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ABSTRACT 
In this paper we first design a suitable context model for microphone recordings, formalising and describing the 

involved signal processing pipeline and the corresponding influence factors. As a second contribution we apply the 

context model to devise empirical investigations about: a) the identification of suitable classification algorithms for 

statistical pattern recognition based microphone forensics, evaluating 74 supervised classification techniques and 8 

clusterers; b) the determination of suitable features for the pattern recognition (with very good results for second order 

derivative MFCC based features), showing that a reduction to the 20 best features has no negative influence to the 

classification accuracy, but increases the processing speed by factor 30; c) the determination of the influence of changes 

in the microphone orientation and mounting on the classification performance, showing that the first has no detectable 

influence, while the latter shows a strong impact under certain circumstances; d) the performance achieved in using the 

statistical pattern recognition based microphone forensics approach for the detection of audio signal compositions.  

 

1. MOTIVATION AND INTRODUCTION 
The past years have seen significant advances in digital image forensics. An overview of currently established 

authentication approaches for this domain is given by Hany Farid
5
. In contrast to image forensics, in the field of audio 

forensics so far only a limited number of approaches can be found, even though audio forensics can be considered to be 

very interesting for application scenarios where trust in authenticity and integrity of audio signals might be required, e.g. 

for evidences in court cases or in the ingest phase of secure digital long term archives. The currently existing approaches 

for microphone forensics (MF; a.k.a. recording forensics or recording source forensics) – as one of the most important 

sub-categories in audio forensics, can be classified into three classes: 

ENF-based approaches: One quite mature, but physically complex approach found in literature (e.g. Grigoras
7
) is the 

usage of the electric network frequency (ENF) in recordings to evaluate digital audio authenticity. The complex electro-

physical requirements for this approach are summarized by Grigoras et al.
8
.  

Time domain and local phenomena based evaluations: In 2010 Malik and Farid
2
 describe a technique to model and 

estimate the amount of reverberation in an audio recording. Because reverberation depends on the shape and 

composition of a room, differences in the estimated reverberation can be used in a forensic setting for authentication. 

The usage of similar characteristics can be found in closely related research fields like e.g. in the works from Maher
9
 on 

gunshot characterization. Yang et al.
6
 introduced a format conversion dependent method for locating forgeries 

(insertions and deletions) in MP3 files by time domain based analyses of encoder frame offsets.  

Statistical pattern recognition based approaches: We introduced in 2005 a statistical pattern recognition based 

approach for microphone identification
14

 which was in 2007 substantiated by a fist practical evaluation
1
. In contrast to 

the other two classes of approaches this one is interesting for two reasons: on one hand it is not dependent on the 

existence of local phenomena (like e.g. reverberations), on the other hand it can actually generate domain knowledge 

and thereby can answer still open research questions on the signal under observation. Böhme and Westfeld
13

 introduced 

a statistical pattern recognition based approach for the identification of the encoder used to generate an MP3 file based 

on features computed on the modelling layer of the file. 

 

In this paper we extend the current state-of-the-art by investigations work described by Oermann et al.
14

 and Kraetzer et 

al.
1
. As a first important step we design a suitable context model for microphone recordings, formalising and describing 

the involved 5-stage recording process pipeline. Second, we apply the context model to devise empirical investigations 

aiming at the generation of required domain knowledge.  

These questions about the provenance, persistence and uniqueness of a sensor patterns in microphones are raised by 

previous work in this field
15

. The answers are generated within this paper by systematic empirical evaluations based on 

the introduced context model and suitable hardware setups. As feature extractor in our statistical pattern recognition 

based approach we use our AAFE (AMSL Audio Feature Extractor
11

) in its current version v.2.0.5. The extractor 

computes in this version 590 intra-frame features: 9 in time domain (zero crossing rate, energy, pitch, RMS-amplitude, 

entropy, LSB-ratio, LSB-fliprate, mean, median), 529 in frequency domain (spectral centroid, spectral roll-off, two 
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differently computed spectral bandwidths, spectral irregularity, spectral entropy, 11 formants and base frequency, as 

well as a 512 frequency component histogram) and 52 in Mel-cepstrum domain (MFCCs, FMFCCs, as well as 2
nd

 order 

derivative MFCCs and FMFCCs, which have been added due to the good results achieved by Liu et al.
10

 with the 2
nd

 

order derivative MFCCs). For the classification we use the renowned data mining suite WEKA
12 

in version 3.6.1. 

The generated domain knowledge (answers to open research questions) includes the answers to the following test goals: 

a) Identification of suitable classification algorithms for this forensics approach: Here we show for a specific 

intra-class test set that 4 out of 74 classifiers from WEKAs (untuned) supervised classifiers can achieve classification 

accuracies between 80 and 82.5% and 27 further classifiers report accuracies between 60 and 80%. Considering the 

different classes of classifiers used, it can be summarized that the used meta-classifiers give the best results. Within the 

top 20 of the ranked classifiers only few tree-based classifiers or functions can be found. One further important 

observation made here is that the second main class of classification algorithms, the clustering algorithms (a.k.a. 

unsupervised classifiers) seem have absolutely no relevance for MF. 

b) Determination of suitable features for the statistical pattern recognition: Here we achieve very good 

performance for the 2
nd

 order derivative MFCC based features
10

, as well as a good performance for selected time 

domain, frequency domain and FMFCC based features. 

c) Determination of the influence of changes in the microphone orientation and the microphone fixing on the 

classification performance and on the classification performance: Our results for the investigations addressing this 

test goal show that the microphone orientation seems to have no impact to the classification behaviour, while a change 

of the mounting of a microphone can have a very strong influence if it affects its the reverberation behaviour. 

d) Accuracy achieved using the statistical pattern recognition based microphone forensics approach for 

detection of audio file compositions: This question is investigated here for the different scenarios which might occur. 

Generally two distinct types of scenarios can be identified in this context: first, the audio data stream, into which other 

data is pasted into, originates from a known microphone and second, the audio data stream, into which other data is 

pasted into, originates from an unknown microphone. The first scenario is the more likely one in MF, where we usually 

assume that we intend to verify the identity of a source microphone. Nevertheless the performance of the statistical 

pattern recognition based forensics approach used within this thesis on the less likely second scenario is also evaluated 

here to show its limitations. So, four different tests are performed in this composition detection evaluation: 

1. Microphone recordings of one known microphone made in different locations composed into one stream 

2. One known microphone pasted into a stream of completely different known microphone 

3. One unknown microphone pasted into a stream of completely different known microphone 

4. One unknown microphone pasted into a stream of completely different unknown microphone 

The results achieved for this statistical pattern recognition based audio file composition show relatively good results on 

the first three tests and sub-optimal, but still significant results for the last test. 

 

The rest of this paper is structured as follows: the second section describes the recording process pipeline used for 

generation of audio signals and derives a suitable context model. The section 3 uses the context model to devise the 

experiments necessary to answer the identified research questions, while section 4 presents the results for those 

experiments. In the final section the document is summarized and possible directions for future work are indicated. 

2. A CONTEXT MODEL FOR MICROPHONE FORENSICS 

A context model describing the audio recording process helps to understand the influences to the audio signal during 

these processes. As shown in Figure 1, an audio recording process within this thesis is described using a pipeline which 

consists of five segments.  

 
Figure 1: Recording process pipeline – context model 
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Audio signals can be considered as either continuous or discrete signals in frequency-domain. Let a function S(t) denote 

the original audio signal in time-domain, thus S(f), its representation in frequency-domain can be easily achieved by a 

Fourier transformation: 

( ) ( )( )tSFTfS =                                   (1) 
 

In Figure 1, S1(f), S2(f), S3(f) and S4(f) denote the analogue audio signals after each processing segment, while S’(f) and 

its time domain counterpart S’(t) computed via inverse Fourier transform as S’(t) = FT
-1

(S’(f)) denote the final audio 

signal as the result. Then a context model described as follows has to consider these processes. 

( ) ( ) ( ) ( )fNdffSfFfS ls

N

u
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+= ∑ ∫1                                   (2) 

 

A typical loudspeaker consists of multiple drivers
3
, as individual electrodynamic drivers provide quality performance 

over at most about three octaves. Equation (2) simulates the process of a loudspeaker with multiple drivers playing the 

audio signal. Depending on different driver types (full-range, subwoofer, woofer, mid-range or tweeter), the upper and 

lower frequency values u and l, and the amplifying function Fdriver(f) could be simplified into a constant amplifying 

factor in ideal circumstances. Furthermore, Nls(f) denotes the (thermal) noise that the loudspeaker generates in the 

playback signal. 

( ) ( ) ( ) ( )fNfFfSfS enviecho +∗= 12                                         (3) 

 

There are mainly two aspects of possible distortions which occur to the played audio signal before it is collected by the 

microphone. In equation (3), a convolution of S1(f) and Fecho(f), which describes the objects in the environment that 

reflect the played signal, is used to simulate the possible distortion caused by echoes or reverberations
4
. The consistency 

of this convolution of S1(f) and Fecho(f) is the characteristic verified for the recording forensics approach by Malik et al.
2
. 

When the recording process is accomplished in an anechoic environment, then Fecho(f) can be considered as an constant 

value of 1. The possible distortion caused by environmental noise is denoted by Nenvi(f) in the equation.  
 

( ) ( ) ( ) ( ) ( )fNfNdffSfFfS ENFmic
spectrum

mic ++= ∫ 23                       (4) 

 

Equation (4) simulates the process of a microphone collecting the signal. Fmic(f) denotes the frequency response function 

of the microphone, Nmic(f) denotes the thermal noise that the microphone generates, and NENF(f) denotes the electric 

network frequency (ENF) influence (which is the characteristic used for the ENF approaches to MF forensics).  

We assume for our approach that the specificity of a microphone is decided by the characteristics 

(MembCharacteristics) of the membrane in the microphone with its unique vibration behaviour and interaction with the 

other parts of the microphone. Other influences to be considered here are the orientation of the microphone to sound 

sources, the microphone mounting and possible aging phenomena of the microphone. These influences are modelled 

within our context model as multiplicative influences O (orientation), M (mounting and A (aging). So far no 

sophisticated model exists for the estimation of these influences; therefore we assume them to be Gaussian distributed 

with a mean of 1 and a small variance – which would, for these multiplicative influences, imply that they have only a 

very small influence. Thus Fmic(f) can be considered as a function as follows:  
 

( ) ( ) ( )teristicsMembCharacFAMOFfF membranemic ⋅= ,,inf                    (5) 
 

Usually Nmic(f) can be considered as a constant as it contributes a rather minor influence on the recorded signal 

compared to that Fmic(f) does.  

( ) ( ) ( ) ( )fNdffSfFfS tran
spectrum

tran += ∫ 34                                    (6) 

  

The component Ftran(f) in equation (6) denotes the distortion during the transmission of the signal from the microphone 

to the A/D conversion device, while Ntran(f) denotes the thermal noise coming from the transmission environment. 
 

( ) ( ) ( ) ( ) ( )fNfNdffSfFfS thernalquan
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Equation (7) describes the process of storing the audio as an audio file. In the equation fN denotes the Nyquist frequency, 

Nquan(f) denotes the quantisation noise, and Nthermal(f) the thermal noise of the A/D device. 

 

3. TEST SETUPS FOR THE PRACTICAL INVESTIGATIONS 

The practical investigations within this paper are limited to the performance of the classification algorithms currently 

implemented in the renown data mining suite WEKA (v.3.6.1) and one feature extractor (AAST / AAFE in version 

v.2.0.5; for a description of the feature extractor and the features see Kraetzer et al.
11

). All the 74 supervised 

classification techniques as well as the eight clustering algorithms provided by WEKA are evaluated within this paper 

using their default parameters (except for clusterers, where the number of clusters is adjusted in each experiment to the 

number of classes under observation). The chosen feature extractor AAST / AAFE v.2.0.5 is used within all practical 

investigations to compute a 590 dimensional segmental feature vector for each of 200 (except for the composition 

detection tests where only 100 windows are used for each mesh-up) consecutive windows per presented recording. The 

window size for these non-overlapping windows is per default set to 1024 samples, as the windowing function the 

Dirichlet window is used. All supervised classification experiments are either performed using 10-fold cross-validation 

or explicitly supplied training- and test sets, all clusterings are performed as classes to clusters evaluation. 

 

Table 1 gives an overview over the 10 experimental setups used within this work. The goals of these experiments are 

either classifier benchmarking and selection, feature selection, orientation and mounting influence determination or 

audio file composition detection. A more detailed description of the experimental setups is given in Table 9 at the 

end of the document! 
 

Table 1: Overview over the used experimental setups (detailed description in Table 9 at the end of the document) 

Setup Goal Relevant components of the 

context model  

Classifier-Benchmarking-RS4_Rode 

Classifier-Benchmarking-RS4_Beyer 

classifier selection MembCharacteristics 

Feature-Selection feature selection MembCharacteristics 

Classifier-Benchmarking-RS4_Rode-Best20Features-only classifier / feature selection MembCharacteristics 

Orientation_Impact_RS7 orientation influence O 

Mounting_Impact_RS9 mounting influence M 

Composition-1 

Composition-2 

Composition-3 

Composition-4 

audio file composition 

detection 

MembCharacteristics 

 

For most of the investigations the microphone (membrane) characteristic is the part of the context model under 

investigation, but two of the setups aim on determination of the influence of the orientation and the mounting 

performance of the considered MF approach. 

In the evaluations performed the loudspeaker for the playback of S(f) is kept constant, so that the impact of the 

amplifying functions Fdriver(f) as well as Nls(f) from equation (2) remain constant. Additionally a fixed set of reference 

signals S(f) is used for all evaluations to keep the signal dependent driver response in equation (2) constant.  

For the practical investigations fixed locations are used for the generation of the recording sets. Due to this fact we 

assume here the influences of Fecho(f) and Nenvi(f) in equation (3) to be constant and negligible. 

For storage we choose with PCM coded WAV files in CD quality (sampled with 44.1kHz and 16 Bit quantization) one 

of the most common audio signal format. This uncompressed format, on one hand combines a suitably high Fsamp 

together with a well limited Nquan(f) and on the other hand will allow us in future work to evaluate the impact of down-

sampling or MP3 compression on the classification results. Again, the thermal noise of the A/D device (Nthermal(f)) is 

here assumed to be constant and negligible. 

 

As constraints for the practical investigations, the allocated memory for all test on the test machine was set to 1.5 

GByte RAM, additionally, strict timeout boundaries of 12h (=43,200s) for the clustering algorithms and 60h 

(=216,000s) for the (supervised) classification algorithms are defined for all tests. 

The sets of recorded material used for the practical investigations within this paper are identified and described in 

Table 2 below (for a description of the recording environments / rooms used see Kraetzer et al.1). 



Table 2: Microphone recording sets used in this paper 

ID description 

RS2 RS2 is the recording set used for the generation of the test results in Buchholz et al.16. It contains seven different 

microphones which are used for sequential recording (all on a Sound Blaster USB as pre-amplifier): M2 - Terratec 

Headset Master dynamic microphone, M3 - Shure SM58 dynamic microphone, M5 - PUX 70TX-M1 piezoelectric 

microphone, M6 - T.bone MB45 dynamic microphone, M7 - AKG CK93 condenser microphone, M8 - AKG CK98 

condenser microphone, and M9 - T.bone SC600 condenser microphone 

RS4 The RS4 consists of two well distinct subsets RS4_Rode and RS4_Beyer, both containing a set of four identical 

microphones and both recorded in parallel (time synchronous) using a Presonus FireStudio Project 8-port Firewire 

soundcard. The RS4_Rode represents a homogeneous set of four Røde NT6 condenser microphones (M16, M17, M18, and 

M19) while RS4_Beyer is a homogeneous set of four Beyerdynamic Opus 69 dynamic microphones (M20, M21, M22, and 

M23). The ten reference files used for the generation of RS2 and RS4 are described in detail by Kraetzer et al.1. 

Thereby, the tests performed on RS4 will cover the two most common microphone types in intra-class evaluations. The 

results can be assumed to be of stronger significance than those achieved on mixed class sets like RS2. 

RS7 The recording set RS7 is recorded in the anechoic chamber (room R06), using a Beyerdynamic Opus 69 microphone 

(M22), a t.bone SC600 spherical (M9) and a t.bone SC600 cardioid (M9b). The latter two microphones are the same 

device but with different directional characteristics. For each of those three microphones, two different reference sounds 

(a harmonic sinusoid at 440Hz and silence) are recorded in eight different microphone orientations, each 45° turned in the 

xy-plane from its predecessor, stating with the orientation directly towards the sound generating loudspeaker.  

RS9 The recording set RS9 is recorded the anechoic chamber (room R06) using a Beyerdynamic Opus 69 microphone (M22). 

With this microphone two different reference sounds (a harmonic sinusoid at 440Hz and silence) are recorded in eight 

different microphone mounting positions. The distance (50cm) and orientation to the loudspeaker are kept constant in 

these tests. 

 

For the evaluation the classification performance, the following metrics are defined: 

The accuracy in a classification is the number of correctly classified instances divided by the number of overall 

instances. If a classifier displays in an n-class classification problem an accuracy of 1/n (which is problem identical to 

the probability of guessing correctly) it can be considered to be completely unsuitable for the classification task. 

The classification gain cg is derived from the accuracy, but takes the number of classes in the classification into 

account. It is computed for an n-class classification problem as cg = (accuracy-(1/n)) / (1-(1/n)). 

The runtime of an experiment is in this paper expressed relative to the corresponding timeout boundary. Therefore the 

runtime for a clustering algorithm tcu = time / 43,200s and the run-time for a classification algorithm is tcl = time / 

216,000s, with time being the time duration of the corresponding experiment on the test machine (for reasons of 

reliability measured using the Unix “time” command instead of WEKAs own time measurements). 

The classifier quality is expressed in this paper as a distance from an optimal performance point. The optimal 

performance of a classifier would be obviously a perfect (100% accuracy) decision generated instantly (in no time). 

Here we transfer this principle by measuring for the supervised classifiers the Euclidean distance optDist from the 

optimum point in a runtime-cg diagram as: 22
)1( cgtoptDist cl −+=  

For the performance of a single feature from the feature vector no explicit metric is used. Here instead a two-stage 

ranking fusion is performed. The first fusion is done by performing and unweighted averaging for each feature on the 

ranked outputs of the five used evaluators (WEKAs ChiSquaredAttributeEval, FilteredAttributeEval, 

InfoGainAttributeEval, OneRAttributeEval, and SymmetricalUncertAttributeEval) per ranking block. Thereby a ranking 

block is composed from one recording set split into subsets for its individual recording locations.  

The second fusion is done by unweighted averaging of the output of the individual ranking blocks processed in the first 

fusion step. 

Within this paper the two intra-class recording sets RS4_Beyer and RS4_Rode are used for the feature performance 

evaluations. Each of those two sets will be considered in the feature ranking as one ranking block with ten individual 

recording locations for which the rankings are computed and then fused by averaging. In the second step the ranking 

lists of the two ranking blocks are averaged again to generate the final ranking. 

For the audio file composition detection (see section  1) another set of metrics is defined with the change rate and the 

average sequence length. The change rate identifies how often in a pre-defined sequence of frames a classifier changes 

its opinion on the class of the audio material under observation. The average sequence length tells how long the average 

sequence is for which a classifier returns as an answer the same class.  

 



4. RESULTS OF THE EXPERIMENTAL VALIDATION 

Here the results for the practical investigations on the test goals defined in section 1 of this paper are performed. The 

subsection  4.1 focuses on classifier selection,  4.2 on feature selection,  4.3 on the influence of different orientations,  4.4 

on the influence of different microphone mountings and  4.5 on the investigations on audio file compositions. 

4.1. Classifier selection 

The evaluations performed by Kraetzer et al.
1
 indicated that (supervised) classification outperforms clustering for 

microphone classification. These observations are substantiated within this section, where all clustering and 

classification algorithms implemented in WEKA (v.3.6.1) are reviewed for their performance in microphone 

classification. 

Tests performed for clustering algorithms in the preparation of this paper completely confirmed the findings of 

Kraetzer et al.
1
. In these tests all eight clustering algorithms provided by WEKA (v.3.6.1) were tested in setups identical 

to Classifier-Benchmarking-RS4_Rode and Classifier-Benchmarking-RS4_Beyer (see Table 9 at the end of the 

document), but using classes to clusters evaluation (with the number of clusters set to the number of classes in the 

training and test sets) instead of 10x stratified cross-validation. None of the clustering algorithms was able to show an 

accuracy better than 32.675% in these four-class problems (equivalent to cg=0.102). A reduction to the 20 most 

significant features (see section  4.2, Table 4) resulted in a further decrease of the achieved maximum classification 

accuracy to 27.6%. 

 

Due to the large number of supervised classification algorithms in WEKA (74 in the current version v.3.6.1) it is hardly 

feasible to run all experiments within this paper with all classifiers. Therefore the experimental validations presented are 

usually carried out using only a subset of all available classification methods. To allow for any generalisation of those 

results nevertheless an extensive and comprehensive benchmarking of the performance of all those (supervised) 

classification algorithms has to be performed. To summarise these benchmarking efforts regarding the classification 

accuracy and run-time complexity of the classifiers is the task of this section. 

 

To aim for maximum generalisability of the observations extensive intra-class practical evaluations close to the 

constraints boundary imposed by WEKA (maximum locatable memory within 32-Bit JAVA runtime environments) are 

performed using the complete 590 dimensional feature space provided by the segmental features (in preliminary tests 

the 17 global features also extracted by AAST / AAFE v.2.0.5 have been used as input for all 74 classifiers in WEKA 

and none of those features showed and significance in this application scenario) in AAST / AAFE v.2.0.5. With the two 

audio recording sets RS4_Rode and RS4_Beyer introduced in section  3 two representative sets for classifier performance 

evaluation exist for usage within this paper. On these two sets all 74 classifiers available in WEKA v.3.6.1 are used in 

10x cross-validation to determine those who are most suitable for the microphone forensics approach pursued here. The 

required experimental tests are run on vector fields with 8000 feature vectors (4 Microphones * 200 feature vectors per 

reference * 10 references) with a dimensionality of each feature vector of 590. Each test is run on 10 sets of recordings 

(one for each recording location) for each of the two audio recording sets. 

A timeout of 60 hours was defined at which a classifier is terminated if it has not finished until that point. The overall 

run time for these experiments on the test machine (an Intel Core 2 Duo E8400 CPU @3GHz with 4 GB RAM machine 

running WEKA v.3.6.1 with 1.5 GByte allocated RAM for each classifier.) for the test set RS4_Rode was about 3405 

hours including timeouts or 1005 hours without the classifiers which resulted in timeouts. The overall run time for the 

RS4_Beyer was with 3179 (respectively 779 hours) shorter. This fact and the higher classification accuracy achieved on 

the material from RS4_Beyer imply that it proposes a somewhat easier intra-class classification problem than the 

microphone classification on RS4_Rode. 

 

Classifier benchmarking for suitability in Microphone Classification on RS4_Rode: Summarising the 

benchmarking results on RS4_Rode generated by using the experimental setup Classifier-Benchmarking-RS4_Rode, it is 

shown in Table 3 (a) that the evaluated classifiers show a strong variation in their classification behaviour regarding the 

achieved accuracies. 

In 18 out of the 74 cases the classification attempt terminated with an error. These errors can be summarised as being 

either timeouts, memory shortage, unsupported attribute types or missing helper data (e.g. cost files in case of cost 

sensitive classifiers). 



For the 56 non-error cases shown in Table 3 (a) nine can be considered as “just guessing” at the true class of a sample 

(accuracy between 25% and 27% which would be equivalent to a classification gain close to 0) and therefore completely 

unsuitable for MF. The other classifiers in their default parameterisations show accuracies up to 75.88% (average over 

all ten rooms for meta.RotationForest).  

If the run-time of the 56 non-error cases is considered, as shown in Table 3 (b), than it has to be admitted that the four 

“timeout” cases mentioned above constitute extreme outliers. While in those four cases the test is terminated after 60h 

(216000 seconds) none of the other classifiers took more than 93109 seconds (average for lazy.LWL). 

 

Table 3: Accuracies and errors (a) as well as time measurements (b) for experiment Classifier-Benchmarking-RS4_Rode; 

Accuracies and errors (c) as well as time measurements (d) for experiment Classifier-Benchmarking-RS4_Beyer 

 Average over all 10 rooms 

Maximum achieved accuracy 75.88% 

Time duration without timeouts (s) 361953.1 

Duration including timeout test cases (s) 1225953.1 

Errors 18 

25<=accuracy<27% 9 

27<=accuracy<40% 12 

40<=accuracy<60% 11 

60<=accuracy<80% 24 

80<=accuracy<90% 0 

accuracy>=90% 0  

time<10s 7 

10<=time<100s 11 

100<=time<1000s 12 

1000<=time<10000s 20 

10000<=time<100000s 6 

>=100000s 0  

(a) accuracies and errors (b) time measurements 
 Average over all 10 rooms 

Maximum achieved accuracy 82.51% 

Time duration without timeouts (s) 280287.7 

Duration including timeout test cases (s) 1144287.7 

Error 18 

25<=accuracy<27% 8 

27<=accuracy<40% 8 

40<=accuracy<60% 8 

60<=accuracy<80% 28 

80<=accuracy<90% 4 

accuracy>=90% 0  

time<10s 3 

10<=time<100s 16 

100<=time<1000s 15 

1000<=time<10000s 16 

10000<=time<100000s 6 

>=100000s 0  

(c) accuracies and errors (d) time measurements 

 

Classifier benchmarking for suitability in Microphone Classification on RS4_Beyer: Summarising the 

benchmarking results on RS4_Beyer generated by using the experimental setup Classifier-Benchmarking-RS4_Beyer, it 

can be seen that the experimental results are similar in distribution but marginally better than those discussed above for 

Classifier-Benchmarking-RS4_Rode. The achieved maximum classification accuracy averaged over all ten rooms is 

with 82.51% about 7% higher than for the RS4_Rode microphones. 

Table 3 summarises in (c) the achieved classification accuracies for this experiment. It can be seen that not only the 

maximum achieved accuracy is higher but also more individual classifiers perform better, even with four classifiers in 

the range between 80% and 90% which could not be achieved on the RS4_Rode material even once. The erroneous 

behaviour of 18 classifiers is exactly the same (also for the same reasons) as for Classifier-Benchmarking-RS4_Rode. 

If it comes to the run-time requirement of the classifiers (Table 3 part (d)), again the behaviour on Classifier-

Benchmarking-RS4_Beyer is similar to the behaviour on Classifier-Benchmarking-RS4_Rode, even when the middle 

run-times are a little bit more dominant. 

As described in section  3 the performance of a classifier is measured in this paper using the quality metric optDist. 

Comparing the classifier ranking for Classifier-Benchmarking-RS4_Rode (a detailed listing of the classifier ranking is 

presented as additional material to this paper on) http://omen.cs.uni-magdeburg.de/itiamsl/mitarbeiter/christian-

kraetzer/publications.html) and Classifier-Benchmarking-RS4_Beyer it can be seen that 19 out of the top 20 are present 

in both rankings. The differences are trees.FT (2
nd

 for Classifier-Benchmarking-RS4_Beyer, but 32
th

 for Classifier-

Benchmarking-RS4_Rode) and trees.J48 (21
th

 in Classifier-Benchmarking-RS4_Beyer and 18
th

 in Classifier-

Benchmarking-RS4_Rode). Interestingly both are decision tree classifiers, a class which contains 12 out of the overall 



74 classifiers, but which shows no significant influence in the first ten ranks of the classifier ranking. The two most 

dominant classes of classifiers in this set are meta classifiers and functions, all other classes show only limited 

significance.  

4.2. Feature selection 

Regarding the question of suitable features for MF
1
 does show with its achieved results for inter-device analysis (for the 

used test set, classification techniques and selected audio features) that feature selection in the microphone seems to 

have no positive impact on the classification accuracy, but it reduces computation times and generates domain 

knowledge. These first results on feature selection from Kraetzer et al.
1
, which are based on the first inter-class 

statistical classification in this field, are further substantiated within this paper. To do so two sets of intra-class 

classifications are performed and suitable features identified by feature ranking. 

 

Segmental versus global features: In preliminary tests the 17 global features also extracted by AAST / AAFE v.2.0.5 

have been used as input for all 74 classifiers in WEKA and none of those features showed any significance in this 

application scenario. Therefore those global features are neglected for the MF observations in this paper. 

 

Table 4: Best 30 features, based on the fused rankings computed on RS4_Rode and RS4_Beyer (setup Feature-Selection) 

 RS4_Rode RS4_Beyer   

Feature Average Rank Average Rank Arithmetic mean of the ranks Final Rank 

FMFCC_D_1 2.08 1.06 1.57 1 

FMFCC_D_2 2.6 2.72 2.66 2 

FMFCC_D_13 4.18 11 7.59 3 

FMFCC_D_10 14.42 9.06 11.74 4 

FMFCC_D_3 18.18 5.48 11.83 5 

FMFCC_D_5 14.7 9.74 12.22 6 

FMFCC_D_4 18.26 6.34 12.3 7 

FMFCC_D_11 18.02 6.68 12.35 8 

FMFCC_D_12 19.22 5.94 12.58 9 

FMFCC_D_9 19.98 12.46 16.22 10 

FMFCC_D_6 20.24 13.04 16.64 11 

FMFCC_D_8 22.34 12.02 17.18 12 

FMFCC_D_7 22.62 12.08 17.35 13 

FMFCC_3 16 27.94 21.97 14 

FMFCC_12 15.9 28.32 22.11 15 

SPEC_11 20.14 24.98 22.56 16 

rms_amplitude 19.06 26.78 22.92 17 

FMFCC_10 13.46 33.1 23.28 18 

FMFCC_5 13.66 33.16 23.41 19 

FMFCC_1 20.64 29.76 25.2 20 

FMFCC_4 15.86 39.88 27.87 21 

FMFCC_11 15.7 40.16 27.93 22 

FMFCC_2 22.94 34.84 28.89 23 

energy 19.54 38.44 28.99 24 

FMFCC_9 18.1 41.76 29.93 25 

spectral_entropy 14.72 46.76 30.74 26 

FMFCC_6 18.54 42.98 30.76 27 

SPEC_12 32.48 32.62 32.55 28 

zcr 48.7 17.16 32.93 29 

spectral_rolloff 22 49.1 35.55 30 

 

Feature selection by feature ranking: The feature selection on segmental features for their suitability in MF is 

performed as described in section  3 above. As described there for the practical two-stage realisation of the test design, as 

two independent information sources the recording sets RS4_Beyer and RS4_Rode are chosen (see experimental setup 

Feature-Selection) because their material is best suited for generalisable intra-class evaluations. When this design is 

applied to the setup Feature-Selection, the 30 best segmental features are identified as shown in Table 4. 



 

The results summarised in Table 4 imply that the second order derivative FMFCCs clearly outperform every other class 

of features. The 13 features within this class occupy the 13 highest ranks within the fused ranking, followed by 10 

further FMFCC-features within the next 17 ranks. It seems that these features are containing a complex but suitable 

description of the characteristics of microphone recordings that allow for their intra-class classification.  

 

If only the 20 best features (see Table 4) are used in classification on the test material the classification accuracy is still 

significant for the application scenario but it drops in average for about 7.11% (see Classifier-Benchmarking-RS4_Rode-

Best20Features-only) in comparison to the full feature set. The four classifiers which hit the 60 hour timeout boundary 

defined for Classifier-Benchmarking-RS4_Rode and Classifier-Benchmarking-RS4_Rode have no problem to keep 

below that boundary when using only 20 features instead of the full set of 590.  

If the worst performing segmental features are considered, it can be summarised that especially the formants and many 

of the time domain features (e.g. the lsb_ratio) show absolutely no significance for MF. 

 

Feature independency: In addition to the actual classification tests in Buchholz et al.
16

 , a principle component analysis 

(PCA) is conducted there on the used feature vectors, to determine if the feature space used contains correlated features 

and could therefore be reduced resulting in a sped up classification. The analysis uncovered a strong correlation between 

the used features and that the classification could be sped up dramatically by feature selection without loosing much of 

the classification accuracy.  

When the same PCA is conducted on the 590 dimensional feature vector generated by AAST / AAFE v.2.0.5 then 187 

transformed components are identified as being responsible for 95% of the sample variance (on RS4_Rode in R01), 

which also implies strong potential for feature selection. 

 

Impact to classifier run-time: As mentioned above, if only the 20 best features are used in classification on the test 

material the classification accuracy drops in average for about 7.11% in comparison to the full feature set. At the same 

time the average computation time is reduced by factor 32.7 (the feature space is reduced by factor 590/20=29.5, so a 

simple estimation would assume a roughly linear dependent relationship between the decrease of the dimensionality of 

the vector space and the decrease in required computation power) and the classifier quality value optDist improves in 

average by 0.094 due to the much stronger decrease of the run-times of the evaluations in comparison to the drop in 

classification accuracies.  

It can be stated that the optDist of the classification using the 20 dimensional set is closer to the optimum (due to its 

faster classification), while the 590 dimensional set achieves higher classification gains (at the cost of dramatically 

increased costs in computation times). 

4.3. Microphone orientation influence evaluation 

To show how strong O (the influence of microphone orientations) is, in comparison to the inter-microphone distance of 

different microphones of the same brand and model, two simple experiments are constructed (setup 

Orientation_Impact_RS7). The eight different orientation recordings of the microphone M22 used (see section  3 above) 

for the generation of RS7 are used in these tests as test material against a model generated by a selected classifier 

(weka.classifiers.meta.RandomSubSpace) on RS4_Beyer in R06 and on the same two references (silence and a pure 

sinoid). The test hypothesis for both tests is: “The candidate material is recorded by M22.” If the accuracy achieved is 

equal or better than the results achieved by the classifier in the intra-class evaluations on RS4_Beyer, it can be assumed 

that the orientation is of limited impact to the microphone classification. 

 

The average classification accuracy of weka.classifiers.meta.RandomSubSpace for all ten reference signals in 

RS4_Beyer (R06; 590 dimensional feature vector) is 81.86% (cg=0.76). For the silence reference recorded in recording 

set RS7 (and tested against the model generated from the corresponding RS4_Beyer material) an accuracy of 100% (cg= 

1.0) is achieved. For the sinoid under the same conditions the accuracy is also 100% (cg=1.0). The orientation seems to 

have no influence on the microphone classification problem, since the inter-microphone difference, even for 

microphones of the same brand and model, is higher than the differences between the recordings of one microphone in 

different orientations. 

Another fact is highlighted by these results: RS4 and RS7 use the same microphones and hardware setup (room (R06), 

reference sounds, loudspeaker and soundcard) but between the times of recording lies a temporal distance of one year. 



Based on the perfect classification results achieved it can be deduced from those evaluations that the statistical patterns 

which allow for the classification of the microphones show for this time span no aging behaviour / no significant change 

over time. 

4.4. Microphone mounting influence evaluation 

To show how strong the influence M of microphone mounting changes is, in comparison to the inter-microphone 

distance of different microphones of the same brand and model, two experiments are constructed (both summarised in 

setup Mounting_Impact_RS9). The eight recordings in different mountings of the microphone M22 used for the 

generation of RS9 are used in these tests as test material against a model generated by a selected classifier 

(weka.classifiers.meta.RandomSubSpace) on RS4_Beyer in R06 and on the same references (silence and sinoid). The 

test hypothesis for both tests is: “The candidate material is recorded by M22.” If the accuracy achieved is equal or better 

than the results achieved by the classifier in the intra-class evaluations on RS4_Beyer, it can be assumed that the 

mounting is of limited impact to the microphone classification. 

 

For the silence reference recorded in recording set RS9 (and tested against the model generated from the corresponding 

RS4_Beyer material) an accuracy of 100% (cg=1.0) is achieved. For the sinoid the accuracy is 87.5% (cg=0.86). The 

misclassifications are limited to mounting position 4 (all other positions using some sort of microphone clamp mounted 

on a tripod, while in mounting position 4 the microphone is lying on a table which can be assumed to vibrate with the 

reference signal if this is strong enough). For this position all 200 corresponding feature vectors in this test are 

misclassified as origination from M23 instead of M22. 

4.5. Audio file composition detection 

Here the results four the four different investigations on composition detection introduced in section  1 above are 

presented. 

4.5.1. Composition Test 1 

This test evaluates the case where microphone recordings of one known microphone made in different locations 

composed into one stream (experimental setup: Composition-1). In terms of the classification problem at hand this test 

is assumed to be the hardest problem in this MF approach. As shown by Kraetzer et al.
1
 the room / recording 

environment has a strong influence on the classification performance, nevertheless the microphone used for the 

“patched-in” material is the same as the one for the original recordings. Figure 2 shows the results for this experiment 

(Composition-1) and the four exemplarily selected classifiers. 

 

 
Figure 2: Mash-up1 test results (upper half original, lower half pasted in material) 

 

The colour-coding in figure 2 has the following meaning: A white field in the upper half of the figure (the “original” 

half) denotes a true positive (TP) in the classification of this feature vector, i.e. the feature vector is classified correctly 

as belonging to the microphone M22. A dark grey field in the upper half of the figure corresponds to a false negative 

(FN), i.e. the feature vector is classified wrongly as belonging to M20, M21 or M23. 

A white field in the lower half of the figure (the “patched-in” or “impostor” half) denotes a true negative (TN) in the 

classification of this feature vector, i.e. the feature vector is rejected correctly as not belonging to the microphone M22 

(as it is registered in the model for the room / recording environment R01). A dark grey field in the lower half of the 

figure denotes a false positive (FP), i.e. the feature vector is classified wrongly as belonging to the microphone M22. 

The intention of this colour coding, which is consistently used for all three evaluations where the audio data stream, into 

which other data is pasted into, originates from a known microphone, is to mark all true classifications (TP and TN) in 

white and the false classifications (FN and FP) in dark grey. 

 



Table 5: Error rates for the exemplarily classifications on Composition-1 

Classifier accuracy TP FN TN FP 

bayes.NaiveBayes 49% 2% 98% 96% 4% 

functions.SMO 81% 70% 30% 92% 8% 

meta.RandomCommittee 96% 100% 0% 92% 8% 

trees.RandomForest 91% 100% 0% 82% 18% 

 

As can be seen in figure 2 and in Table 5 the performance of the used classifiers strongly differs. The NaiveBayes 

classifier produces an extremely high (98% on the original half) false negative rate on the original half of the test 

material, while its FP rate on the impostor part is with only 4% very good.  

The SMO shows in comparison to the Bayesian classifier a better, but still imperfect, FN rate. The RandomCommittee 

and RandomForest classifiers achieve in this test a perfect classification behaviour on the original half (100% TP) with 

FP-rates of 8% and 18% respectably on the impostor part. The accuracy achieved in the overall evaluations (see Table 

5) could be used very well to rank the classifiers according to their performance. 

4.5.2. Composition Test 2 

This test evaluates the case where one known microphone pasted into a stream of completely different known 

microphone (experimental setup: Composition-2). The setup of this second test on the “mesh-up” detection seems to be 

quite unlikely, for it assumes that the microphone which recorded the material to be inserted into an audio data stream is 

also registered in the classification models, something that an attacker/manipulator would try to avoid. Nevertheless this 

test is performed to evaluate the performance of the approach under this assumption. 

Figure 3 shows the results for the experiment Composition-2 and the four exemplarily selected classifiers. The same 

colour coding scheme is applied as in figure 2 above. Therefore all true classifications (TP and TN) are marked in white 

and the false classifications (FN and FP) in dark grey. 

 

 
Figure 3: Mash-up2 test results (upper half original, lower half pasted in material) 

 

As can be seen in figure 3 and in Table 6, the used classifiers on the original part show exactly the same performance as 

in figure 2 above. This is due to the fact that the same models are used here for the classification of the same material – 

all four classifiers work in a deterministic way.  

 

Table 6: Error rates for the exemplarily classifications on Composition-2 

Classifier accuracy TP FN TN FP 

bayes.NaiveBayes 50% 2% 98% 98% 2% 

functions.SMO 83% 70% 30% 96% 4% 

meta.RandomCommittee 100% 100% 0% 100% 0% 

trees.RandomForest 100% 100% 0% 100% 0% 

 

Differences can be seen in the performance on the impostor part (the lower half in figure 3; material from M23 claimed 

to originate from M22). Here the performance is strongly increased, as had to be expected for this rather unlikely 

scenario. The RandomCommittee and RandomForest classifiers achieve perfect classification performance on original 

as well as impostor material while the SMO classifier returns significant but less than optimal results. The Naïve Bayes 

classifier achieves an accuracy of 50% in this evaluation, which due to the fact that here a mere two-class evaluation is 

performed, would be equal to the probability of guessing correctly at the class. 

 

 



4.5.3. Composition Test 3 

This test evaluates the case where one unknown microphone pasted into a stream of completely different known 

microphone (experimental setup: Composition-3).  

The setup for this evaluation would be the rather most likely in recording authentication: material originating from an 

unknown source is pasted into an audio data stream generated by a registered microphone.  

 

 
Figure 4: Mash-up3 test results (upper half original, lower half pasted in material) 

 

Figure 4 shows the results for the experiment Composition-3 and the four exemplarily selected classifiers. The same 

colour coding scheme is applied as in figure 2 above. Therefore all true classifications (TP and TN) are marked in white 

and the false classifications (FN and FP) in dark grey. 

 

Table 7: Error rates for the exemplarily classifications on Composition-3 

Classifier accuracy TP FN TN FP 

bayes.NaiveBayes 51% 2% 98% 100% 0% 

functions.SMO 84% 70% 30% 98% 2% 

meta.RandomCommittee 97% 100% 0% 94% 6% 

trees.RandomForest 96% 100% 0% 92% 8% 

 

The performance in the original part (see figure 4 upper half and Table 7) is exactly the same as for the previous tests. 

For the impostor part (the lower half in figure 4; material from M8 claimed to originate from M22) a good to very good 

performance is achieved by all four classifiers. Nevertheless the Bayesian classifier achieves only an accuracy of 51% 

which would disqualify this classifier from practical application. 

4.5.4. Composition Test 4 

This test evaluates the case where one unknown microphone pasted into a stream of completely different unknown 

microphone (experimental setup: Composition-4). Like the setup of the second test on the “mesh-up” detection, this 

setup seems to be rather unlikely; nevertheless this test is performed to evaluate the performance of the approach. Here 

it is assumed that material should be verified for mesh-ups for which the sensor is not registered. This situation would 

be avoided by a person performing sensor forensics – in this field it is generally assumed that the sensor to be 

authenticated is available to the examiner.  

 

Figure 5 shows the results for the experiment Composition-4 and the four exemplarily selected classifiers. Here a 

different colour coding has to be applied than in the previous mesh-up tests. All four microphones in the used 

classification model are assigned one colour (M20 = light hatching, M21=white, M22=dark hatching, and M23=dark 

grey) classification result for each of the 100 frames in the test material is marked in this colour coding.  

 

 
Figure 5: Mesh-up4 classification results (upper half RS2 M2, lower half RS2 M3) 

 

In figure 5 the upper half is representing the first unknown or impostor microphone (M2 from RS2 room R01) and the 

second half is the other one (M3 from RS2 room R01). Since the classification model used was trained on different 



recording material from completely different microphones here in this evaluation the stability of the decisions can be 

used to evaluate the performance of the MF approach. The higher the change rate and the shorter the average sequence 

length in the classifications, the better the classification under this circumstances. 

For the upper half the Naïve Bayes classifier shows here a very bad performance. All frames are insistently classified as 

belonging to M21. Here a correct classification was of course not possible since the correct microphone was not 

available in the model but this insistence is implying a wrong certainty of the classifier. This wrong sense of certainty 

can be eliminated by including the average classification accuracy of the used classifier into account, which for the 

Naïve Bayes is about 40% in the tests performed in section  4.1.  

 

Table 8: Change rate and average sequence length for the experiments in Composition-4 

  change rate avg. sequence length 

bayes.NaiveBayes 0 50 

functions.SMO 20 2.38 

meta.RandomCommittee 26 1.85 

first half (M2) 

trees.RandomForest 36 1.35 

bayes.NaiveBayes 10 4.55 

functions.SMO 17 2.78 

meta.RandomCommittee 34 1.43 

second half (M3) 

trees.RandomForest 28 1.72 

 

The RandomCommittee and RandomForest classifiers show a much better performance in these two tests presented 

here. They show in Table 8 a change rate of more than 25 out of 50 with an average sequence length of smaller than two 

consecutive frames. These values are much closer to maximum entropy than the values for the SMO or Naïve Bayes 

classifiers, which implies that these (known good classifiers; see section  4.1) are run on impostor material.  

 

5. SUMMARY AND CONCLUSIONS FOR FURTHER WORK 

Summarising the results for classifier selection it can be said that for a test set generated by using four identical 

microphones in parallel recording and all 74 of WEKAs classifiers a highest classification accuracy of 82.5% is 

achieved in the tests. Four of the 74 non-tuned classifiers give results between 80 and 82.5% and 27 further classifiers 

report accuracies between 60 and 80%. Of the remaining 43 classifiers 16 perform between 27% and 60%, 8 are just 

“guessing” (at 25% in this four-class classification problem) and 19 returned errors (insufficient memory size at 

1.5GByte, timeouts at 60h, missing cost files or wrong data format). The results for this test set are substantiated by 

similar findings on another set of four identical microphones. Considering the different classes of classifiers used, it can 

be summarized that the used meta-classifiers give the best results. Within the top 20 of the ranked classifiers only few 

tree-based classifiers or functions can be found. The clustering algorithms evaluated within this paper did show no 

significant results for MF. 

Regarding the feature selection our results showed a very good performance of the 2
nd

 order derivative MFCC based 

features (introduced by Liu et al.
10

), as well as a good performance for selected time domain, frequency domain and 

FMFCC based features. Furthermore it is indicated by an estimation of the true dimensionality of the feature space using 

a PCA that about 1/3 of the features are responsible for 95% of the of the sample variance. Based on this a strong 

feature selection down to 20 most significant features was performed. The classification result using this reduced set 

does show only small impact to the classification accuracy, but a strong influence to required runtime of the classifiers. 

Based on the investigations presented in section  4.3 the orientation O seems to have no influence to the microphone 

classification problem, since the inter-microphone difference, even for microphones of the same brand and model, is 

higher than the differences between the recordings of one microphone in different orientations. 

Based on the perfect classification results achieved with a recently recorded test set on a training set recorded one year 

ago, it can be assumed from those evaluations that the statistical patterns which allow for the classification of the 

microphones show for this time span no aging behaviour / no significant change over time. Nevertheless long term 

observations on this matter would be required using time spans of at least 5 to 10 years to allow for any generalisation 

on this fact. 

The mounting (M) of a microphone only seems to have influence in specific cases, where the vibration behaviour of the 

microphone is strongly influenced, like in the case where a microphone lies directly on a vibrating surface like a desk 

top. Otherwise the inter-microphone difference, even for microphones of the same brand and model, is higher than the 

differences between the recordings of one microphone in different mountings. 



In the tests performed here on composition detection it is shown for strongly limited setups that the mixing of audio 

recordings into another recorded audio signal can be very well detected by some classifiers. Of interest is the fact that 

from the four exemplarily chosen classifiers for the evaluations here the SMO, which is performing quite well in all 

other MF evaluations (see e.g. section  4.1) shows a dissatisfactory performance. The RandomCommittee and 

RandomForest do show here a very strong performance if the microphone used in the generation of the audio data 

stream into which other data is pasted into is registered in the classification models. In fact it seems not to matter much 

for their performance whether the material pasted into the original stream originates from a registered or unknown 

microphone. 

In case none of the two sources for a mesh-up is registered it is shown here for a small example that the change rate and 

average sequence length can be used to tell that a wrong model is used and, since a different tendency for classification 

of the individual feature vectors can be observed, that a composition is likely. Nevertheless these facts should be 

subjected to further research to substantiate these findings. 
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Table 9: Test setup descriptions 

Setup Training material Test material Classifiers / 

clusterers 

Feature 

set 

Classifier-Benchmarking-

RS4_Rode 
• RS4_Rode (10 reference files) 

• 200 feature vectors per file for all of the 4 microphones (M16, 

M17, M18, M19) and each of the 10 rooms  

• 10x stratified cross-validation 

all 590 

segm. 

Classifier-Benchmarking-

RS4_Beyer 
• RS4_Beyer (10 reference files) 

• 200 feature vectors per file for all of the 4 microphones (M20, 

M21, M22, M23) and each of the 10 rooms  

• 10x stratified cross-validation 

all 74 in WEKA 

(v.3.6.1) implemented 

supervised classifiers 

in default 

parameterisations all 590 

segm. 

Feature-Selection • RS4_Beyer and RS4_Beyer (10 reference files) 

• 200 feature vectors per file for all of the 2x4 microphones 

((M16, M17, M18, M19) and  (M20, M21, M22, M23)) and 

each of the 10 rooms 

none Feature 

select. 

Classifier-Benchmarking-

RS4_Rode-

Best20Features-only 

• RS4_Rode (10 reference files) 

• 200 feature vectors per file for all of the 4 microphones (M16, 

M17, M18, M19) in R01 

10x stratified cross-validation 

all 74 in WEKA 

implemented 

supervised classifiers 

in default 

parameterisations 

best 20 

Orientation_Impact_RS7 • RS7 (2 reference files: silence and sine) 

• 8 mic. orientations 

200 feature vectors per file and 

orientation for M22 in R06 

Mounting_Impact_RS9 

• RS4_Beyer (2 

reference files: 

silence and sine) 

• 200 feature 

vectors per file for 

all of the 4 

microphones 

(M20, M21, M22, 

M23) in R06 

• RS9 (2 reference files: silence and sine) 

• Eight mounting positions 

200 feature vectors per file and mounting 

for M22 in R06 

weka.classifiers: 

meta.RandomSubSpa

ce  

(in default 

parameterisation) 

all 590 

segm. 

Composition-1 • "original half": 50 feature vectors 

(disjunctive with training material) from 

M22 in R01 

• "impostor half": 50 feature vectors 

from M22 in R06 

Composition-2 • “original half”: 50 feature vectors 

(disjunctive with training material) from 

M22 in R01  

• “impostor half”: 50 feature vectors 

from M23 in R01 

Composition-3 • "original half": 50 feature vectors 

(disjunctive with training material) from 

M22 in R01  

• "impostor half": 50 feature vectors 

from M8 (RS2 in R01) 

Composition-4 

• RS4_Beyer (10 

reference files) 

• First 200 feature 

vectors per file for 

all of the 4 

microphones 

(M20, M21, M22, 

M23) in R01 

• "first half": 50 feature vectors from M2 

(RS2 in R01) 

• "second half": 50 feature vectors from 

M3 (RS2 in R01) 

weka.classifiers: 

• bayes.NaiveBayes 

• functions.SMO 

• meta.RandomComm

ittee 

• trees.RandomForest 

(all in default 

parameterisation) 

all 590 

segm. 

 


