & Finke, 1984) and work that Kuhl (1991) has done regarding the
prototypes of vowel categories. In her experiments, Kuhl asked participants
to indicate when a referent sound had been changed. The participants heard
sounds that were on a vector from the prototypical stimuli to a non-prototypi-
cal stimuli. The only difference between the two groups was the direction
in which the stimuli were presented. Her hypothesis and results suggested
that the prototype acts as a perceptual magnet so that surrounding members
are perceptually assimilated into it to a larger degree than would be predicted
by psychophysical distance alone. In support of her hypothesis, she found
that to hear a difference, the participants in the prototype referent group had
to go further away from the referent than in the non-prototype group.

Intrinsic to both these research paradigms is the directionality of the effect.
The representational momentum effect, by definition, requires it to occur
only in the direction of change, as does the perceptual magnet effect. How-
ever, in the case of transformational knowledge, if the subject is acquiring
knowledge of the path of change, then perhaps this effect should manifest
itself in either direction. Seamon (1982) indicated that participants display
the ability to recognize faces that have changed in either direction. Perhaps
this sort of bidirectional finding could increase our understanding of the pro-
cesses involved in this phenomenon.
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APPENDIX B: CONSTRUCTION OF TEST ARRAYS FOR
EXPERIMENT 2

Construction of the test array, which always contained three patterns (T5,
T5′, T5″), involved three steps: (a) divide the distance between each point
in the prototype and a high level distortion by 5, e.g., if the coordinates of
one point of the prototype were (21.36, 6.93) and the corresponding coordi-
nate values of a high level distortion were (25.93, 7.16), then the overall
displacement would be (24.57, 0.23); dividing by 5 would result in (20.91,
0.05). These latter values were the increments for that point for each succes-
sive transformation from P to T5, e.g., T1 5 (21.36, 6.93) 1 (2.91, 0.05)
5 (22.27, 6.98); (b) the increment for each pattern displacement/5 was re-
versed, as was one sign, and added to the coordinates for T4 to create one
of the test array patterns, e.g., the displacement of (2.91, .05) becomes (.05,
.91), which when added to T4, produces the corresponding coordinate values
for T5, e.g., (24.95, 8.04); and (c) the coordinates for T5″ were computed
by reversing both signs of the (x,y) displacement for the first distortion, e.g.,
T5″ becomes T4 1 (2.05, 2.91) 5 (25.05, 6.22). This procedure was fol-
lowed for each of the nine points of each pattern. Every high level distortion,
therefore, appeared with two distortions (T5′, T5″), where each pattern in
the array was a minimal distortion of each other.
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