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Abstract— This paper describes autonomous unmanned
aerial vehicle (UAV) guidance technologies developed and
demonstrated in a flight test sponsored by the DARPA
Software Enabled Control program. The flight experiment
took place in June 2004 using a Boeing UAV testbed and
demonstrated important autonomy capabilities enabled by a
receding horizon guidance controller and fault detection filter.
These technologies were implemented using an application
programming interface developed for real-time receding hori-
zon control applications (RHC API) under Boeing’s Open
Control Platform (OCP) embedded software environment.

This paper describes the receding horizon controller (RHC)
design process and demonstration scenarios which were de-
signed to exercise and evaluate the primary functionalities of
the control system. Simulation results of the key capabilities
are shown and compared with recorded flight data for evalu-
ation purposes.

I. INTRODUCTION

Interest in the use of unmanned aerial vehicles (UAVs)
has grown significantly in the last decade. Currently most
UAVs are used for military surveillance and reconnaissance
in practice but the range of possible civilian applications is
also promising. Current UAV systems are either remotely
operated by a human pilot or rely on rudimentary guidance
technologies that limit the number of vehicles used and the
flexibility needed to accomplish complex mission tasks as
outlined in [1].

One of the main technological goals of improving the
capabilities of currently operational UAVs is to increase
their autonomy by providing more advanced guidance sys-
tems. In particular, to enable the application of advanced
control design methods that respect constraints of the vehi-
cle dynamics and allow systematic design of contingencies
(e.g. reconfiguration) in case a fault occurs in the sys-
tem. These technologies are essential elements of a high-
performance, high-risk autonomous aerial vehicle system.

Advances in software and computational power have
provided the basis that is critical in implementing state-of-
the-art control algorithms. To this date, very few advanced
guidance and fault detection concepts have been evaluated
in flight tests on actual vehicles.

The technologies described in this paper were developed
and implemented as part of the Defense Advanced Research
Projects Agency (DARPA) Software Enabled Control (SEC)
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program [2]. The overall goals of the project included de-
velopment of the Open Control Platform (OCP) middleware
[3] that enables seamless integration of control algorithms
in real-time embedded environments, and demonstration
of advanced guidance capabilities on a full-scale aircraft
equipped with actual future UAV avionics and software.

The paper is organized as follows. First, a brief de-
scription of Boeing’s UAV testbed is given in Section II,
followed by the receding horizon guidance controller design
in Section III. Section IV explains the experimental scenario
that formed the basis of the flight demonstration. High
fidelity simulation results and flight test data are presented
in Section V.

II. UAV TESTBED AND THE OCP SOFTWARE

ENVIRONMENT

The aircraft used for the flight test experiments is a mod-
ified T-33 two-seat jet trainer equipped with components of
the Boeing X-45 unmanned aerial vehicle avionics and an
autopilot. The autopilot provides several control functional-
ities such as altitude, velocity, heading and turn-rate track-
ing. These different command types and functionalities are
accessible through Boeing’s Open Control Platform (OCP)
[3]. The OCP served as a software integration framework
for flight code development and desktop simulations as
well, besides hosting and interfacing the final flight code
implementation.

A standard laptop computer served as the on-board, real-
time flight controller hosting the OCP and the guidance
algorithms. The guidance system produces the velocity,
turn-rate and altitude commands of the aircraft to follow
a reference trajectory.

In the testing and control design phase, simulations were
performed using a nonlinear black-box executable model of
the T-33 aircraft integrated with the autopilot provided by
Boeing. This open vehicle simulation model represents the
nonlinear closed-loop aircraft dynamics and will be referred
to as DemoSim.

The RHC-based guidance system was designed based on
identified linear time-invariant closed-loop vehicle dynam-
ics using DemoSim and the techniques presented in [4].
The nonlinear operational constraints of the vehicle were
approximated by linear expressions. Reference [5] contains
a detailed description of the identification process.

A. DemoSim modeling

The inputs to the identified LTI DemoSim model are
the following command signals: ground speed command
Vcmd (i.e. total velocity w.r.t. ground), turn rate command
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χ̇cmd and altitude rate command ḣcmd. The model outputs
are ground speed V , heading χ and flight path angle γ.
The variables ζ and η will denote the local north and east
coordinates, respectively. The linear DemoSim dynamics
was identified at the following input-output trim values:
VDStrim = 505 ft/s, χ̇DStrim = 0 rad/s, ḣDStrim = 0 ft/s,
χDStrim = π

2 rad, γDStrim = 0 rad.

B. Prediction model

The prediction model was chosen to accommodate two
important requirements. It has to provide a reasonably
accurate description of the dynamic relationship between
the control inputs of the test platform and the output signals
of interest, which include position coordinates for tracking
performance and other variables used for describing ma-
neuvering constraints. At the same time, it has to be simple
enough to limit the complexity of the optimization problem
that is solved online in a receding horizon fashion.

These objectives were captured by constructing the pre-
diction model from the identified LTI DemoSim dynamics
and a flat-earth kinematic model. Using linearized kine-
matics that were updated at every time step, a discrete-
time linear time-invariant prediction model was derived.
Although this model was fixed throughout the prediction
horizon of the optimization problem, the updates to the
linearized kinematics part rendered the prediction model a
linear parameter-varying system, which depended on the
current velocity, heading and flight path angle values.

The continuous-time nonlinear prediction model, com-
prised of the LTI dynamics and the nonlinear kinematics,
is depicted in Figure 1. The tilded variables represent
deviations from trim values of the DemoSim model:

[

V, χ̇, ḣ
]

cmd
=

[

V, χ̇, ḣ
]

DStrim
+

[

Ṽ , ˜̇χ,
˜̇
h

]

cmd
, (1a)

[
V, χ, γ

]
=

[
V, χ, γ

]

DStrim
+

[

Ṽ , χ̃, γ̃
]
. (1b)

A schematic diagram of the linearized prediction model
is shown in Figure 2. Note the nonlinear kinematics are
linearized around fixed V0, χ0, γ0 values that represent
current measurements. The inputs fed into the linearized
kinematics model represent the differences between the
true values predicted by the LTI DemoSim model (after
addition of trim values) and the current measurements used
for linearization:

[

Ṽ , χ̃, γ̃
]

0
=

[
V, χ, γ

]

DStrim
+

[

Ṽ , χ̃, γ̃
]
−

[
V, χ, γ

]

0
(2)

The linearized model was discretized using the discrete-
time identified DemoSim dynamics and approximating
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Fig. 1. Nonlinear prediction model.

the continuous-time nonlinear kinematics around fixed
V0, χ0, γ0 values with the following forward-Euler dis-
cretized linear system





ζ̃(k + 1)
η̃(k + 1)

h̃(k + 1)



 = Ã





ζ̃(k)
η̃(k)

h̃(k)



 + B̃





Ṽ0(k)
χ̃0(k)
γ̃0(k)



 (3)

where Ã = I3 and

B̃ = Ts ·





Cχ0
Cγ0

−V0Sχ0
Cγ0

−V0Cχ0
Sγ0

Sχ0
Cγ0

V0Cχ0
Cγ0

−V0Sχ0
Sγ0

Sγ0
0 V0Cγ0



 (4)

In equation (4) the sampling time Ts is 0.5 seconds and C(·),
S(·) are short notation for cos(·) and sin(·), respectively.

The addition of DemoSim trim values and the subtraction
of the current measurement values at the output of the LTI
DemoSim model were implemented by augmenting the LTI
dynamics with extra states, which were subtracted from the
model outputs. The state values were updated every time
step based on the difference between DemoSim trim values
and current measurements. Denoting the original discrete-
time LTI DemoSim matrices with ADS, BDS, CDS, DDS and
using ADS0, BDS0, CDS0, DDS0 to denote the augmented
dynamics that adjusts the output values based on current
measurements (V0, χ0, γ0), leads to

ADS0 =

[
ADS 0
0 I3

]

, BDS0 =

[
BDS

0

]

, (5)

CDS0 =
[
CDS −I3

]
, DDS0 = DDS.

The estimated time-delays associated with the pilot
model and data processing by the on-board avionics
were accounted for by augmenting the discrete-time De-
moSim dynamics with extra states to arrive at matrices
Ad, Bd, Cd, Dd. The command input time-delays were char-
acterized as integer multiples of the sampling time Ts.

Since the nonlinear kinematics part of the prediction
model was always linearized around the current measure-
ments of V0, χ0, γ0, the outputs of this augmented, mod-
ified LTI DemoSim model could be fed directly into the
linearized kinematics model. In other words, the complete
linear prediction model could be obtained by the following
augmentation of the state-space matrices

A =

[
Ad 0

B̃Cd Ã

]

, B =

[
Bd 0

B̃Dd 0

]

, (6)

C =
[
0 I3

]
, D =

[
0 I3

]
.
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Additional disturbance inputs were added to (6), to model
additive output disturbance that affects the plant.

The states associated with the DemoSim dynamics “part”
of the prediction model were updated using a linear time-
invariant observer that relied on the control inputs sent from
the RHC controller to the plant (Vcmd, χ̇cmd, ḣcmd) and
measurements of ground speed V , heading angle χ and
flight path angle γ. Note the flight path angle could not be
measured directly on the test platform, so a conversion from
ground speed and altitude rate measurements was performed
to obtain flight path angle according to γ = arcsin ḣ

V
. The

input-output scheme of the RHC controller and the observer
are shown in Figure 3.

The T-33 test platform avionics provides GPS position
measurements in terms of latitude λ, longitude Λ and
altitude h using the WGS-84 system. These measurements
were converted to north ζ, east η and altitude h values to
be compatible with the coordinate frame of the reference
trajectory. The north and east coordinates were obtained by
the transformation of the geodetic measurements (GPS) into
an NEU (north-east-up) local Cartesian coordinate frame
that had its origin at the point in space where the RHC
controller is engaged (λ0,Λ0, h0). The geodetic GPS alti-
tude measurements however were used directly, without any
further conversion. The states associated with the position
integrators of the linearized prediction model were always
initialized at zero (i.e. current position).

The output signals of the entire linear prediction model
were assigned to three objective groups denoted by u, z
and y. These correspond to hard actuator or other input
constraints, maneuvering limits and tracking performance,
respectively. The commanded input signals are denoted by
r. The prediction model in (6) has only y outputs for
tracking performance.

y =
[

ζ̃ η̃ h̃
]T

, z = Az

[
V χ̇ γ̇

]T
, (7)

u = r =
[

Ṽ ˜̇χ
˜̇
h

]T

cmd
, ∆r =

[

∆Ṽ ∆˜̇χ ∆
˜̇
h

]T

cmd
.

Note that outputs z used to define maneuvering limits were
not included in the flight code. These output constraints
were implemented only for testing in high-fidelity simula-
tions, which are described in more detail in [5], including
the definition of Az , bz linear constraint parameters.

The parameter-variance of the prediction model, due
to linearization of nonlinear kinematics, is characterized
by the nominal velocity V0, heading χ0 and flight path

RHC

Observer

Fig. 3. RHC controller and observer.

angle γ0, around which the kinematic model was linearized.
The parameter dependence is present in the B̃ matrix of
the linearized kinematics model (4). Denoting the vector
of parameters with % (k) = [V0 (k) χ0 (k) γ0 (k)]

T , the
linearized discrete-time prediction models have the form

x(k + 1) = Akx(k) + Bkr(k) (8)
[
y(k) z(k) u(k)

]T
= Ckx(k) + Dkr(k)

where the parameter dependency of the prediction model
is indicated by the subscript k, meaning Ak = A (% (k)),
Bk = B (% (k)), Ck = C (% (k)), Dk = D (% (k)).

III. RHC-BASED GUIDANCE DESIGN

The objective of the RHC control design was to track
a time-stamped three-dimensional position reference trajec-
tory in the presence of constraints that limit the maneuver-
ability of the aircraft based on the identified guidance-level
vehicle model described in the previous section. Vehicle
guidance, trajectory tracking had to be performed while
explicitly accounting for the actual vehicle maneuvering ca-
pabilities such as flight-envelope and dynamics constraints.

A. Problem formulation

The position reference trajectory was specified in terms
of north, east, and altitude coordinates in a local NEU
coordinate frame relative to the point in space where
the controller is engaged. The reference position vec-
tor elements were placed 0.5 seconds apart from each
other in time. Denote the reference position trajectory
values by ζref (k), ηref (k), href (k) at time step k. The
LTI prediction model based RHC controller was re-
quired to track a “linearized” position reference trajectory
ζ̃ref (k), η̃ref (k), h̃ref (k). This was generated by subtract-
ing the simulated output of the nonlinear kinematics from
the original reference trajectory. The “nominal” simulated
trajectory was calculated using fixed V0, χ0, γ0 values based
on the current measurements used for linearization. The
linear reference trajectory was therefore obtained by

[

ζ̃, η̃, h̃
]

ref
(k) =

[
ζ, η, h

]

ref
(k) −

[
ζ, η, h

]

0
(k) (9)

where “nominal” simulated trajectories were calculated by




ζ0

η0

h0



 (k) =

k∑

i=1

Ts ·





ζ̇0

η̇0

ḣ0



 (V0, χ0, γ0). (10)

The state values that represent the constant additive
output disturbance in the prediction model were updated
every time step based on the following disturbance filter

d(k + 1) = 0.99d(k) + 0.01din(k) (11)

where the input din(k) was determined from the following
error equation

din(k) =





ζ(k)
η(k)
h(k)





︸ ︷︷ ︸

pos. meas.

−





ζ0(k|k − 1)
η0(k|k − 1)
h0(k|k − 1)





︸ ︷︷ ︸

nom. pos. pred.

−





ζ̃(k|k − 1)
η̃(k|k − 1)

h̃(k|k − 1)





︸ ︷︷ ︸

pred. lin. output
(12)



where ζ0(k|k − 1), η0(k|k − 1), h0(k|k − 1) are one-step
ahead position predictions based on the nonlinear kinemat-
ics model and V0(k−1), χ0(k−1), γ0(k−1) measurements
at time k − 1.

The optimization problem setup is based on the linear
MPC formulation of [6] with some modifications. In most
linear predictive controllers, the performance is specified
by the following quadratic cost function to be minimized,
which will also be adopted here:

J(k) =

Hp∑

i=1

‖ŷ (k + i | k) − yref (k + i | k)‖
2
Q

+

+

Hc−1∑

i=0(δHc)

‖∆r (k + i | k)‖
2
R + ρε

(13)

where ŷ (k + i | k) is the i-step ahead prediction of the
outputs based on data up to time k. Hp denotes the number
of steps in the output prediction horizon. These predictions
of the outputs are functions of future control increments
∆r (k + i | k) for i = 0, δHc, 2δHc, . . . , Hc − 1. The
integer number of samples Hc is called the control horizon,
the control signal is allowed to change only at integer
multiples of δHc samples and is set to be constant for
all i ≥ Hc. This means that the future control signal has
the form of a stairstep function with steps occuring at δHc

intervals. The reference signal yref represents the desired
outputs, Q and R are suitably chosen weighting matrices.
For this specific application, the optimization problem was
specified using the following parameters

Hc = 1, δHc = 1, Hp = 40,

Q = diag(0.01, 0.01, 1), R = diag(10, 5 · 106, 1).

The slack variable ε and its weight ρ are used for softening
constraints. The exact purpose of the slack variable and
weight in the problem formulation will be clarified shortly.

In order to obtain the predictions for the signals of
interest, a model of the process is needed. By using a linear
model, the resulting optimization problem of minimizing
J(k) will be a quadratic programming (QP) problem, for
which fast and numerically reliable algorithms are available.
The linearized prediction model, introduced in Section II-B,
is augmented with extra states as follows

ξ̂(k+1)
︷ ︸︸ ︷




x̂(k + 1)

d̂(k + 1)
r(k)



 =

Ak
︷ ︸︸ ︷




Ak 0 Bk

0 I 0
0 0 I





ξ̂(k)
︷ ︸︸ ︷




x̂(k)

d̂(k)
r(k − 1)



 +

Bk
︷ ︸︸ ︷




Bk

0
I



 ∆r(k)





ŷ(k)
ẑ(k)
û(k)





︸ ︷︷ ︸

ŵ(k)

=



Ck

∣
∣
∣
∣
∣
∣

I
0
0

∣
∣
∣
∣
∣
∣

Dk





︸ ︷︷ ︸

Ck





x̂(k)

d̂(k)
r(k − 1)





︸ ︷︷ ︸

ξ̂(k)

+ Dk
︸︷︷︸

Dk

∆r(k)

(14)

Three integrators are added to convert the control changes
∆r into actual control commands r, each one associated
with the command inputs of velocity, turn rate and altitude

rate. A simple disturbance model is incorporated to the
state space description of the prediction model in equation
(14), which assumes constant disturbances are acting on
outputs. The constant disturbance estimates are obtained
by filtering the difference between measured and predicted
outputs, according to equation (12).

As in most applications, there are level and rate limits on
control inputs. These are enforced as hard constraints

u ≤ û (k + 1 | k) , . . . , û (k + Hp | k) ≤ u (15)

∆r ≤ ∆r (k) ,∆r (k + δHc) , . . . ,∆r (k + Hc) ≤ ∆r
(16)

since the RHC algorithm has almost direct control over
them (the optimization variables are the changes in control
inputs). Hence there is no modeling uncertainty associated
with this aspect of the prediction model. Another type
of constraint is also considered in this specific applica-
tion example represented by certain maneuvering limits on
the aircraft. The controller has to be versatile enough to
handle these limits that might be system-state dependent
or change according to different stages of a mission. The
most important maneuvering constraints of the T-33 testbed
were characterized based on the DemoSim open vehicle
executable model. These constraints arose mainly from
vertical acceleration and bank angle limits. Although the
relationship between the control inputs and these variables
is nonlinear, it could be approximated reasonably well
with linear expressions. This allowed their incorporation
into the RHC problem formulation as output constraints.
It is vital that these limits are treated as soft constraints,
since disturbances and model mismatch can easily lead to
infeasibility problems if hard constraints are put on these
type of output signals. Details of the soft output constraint
formulation can be found in [5] and are omitted in this
paper due to space limitations. Note also that the actual
flight code was flown without the inclusion of these type of
constraints.

The numerical values of the u output signal limits (rep-
resenting hard constraints) were specified as

u =






−100 ft/s

−0.035 rad/s

−1000 ft/s




 , u =






100 ft/s

0.035 rad/s

1000 ft/s




 . (17)

Hard constraints were put on the optimization variables
as well, specifically

∆r =






−4 ft/s2

−0.01 rad/s2

−1000 ft/s2




 , ∆r =






4 ft/s2

0.01 rad/s2

1000 ft/s2




 . (18)

Constraint softening for the outputs z is accomplished by
introducing an additional slack variable (ε ≥ 0) that allows
some level of constraint violation if no feasible solution
exists

z − ε ≤ ẑ (k + 1 | k) , . . . , ẑ (k + Hp | k) ≤ z + ε (19)

It is beneficial to use an ∞-norm (maximum violation)
penalty on constraint violations (as shown in (13) and (19)),



because it gives an “exact penalty” method if the weight ρ
is large enough. This means that constraint violations will
not occur unless no feasible solution exists to the original
“hard” problem. If a feasible solution exists, the same
solution will be obtained as with the “hard” formulation.

B. Implementation within the OCP

The RHC guidance algorithm was implemented using an
application programming interface developed specifically
for receding horizon control algorithms (RHC API) in
a real-time environment using the OCP. The RHC API
provides an interface to an online mathematical program
solver by formulating a generic optimization problem for re-
ceding horizon applications. Implementation of the control
algorithms is performed using three separate threads. One
of these is used to enable anytime scheduling of the online
optimization solver while satisfying real-time requirements
with the other two hard real-time tasks. The reader is
referred to [5] for further details.

After creating the prediction model and formulating the
RHC problem, the optimization problem was translated
to the formulation used by the RHC API. The optimiza-
tion yielded ∆Ṽcmd,∆˜̇χcmd,∆

˜̇
hcmd values, which were

integrated to get Ṽcmd, ˜̇χcmd,
˜̇
hcmd. The obtained ˜̇

hcmd

value was further integrated to get h̃cmd. Trim values were
added to arrive at Vcmd, χ̇cmd, hcmd values, which could be
directly implemented on the T-33 autopilot.

C. Remarks

The problem formulation used for control design is a
natural extension of a fixed LTI model based RHC. The
prediction at a certain time step is based on a linear model
that best describes the plant at the actual flight condition,
assuming that flight condition dependent linear models are
available for prediction. A fixed LTI model is used over
the entire prediction horizon but it is updated according to
the values of the scheduling parameters % (k) every time the
horizon is propagated and the optimization is resolved based
on new measurement data. This approach leads to a QP
problem where the state matrices Ak, Bk, Ck, Dk describing
the internal model change in each implementation cycle. A
flight condition dependent description of the plant can be
obtained either by freezing the scheduling parameters of a
quasi-LPV model [7], or interpolating over a database of
linearized models. In other cases the nonlinear prediction
model is simple enough to lend itself to “online” lineariza-
tion, while still retaining a reasonable prediction accuracy.
This latter approach was followed in our control solution.

We note if an accurate prediction of the parameters
that the linear models depend on is available, this would
allow for the prediction model to vary over the prediction
horizon. The optimization problem could still be formulated
as a quadratic program using different state matrices of the
internal model at each time step. Obtaining a reasonable
prediction of the scheduling parameters is not always easy,
one could experiment with solving the problem first with
the fixed LTI model based RHC method and use the
solution as the prediction for the scheduling parameters.

Our investigations indicate, that this extra effort doesn’t
lead to significant improvement for the specific application
example and horizon lengths considered. Moreover, even
though the optimization problem complexity is retained,
the additional computational overhead could undermine
real-time implementation of these ideas if the parameter-
dependent models are calculated using interpolation over a
collection of linear systems.

IV. DEMONSTRATION SCENARIOS

The flight tests took place at Edwards Air Force Base in
the Mojave desert in June 2004. A description of the flight
demonstration experiment scenario is provided next. The
timeline of events starts with engaging the RHC controller
in a pre-specified area near the ingress point once the start-
ing conditions are met. The controller tracks a time-stamped
position reference trajectory while respecting constraints on
the vehicle dynamics. At a certain point along the reference
trajectory, a pop-up threat can be invoked by a ground
operator, which results in a switch to an alternative reference
trajectory that avoids the threat. After the target is reached
with a specified heading, a simulated fault was inserted
into the system, which was detected shortly thereafter at
a trajectory segment designed specifically for this purpose.
After detection, the fault was removed and the aircraft
returned to the egress point. A schematic figure of the
experiment plan can be found in [5] and is omitted here for
brevity. Figure 4(a) shows the ground track of the reference
trajectory that had to be tracked eventually.

In a second, more ambitious scenario, the fault is not
removed from the system after detection, and the RHC
controller is reconfigured to adapt to the faulty vehicle
dynamics. Constraints are also adjusted to restrict the air-
craft’s maneuvers. Description of the fault detection filter
design and test results are omitted in this paper and can be
found in [5], along with simulations that show successful
reconfiguration of the RHC controller after a fault.

V. SIMULATION AND EXPERIMENTAL RESULTS

Several universities and aerospace companies were in-
volved in the two-week long flight demonstrations of the
DARPA SEC project, each having their own experimental
flight scenario to be tested. Due to difficulties with asset
scheduling at the base, our team eventually had only two
flight tests that could be evaluated.

The receding horizon guidance controller was tested in
simulation with different wind conditions (up to 60 ft/s)
and showed excellent robustness. Constraint enforcement
was demonstrated by saturating turn rate command, whereas
true airspeed was adjusted according to the various wind
conditions, to achieve the necessary ground speed required
for accurate tracking of the position reference. The main
limitations of good performance at higher wind velocities
were posed by flight envelope constraints.

The top plots in Figures 4(a)-4(b) show simulated track-
ing performance in the north-east coordinate frame and
in terms of altitude under different wind conditions. The
bottom plots in Figures 4(a)-4(b) illustrate the flight test
results. The main reason for deviations from the reference
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Fig. 4. Comparison of simulation and flight test results. The top plots show simulation results under different wind conditions, the
bottom plots represent flight test data.

trajectory and degraded tracking performance during flight
test was that automatic speed control was not available on
the test platform. Airspeed was controlled using manual
adjustments to the throttle by the pilot, who was cued by a
three-state LED indicator whether to increase, decrease or
maintain the velocity of the aircraft based on commanded
and actual speed measurements. The dead-zone of the
“maintain speed” status indicator was approximately 30 ft/s.
Another factor influencing the outcome of experiments was
that flight tests were conducted in the presence of strong
winds (25-30 knots).

Figure 4(c) suggests an average delay of 50-100 seconds
in the velocity command channel, which was not modeled in
the RHC controller. The controller was tested only up to 10-
20 samples (5-10 seconds) of unmodeled additional delay
compared to the prediction model and showed acceptable
degradation of performance.

VI. CONCLUSIONS

The RHC-based guidance system showed amenable ro-
bustness properties inspite of the dramatic difference be-
tween the velocity tracking behavior of the prediction model
and the real system. Performance analysis of flight test
data and simulation results with varying wind conditions
suggest that the RHC guidance law would have excellent
tracking performance using an autonomous speed control
system. Further high-fidelity simulations showed that output
constraints could be also accommodated using soft con-

straint formulation. This, along with the observed successful
reconfiguration experiments, suggests that the proposed
approach provides a high-performance, versatile guidance
technology for future unmanned aircraft systems.
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