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Tlie Design of Quasi-Eliipsoidal 
Gear Ratio and Pitcti Curved 
Surfaces 
The design of the gear ratio and pitch curved surfaces of a new type of gear called 
as quasi-ellipsoidal gear is presented in this paper. The quasi-ellipsoidal gear can 
be applied to the flexible wrist of a robot and will make the wrist light and nimble, 
so the transmission precision will be greatly improved. 

Introduction 

Robot technique has developed very quickly in less than 40 
years. As the key component of a robot, the flexible wrist has 
been greatly improved. A flexible wrist is a wrist with three 
DOF that can bypass certain obstacles. This kind of wrist has 
developed into many types, such as, linkage type, universal joint 
type, the wrist driven by steel string, as well as that composed of 
gears, and so on. But all these wrists have the following defects: 
a big volume, very heavy, big inertia, have clearance, bad setting 
accuracy and not easy to control. To overcome these defects, 
scientists began to develop new flexible wrists. Fig. 1 shows a 
new type of flexible wrist. In this wrist, there are two pairs of 
spherical gears. This will make the wrist simple, light, and 
reduce wrist inertia, so the setting accuracy will be improved. 
The concepts of spherical and quasi-ellipsoidal gears, as well 
as the design of the quasi-ellipsoidal gear ratio, and pitch curved 
surfaces are given in detail in the following: 

Fig. 1 A new type of flexible wrist adopting two pairs of spherical gears 

1. Concepts of Spherical and Quasi-Ellipsoidal 
Gears 

1.1 Teeth Layout of Spherical Gear. The three-dimen­
sional drawing of spherical gears is shown in Fig. 2. The convex 
or concave teeth are only located in the regional area (the 
spherical cap) of the pitch sphere, and the method of teeth 
layout is: the center tooth locates on the summit, six teeth on 
the first latitudinal line and twelve teeth on the second latitudinal 
line, shown as Fig. 3. In the longitudinal direction of the pitch 
sphere, the arc length between the center tooth and the first 
circle of teeth equals to that between the first and the second 
circles of teeth. 

1.2 Concepts of Spherical and Quasi-Ellipsoidal Gears. 
To make the spherical gears above mesh, the tooth pitch in the 
longitudinal direction of the pitch sphere of gear 1 must be 
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equal to that of gear 2. And the tooth pitch in the latitudinal 
direction of the pitch sphere of gear 1 must also be equal to 
that of gear 2. 

Shown as Fig. 4, the pitch sphere of gear 1 is S,, its radius 
is n , w is a latitudinal line of Z, and its radius is ri,. In this 
latitudinal line, there are z teeth. 7, and j'a are two longitudinal 
lines. M is the center tooth. N and Q are two teeth nearby in 
the latitudinal line w. Make P] = MN = MQ, Pl = NQ, then 
the tooth pitch in the longitudinal line of Zi is 

pj = r:9 

The tooth pitch in the latitudinal line w of E, is 

, 27r , 27r . ^ 
Pw = — r„ = — r, sin 6 

(1) 

(2) 

For the pitch sphere Z2 of gear 2, r2, ip and rl correspond 
respectively to r,, 6* and r i, of E,. In the same way, we get the 
tooth pitch in the longitudinal line of S2 is 

PJ = r2ip 

The tooth pitch in the latitudinal line of Sj is 

2 27r , 
Pw = — rt 

z 
27r 
— ^2 Sin (p 
z 

If the gear ratio £21 = ri/r2 = 1, make ip = 9, then 

P)=pj 

pi = pl 

(3) 

(4) 

(5) 

Obviously, this conforms to the right meshing condition. 
If the gear ratio /21 = ri/rz 4^ 1, for example, r^ > ry (i.e., 

/ai < 1), in the area 6» G [0,7r/2] the derivative of the function 
fiO) = sin e - sin {i2\6)lii\ is 

f'(9) =-j- = cose - cos ((2,(9) < 0 (6) 

So f{e) reduces monotonously in the area 0 e [0, n/l]. 
And/ (0 ) = 0, so when 9 > 0,/(6i) < / ( 0 ) , i.e., 

sin 6 < sin (i2i0)/i2, (7) 

For the spherical gear, the meshing longitudinal lines are a 
pair of instantaneous center lines (arcs). The tooth pitches in 
the longitudinal direction should be equal to each other, so we 
get 

r,e = r2ip 
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Fig. 2 Spherical gears 

i.e., 

Put (8) into (4) , we get 

r2 
ll\b 

., 2TT . In sin (inG) 
p„ = — r2 sm ip = — ri 

Z Z !21 

From (2), (7) and (9) we get 

Pw < Pw 

(8) 

(9) 

(10) 

So we get such a conclusion: if the gear ratio /21 = ri/r2 =̂  
1, when the tooth pitches in the longitudinal direction of the 
pitch spheres of gears 1 and 2 are equal to each other, the tooth 
pitches in the latitudinal direction can't be equal to each other 
in the meantime. 

When the center teeth mesh just in the center position, the 
gear ratio 121 will become /21 which is named as the nominal 
gear ratio. So we may get another conclusion: When the nominal 
gear ratio /21 = 1, the pitch curved surfaces Ei and Z2 of the 
gears above are two spheres and the gear ratio ('21 is constant 
(i.e., (21 = 2̂1) during their transmission. When the nominal 
gear ratio /21 * 1, Si and S2 won't be spheres. They are not 
strict ellipsoids, but they are two approximate ellipsoids. So we 
name Si and S2 under this condition as two quasi-ellipsoids 
and the gears above will become two quasi-ellipsoidal gears. 
Obviously, the gear ratio ('21 is variable when the gears mesh 
in the longitudinal direction. 

Fig. 4 The pitch sphere of gear 1 

2 The Design of the Quasi-Ellipsoidal Gear Ratio 
and Pitch Curved Surfaces 

2.1 The Vector Equation of the Quasi-ellipsoidal Gear. 
Shown as Fig. 5, Oi and O2 are respectively the rotatory centers 
of convex gear 1 and concave gear 2. A is their center distance. 
Oi^i^iZi and Oa-'̂ â zZi are two coordinate systems fixed respec­
tively to gear 1 and gear 2. Pitch curved surfaces Si and S2 are 
two surfaces of revolution rotating respectively around axises 
Z] and Z2- The parameter in the longitudinal direction of Si is 
9 and the parameter in the latitudinal direction is a i . The param­
eter in the longitudinal direction of S2 is (p and the parameter 
in the latitudinal direction is a2(a2 = a i ) . ri and r2 are the 
vector radiuses corresponding respectively to Pi of Si and P2 
of S2 (Pi and P2 are the corresponding teeth). So, the vector 
equation of Si is 

Ti = r i (^) ( i i s in0cosa i -I-ji s in^sinai -l-kicos0) (11) 

The vector equation of S2 is 

r2 = r2(!^)(i2 sin ip cos 0:2 

+ J2 sin ip sin a2 + k2 cos ip) (12) 

Here (p = ip(9), Obviously, 

9ri dvi _ 8x2 9r2 
86 da\ dip 8a2 

= 0 (13) 

So the parameter curves 9 and a^ of Si are perpendicular to 
each other. And the parameter curves <p and a2 of S2 are also 
perpendicular to each other. The tangential vector (dr,/dd) 
(8r,/8ai) and the normal vector {drjd9) X {dril8ai) of S, 
are three vectors perpendicular to each other. Their correspond­
ing unit vectors are i„, j„, k„. i„, j„, k„ will form a regional 
space coordinate system at the point Pi. 

Fig. 3 Teeth layout of the spherical gear 
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Fig. 5 The pitch spheres of the gears 
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The tangential vectors dtj/dtp, dr2/da2 and the normal vector 
(dr2/dip) X (dr2/da2) of E2 are also three vectors perpendicu­
lar to each other. Their corresponding unit vectors are ig, j j , 
kg. ij,, j j , kj will form another regional space coordinate system 
at the point P2. The convex and concave tooth shape equations 
will be built respectively in the two regional space coordinate 
systems. Every tooth on the pitch curved surface corresponds 
to its own regional space coordinate system. When the position 
(9, ttj) or (i/j, ttz) of the tooth on the pitch curved surface is 
defined, the position of its corresponding tooth surface in the 
pitch curved surface will be attained. Limited to the paper 
length, the design of tooth shape will be omitted in this paper. 

2.2 The Design of the Pitch Curved Surfaces Sj and S2 

2.2.1 The Design Criterion of Pitch Curved Surfaces 1,1 
and 1,2 
(1) The Right Meshing Condition 

Pitch curved surfaces Xi and E2 meshing with each other in 
the longitudinal direction is similar to the transmission of a pair 
of noncircular gears that aren't close. Pitch curved surfaces Sj 
and £2 meshing with each other in the latitudinal direction 
is similar to the transmission of a pair of cone gears whose 
transmission ratio is 1. Therefore, the arc length in the longitudi­
nal direction of pitch curved surface 2i must be equal to that 
of pitch curved surface S2 and the arc length in the latitudinal 
direction of pitch curved surface H, must be equal to that of 
pitch curved surface Z2 • 
(2) The Smooth Condition 

Pitch curved surfaces Si and E2 must be smooth and convex 
curved surfaces, there should not exist odd points (i.e., tips and 
pits) on them. 

2.2.2 The Design of Pitch Curved Surfaces Si and S2 
Pitch curved surfaces Si and S2 are two surfaces of revolution. 
If a mother curve is designed, the pitch curved surface will be 
attained. Shown as Fig. 6, Fi and r2 are the mother curves 
(longitudinal lines) of pitch curved surfaces Si and S2. The 
equation of Fi and F2 are ri = ri{6), r2 = r2(v). The center 
distance between two gears is A and the nominal gear ratio is 
hi = rx(,lr2a {r\a, "̂20 are the radiuses when the center teeth mesh 
just in the center position) the practical gear ratio is !2i = ^1/ 
r2=f{e)-

Suppose ^1,^2 are the arc length of F , , and F2, then 

Jo 

S2= \ 
L Jo 

(14) 

r2dip 

Because the arc length in the longitudinal direction of Si 
S2 equal to each other, we get 

and 

nd0 = 
Jo Jo 

ridip (15) 

Extract the derivative of (15) to 0, by arranging, we get 

^p= \ Ide = \ iiide (16) 

Besides, the arc length in the latitudinal direction of Si and S2 
also equal to each other, we get 

(a) (b) ' (c) 

Fig. 7 The shape of the mother curves 

r, sin 9 = r2 sin ip 

I.e.. 

ip = arcsin (/21 sin 9) 

From (16) and (17) we get 

9 = arcsin ((21 sin 9) 

Extract the derivative of (18) to 0, we get 

Jo 

By 

• / 

arranging, 

di2\ 

we get 

(21 [Vr^ ( 

«2i sin 

Vi-

21 sin 

9 + 

(('21 

e? 

(21 COS 9 

sin 9f 

- COS 9'\ 

(17) 

(18) 

(19) 

d9 sin 9 
= f(9,i2i) (20) 

Obviously, this is an ordinary differential equation. To get the 
numerical solution, the initial condition must be defined. When 
9 = 0, /21 = /21 • So the initial condition is 

' 2 1 \ e = o (21) 

However, when 9 = 0, the derivative of (20) doesn't exist. 
To make the numerical calculation continue favorably, the ini­
tial value of i2i must be defined first. Shown as Fig. 7, /i is the 
tangential line at the point M and 4 is the normal line at the 
same point. The slope of /i is ki and the slope of k is 2̂ then 

k, = 

k2 = 

dy _ (dr/da) • sin a + r cos a 

dx (dr/da) • cos a — r sin a 

1 _ (dr/da) • cos a — r si 
(22) 

(dr/da) • sin a -t- r cos a 

When a = 0, if Ic2 = 0, the normal line of F coincides with 
the parameter axis x, the surface of revolution rotated by F will 
be smooth. If 2̂ < 0, there will exist a pit in S, shown as Fig. 
1(b). If A;2 > 0, there will exist a tip in S, shown as Fig. 7(c) . 
To conform to the smooth condition, we must make 

, I dr/da 

0.73 
0,72 
0.71 
0.70 
0.69 
0.68 
0,67 
0.66 

, 

^' 

•> 

y 

,^ 
y 

Fig. 6 The mother curves of the pitch curved surfaces 

10 15 20 25 30 35 40 45 50 <9C) 

Fig. 8 Caiculation of the gear ratio /21 
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For S| and Z2, we get 

dr 

da 

dr 

d9 

dr2 

= 0 

= 0 

(23) 

(24) 

dip 1̂ =0 

As (p = ip(9), so 

And 

dr2 _ dr^ dtp _ 
~dB ~ 'd^"de " 

dr\ _ dr2 

., ^drn^d_ /rj\ ^ dO ^' ^' 'dO 

' " de de\r2) r\ 

(25) 

So 

di2\ I 
= 0 

(26) 

(27) 

When (21 is defined, T, and r2 will be defined with the following 
equation 

Ai2 

r2 = 

1 + i21 

A 

1 + /21 

(28) 

Make Ti and r2 rotate 360 deg around their own axes, the pitch 
curved surfaces Sj and £2 will be attained. 

3 Calculation Example 

With the method presented above, we may design the gear 
ratio (21 and the pitch curved surfaces Si and £2 of the quasi-
ellipsoidal gears whose nominal gear ratio /21 =; |, the results 
are shown respectively as Fig. 8 and Fig. 9. 

Fig. 9 Mother curves of the pitch curved surfaces 

Fig. 10 This picture showfs the EDIM device of quasi-eliipsoidai gears. 
There is a pair of gears on it. The ieft is a convex gear, and the right is 
a concave one. 

4 Conclusion 

A new type of gear called as quasi-ellipsoidal gear is pre­
sented in this paper. When the nominal gear ratio l^x = 1, 
the quasi-ellipsoidal gear will become spherical gear and the 
transmission ratio (21 is constant (i.e., i2i = 2̂1) during their 
transmission. When the nominal gear ratio /21 * 1, the gear 
ratio (21 is variable when the gears mesh in the longitudinal 
direction. The design of the gear ratio and pitch curved surfaces 
of the quasi-ellipsoidal gears is presented in this paper. The 
quasi-ellipsoidal gear can be applied to the flexible wrist of a 
robot and will make the wrist light and nimble, so the transmis­
sion precision will be greatly improved. Fig. 10 shows the EDM 
of the quasi-ellipsoidal gears. 
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