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Dynamic Stability of Hovercraft in Heave 
The regimes of flow governing the dynamic behavior of a two-dimensional mathematical 
model of an edge-jet Hovercraft in heaving motion are described and the equations as­
sociated with such regimes derived. Both the free and forced-oscillation characteristics 
are studied. The nonlinear nature of the system manifests itself, in the case of the 
forced oscillations, as a shift in the dynamic equilibrium position residting in a loss of 
mean hoverheight. 

Introduction 

L I HE DYNAMIC behavior of a Hovercraft in heaving 
motion can be adequately described through the behavior of the 
edge jet and cushion. At one stage of the motion, the rate of 
change of the pressure in the cushion is such that the horizontal 
pressure force cannot be sustained by the edge jets. As a result, 
the cushion "bursts" causing the cushion pressure to decrease, 
the escaping air lifting the edge jets from the ground. Within a 
complete cycle a complementary state exists when the rate of 
change of the pressure in the cushion is such that the horizontal 
pressure force is insufficient to sustain the momentum flow of the 
edge jets. In this case the edge jet splits, par t of the flow forming 
a compensating pumping action into the cushion. Such behavior 
has been described by Turin [ l ] 1 and Eames [2] as being akin to 
alternating " je t" and "piston" effects and provides the damping 
mechanism of the harmonic oscillation in heave. The switching 
from one state to the other is not a smooth instantaneous mech­
anism. A Coanda behavior of the edge jets results in a hysteresis 
effect defining a pause condition between the just described states 
during which the pressure change within the cushion is balanced 
by the compressibility of the air cushion itself and the deforma­
tion of the edge-jet contour. As the two states describe two dis­
tinct physical configurations, it is to be expected that, in order to 
fully describe a complete cycle, separate mathematical formula­
tions will be required providing solutions that must be analyti­
cally continuous through the pause condition. The analysis de-
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veloped by both Tulin and Eames, although initially differentiat­
ing between the two modes of operation, proceeds to develop a 
single-differential equation which, it is claimed, describes a mean 
of the separate states. Such a procedure would be justified if the 
damping coefficients in the two states were nearly equal. The 
ratio, however, can be as large as 3 (see reference [2]) which 
makes a separate analysis of the two states essential. For this 
reason the method adopted by Duke and Hargreaves [3] also 
can be criticized. In this work, the Hovercraft is assumed to be 
analogous to a mass-spring-damper system. Appropriate coef­
ficients are derived for the two regimes of edge-jet operations and 
an arithmetic mean is taken to define a single-differential equa­
tion for the complete cycle. No mention is made of the switching 
conditions which determine the mode of operation of the edge 
jets and the assumption of linearity is not justified. 

Each mode of jet behavior is investigated separately to clearly 
demonstrate the switching characteristics of the jet and the 
analytic continuation of such solutions forming a complete oscilla­
tion is discussed. The nonlinear character of these solutions is 
then adequately demonstrated by the numerical evaluation of 
the solutions for a discrete range of parameters. 

Mathematical Model 
The Hovercraft system is represented as a two-dimensional 

flat based craft supported on an air cushion, generated and main­
tained by identical edge jets. The air cushion is assumed to be 
isentropic and inviscid while the edge jets are, in effect, replaced 
by momentum lines along which the rate of change of momentum 
flux remains invariant. In any complete cycle of the heaving 
motion, the air cushion and edge jets will behave as described in 
the Introduction. The state following the bursting of the air 
cushion when the outflow lifts the edge jets from contact with the 
ground will be referred to as underfed. The complementary 
state, when the edge jets split, providing a pumping action into 
the air cushion, will be referred to as overfed. 
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Fig. 1 Jet configurations 

-Nomenclature-

C(t) = Bernoulli function 

h = craft displacement from 
fixed axis 

h0 = static equilibrium hover-
height 

H F = Hovercraft^Froude num­
ber 

I = craft length 

L = characteristic length as­
sociated with flow out 
from/into cushion 

pa = ambient pressure 

pc = cushion pressure 

Po 

t 
td,1 

h 
u 
V 

Vj 

v„ 

x = t3-a +1 
cos d)/ko) 

= static equilibrium cush­
ion pressure 

= time 
= width of jet flow out 

from/into cushion 
= edge-jet width 
= flow velocity out from/ 

into cushion 
= velocity of fluid along a 

streamline 
= velocity of edge jet 
= velocity of edge jet out of 

ground effect 

= edge-jet parameter 

z — ground displacement 
from fixed axis 

z0 = maximum amplitude of 
ground oscillation 

7 = ratio of specific heats 

8 — edge-jet inclination 

pa = atmospheric density 

pc = cushion density 

Pj = edge-jet density 

4> = velocity potential 

« = frequency of forcing func­
tion 
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Fig. 2 Cushion pressure and hoverheight variations in free oscillations 
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Analysis 
Underfed State. Consider the forced oscillations in heave of the 

Hovercraft due to the movement of the ground plane. At time t 
let the ground displacement as measured from a horizontal axis 
fixed in space be denoted by z and let the corresponding displace­
ment of the base of the craft be h. If the rate of change of the 
mean cushion pressure, dpjdl, is greater than that necessary to 
maintain the edge jets in equilibrium over a height (h — z) the air 
in the cushion will flow out in the form of a jet of thickness td and 
with velocity U; see Fig. 1(a). 

Let us consider the jet alone. If it is assumed that the momen­
tum flow in the jet remains invariant throughout the motion we 
see that, by comparing the displaced configuration with that of 
the static configuration, 

(Pc - PaXh - Z - td) = pfljHjil + COS 6) = (Po - PaVh 

Now let us consider the "underfeed." In this case, the flow is 
time-dependent and from the equation of continuity governing 
the mass-flow leaving, the cushion volume is determined by 

d_ 

dt 
Hpcl(h - z)\ = -paUld (1) 

where pc is the mean density of the air in the cushion. By using 
the adiabatic relationship, 

Pc/Pcy = Pa/Pa1 

this equation gives, on rearrangement, the rate of change of the 
mean cushion pressure, pc, in the form 

dPc 
dt 

yPc 
l(h - z) K dh 

dt 

dz . 

It ) + 2Ut< n- (2) 

The Bernoulli equation for the unsteady flow out from the cushion 
is of the form 

;? + W + — 
dt 

c(t) (3) 

where, as usual, the evaluation of the acceleration potential term 
presents difficulties. A representative form may be obtained by 
following the analysis of the unsteady flow of fluid through a 
thin tube at the base of a tank as given in the text by Prandtl 
and Tietjens [4]. Thus the main cushion volume may be con­
sidered as analogous to a tank CDEFG in which the mean 
velocity is zero and where the underfeed is replaced by an outlet 
pipe ABCG of representative length L, width td and in which the 
mean velocity is \V; see Fig. 1(a). By substituting for <>4>/i>t 
the expression ^LDU/dt, the Bernoulli equation gives, on re­
arranging, 

dU_ 

dt L LT - 1 Pa 
1 ( ' • ( - ) 
'a { \Pe) 

V Y 

(4) 

Finally the motion of the craft itself may be described by the 
equation 

md'h/dt = (pc — pa)l — mg 

where mg, the weight of the craft, may be equated to (po — Pa) t ° 
give 

1 ^ 
a dt* 

Pc - go 

P<> - Pa 
(5) 

The underfed phase of the motion is completely defined by the 
equations (1), (3)-(5). By interpreting m as a virtual and not 
actual mass of the craft an allowance may be made for any buoy­
ancy effect due to the local displacement of the ground plane 
immediately beneath the craft in cases where such a ground plane 
is deformable. 

Overfed State. In this phase of the motion, the rate of change of 
the cushion pressure is insufficient to balance the momentum flow 
in the edge jet. Par t of this momentum is then deflected into 
the cushion in the form of a compensating flow of velocity U and 
jet width h. The main part of the jet still flows outward and it is 
assumed that its velocity remains Vs through a decreased jet 
width ii (see Fig. 1(b)), such that 

Vfr = Vjk + Uh. 

The momentum balance equation for the edge jet can then be 
written in the form 

(Pc - P.)(h ~ z) = (P. - Pa)h° ~ P/*U(U + Vt) (6) 

By assuming that the acceleration potential occurring in Ber­
noulli's equation takes the identical form to that assumed for the 
underfed state the energy equation yields 

dU 

dt \Pi Pi I 
(7) 

whereas the edge-jet fluid is regarded as incompressible, the flow 
into the cushion is regarded as an adiabatic continuous process 
resulting in the equation 

dpc .^r^iUdh__dz\ hX^ 
(h - z) l \ \dt dt) \pc) 

(8) 

The overfed phase of the motion is completely defined by equa­
tions (5)-(8). 

Switching Conditions. The conditions which determine in which 
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Fig. 3 Exlent of over and underfeeding 

phase of the motion the mathematical model should be are as 
follows. When the edge jet is in the underfed state, the switch 
occurs when td = 0; whereas when the edge jet is in the overfed 
state, the switch occurs when fe = 0; see Pig. 3. These condi­
tions are both equivalent to 

{Vc ~ Pa)(h - Z) - (po - Va)ho = ° 

The hysteresis effect occurring in the finite time phase of the 
switch is neglected resulting in a discontinuous jump from the 
overfed to underfed stages. 

Nondimensional Equations 
Preparatory to the computational work, the equations govern­

ing the modes of motion are nondimensionalized. The charac­
teristic pressure is taken to be the dynamic head of the edge-jet 
out-of-ground effect; i.e., %p,Vm

2 where Va is the velocity of the 
edge jet in this mode of operation and is used as the characteristic 
velocity. A reference length is defined as xl where 

x = *,(1 + cos d)/ho. 

Such a length is characteristic of the system in that it combines 
all relevant lengths and angles, viz., edge-jet width; t}-, edge-jet 
inclination, 6; craft length, I; and static equilibrium hoverheight, 
ho, in a well-known form occurring in the simple static equilib­
rium theory. 

Thus, if nondimensional quantities are denoted by a bar, we 
shall write 

h = h/xl, V = V/Va, I = tVJxl, 

V = P/iPjVJ, and p = p/pt 

The fundamental equations (1), (3)-(5), governing the under­
fed state, respectively, take on the following nondimensional 
forms: 

(Pc - Pa)(h - z - ld) = (po - pjho 

(f-1)+--(:-:)" 

-ikhki'-Gr-*-}-* 

dpc 
dt 

dU 

ypc [ 
l(h - z) \ 

i r 7 

and 

dVi 

dt2 
1 (Pc - Po) 

am* (po - pj 

(9) 

(10) 

(11) 

(12) 

where H F = (VJ>/x2g)1^' is the Froude number for the gravita­
tional system associated with the Hovercraft. 

Similarly the fundamental equations (6)-(8) governing the 
overfed state, respectively, take on the following nondimensonal 
forms: 

(P. ~ *>.)(« ~ *) - (P« ~ Pafa ~ ^U(U + V,) (13) 
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Fig. 4 Velocity variation of over and underfeeding 

dU 1 
~Z = J Pa + 1 
dt L 

U2) 

d% 

dl 
JPc ( s - S ) - " ft)"') 

(14) 

(15) 
l(h - 0) 

together with equation (12) 

Computation 
The program was written in Elliott 803 Autocode with a step 

length of 0.05£ and an error bound of 0.01 giving results correct to 
four significant figures. As the solutions are in tabulated form the 
switching condition is taken in the form td > 0. An automatic 
check at the end of each iterative step is built into the program to 
insure the correct choice of phase equations for the following step. 

A detailed investigation was carried out to determine whether 
the switching conditions given in the section, "Switching Condi­
tions" were the same as h~ s» 0. The results showed that when 
k = 0, td.i = 0 and hence the two conditions are not the same, 
thereby giving rise to the pause condition. 

Both the free oscillation (z = 0) of the system and the response 
to a sinusoidal input (z = z0 sin oit) are investigated using the data 
shown in Table 1. 

Table 1 

Characteristic Parameters: 

Pi, pa = 0.002378 slugs/cu ft; ipjVJ = 43.93 lb/sq ft 
xl = 28.452 ft; 7«, = 193 ft/sec 

Nondimensional Parameters: 

H F = 6.376 ;pa = 47.82 
ho = 0.1054; p„ = 48.50 
7 = 1.757; Vj = 0.775 

L = 0.0618; i0 = 0.00527 
w = 0, 1.571, 3.142, 6.283 

I t will be observed that the value of ho indicates a static clear­
ance of about 3 ft which was an early claim for an unskirted 50-ft 
craft. 

The value of z0, giving a "ground" forcing amplitude of about 
2 in. was dictated by the necessity of working within the range of 
validity of the simple static hovering theory. In order to demon­
strate the nonlinear effects, it was felt that the frequency of input 
and not the amplitude was the important parameter. To in­
crease the amplitude would necessitate the use of the exponential 
form of the static hovering theory [5]. 

Results 
Free Oscillations. The response to the two initial states dho/dt 

^ 0 are investigated. The degree of nonlinearity of the system 
is demonstrated by the dissimilarity of the cushion pressure varia­
tion curves shown in Fig. 2 which also demonstrates the critical 
nature of the damping. The difference between the modes of 
operation, under and overfeed, is shown in Fig. 4. I t will be 
noticed that the value of U at the end of any one mode of opera­
tion is not zero. This is the impulsive effect referred to in the 
Introduction due to the neglect of the pause condition. Super­
imposed on this figure are the constant values of U assumed by 
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Fig. 5 Comparative static and dynamic cushion variations in free osciilaiions 
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Fig. 6 Variation of center of oscillation with frequency of input 

previous authors [1-3].. I t can be seen beyond an initial time 
interval the approximation is good which is in accord with the 
pressure variations shown in Fig. 2 where it is seen that, in the 
corresponding time interval, the pressure is nearly equal to that 
given under static equilibrium conditions. In Fig. 5 the pressure 
variations corresponding to static and dynamic conditions are 
plotted against hoverheight illustrating the damping mechanism 
of the system as described in the Introduction; i.e., the rate of 
change of pressure with height is greater or less than that given 
under static conditions. 

Forced Oscillations. Three frequencies of input are considered: 
<° = Ti i> anc* 1- The well-known characteristic of the input fre­
quency dependence of the dynamic equilibrium position of a 
nonlinear system is shown to occur in Fig. 6. The magnitude of 
the offset in terms of percentage loss of hoverheight is plotted 
against frequency of input in Fig. 7(a). As far as the authors are 
aware the fact that the graph is a straight line is purely fortuitous. 
The magnification factor, defined as the ratio of the mean ampli­
tude of the forced oscillation to the amplitude of the input, is 
plotted against time in Fig. 7(b) and the phase-shift of the forced 
response is shown in Fig. 7(c). The nonlinear character of the 
system is again apparent in Fig. 8 where the cushion pressure 
variation with hoverheight clearance is seen to present a closed 
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Fig. 7 Parameter varialions with frequency of input 
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Fig. 8 Comparative static and dynamic cushion variations in forced 
oscillations 

loop for the two phases of the motion. I t appears that during the 
phase when the edge jet overfeeds there is a greater loss of pres­
sure than there is of gain during the underfeed phase. The ratio 
of gain to loss of cushion pressure in one complete cycle of the 
stead3r-state oscillation is approximately 3. I t may be recalled 
that the ratio of the damping factors found by Eames [2] was 
also approximately 3. The variation of cushion pressure, hover-
height, and craft heave velocity during the first cycle of the input 
is shown in Fig. 9 where the dominance of the negative values 
indicates the steady downward trend of lost hoverheight. 
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