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A Probabilistic Model for Creep-
Fatigue Failure 
We outline here a method for incorporating the scatter observed in creep rupture 
times and fatigue cycles-to-failure into a probabilistic model for creep-fatigue failure. 
We do this within the context of the well-known damage fraction summation rule. 
Various numerical methods for calculating the probability of failure for given creep-

fatigue loading cycles are discussed. 

1 Introduction 
Creep-fatigue damage has long been recognized as one of 

the principal damage mechanisms in high-temperature pressure 
vessel and piping systems. Accordingly, it has been the focus 
of extensive study, and a variety of predictive models for creep-
fatigue failure have been developed; e.g., Manson et al. (1971), 
Pohlemus et al. (1972), Majumdar and Maiya (1980), Yama-
guchi and Nishijima (1986), and Gomuc and Bui-Quoc (1986). 
Without exception, these models have been of a deterministic 
nature. However, it is well known that both pure fatigue and 
pure creep failure behavior show marked amounts of scatter in 
the number of cycles-to-failure at a given strain range (Sinclair 
and Dolan, 1953; Schijve, 1994), and in the time-to-failure at 
a given stress level (Garofalo et al., 1961; Farris et al., 1990), 
respectively. Hence, it is reasonable to infer that failure data 
under replicated creep-fatigue loading would show a similar 
degree of scatter, although to the authors' knowledge, there 
exists little, if any, experimental data to support this inference. 

The purpose of the present paper is to indicate how the scatter 
in fatigue and creep failure data may be incorporated into ex­
isting models for creep-fatigue failure prediction to yield the 
probability of failure for a given loading history. We will do 
this in the context of what is perhaps the simplest and most 
widely used of the creep-fatigue failure prediction models, the 
well-known damage fraction summation rule for creep and fa­
tigue damage, which has been incorporated into the Boiler and 
Pressure Vessel Code (Code Case N-47) of The American Soci­
ety of Mechanical Engineers (ASME). However, the methods 
which we will outline here, based upon well-known concepts 
from reliability theory, may be equally well applied to other, 
more complicated, models. 

We begin by briefly describing the creep-fatigue damage frac­
tion summation rule. In its most general form, this model as­
sumes the fatigue damage F to be given by Miner's law, as F 
= 2*=i nj/Ni, where nt is the number of cycles at strain range 
Ae,, and JV, is the number of cycles to failure at this strain 
range. Likewise, for piecewise-constant stress histories, the 
creep damage C is assumed to be given by the time-fraction, 
or Robinson's, rule, in the form C = 2 j = i tj/Tj, where tj is the 
creep time at stress level a,, and 7} is the time-to-failure at this 
stress level. The damage summation rule then postulates the 
existence of a function F = g(C) which defines the creep-
fatigue failure envelope on C, F-axes. Combinations of F and 
C for which F < g(C) would not, according to the damage 
fraction summation rule, be expected to lead to creep-fatigue 
failure, whereas failure would be predicted whenever F > 
g(C). In order that the resulting failure relationship agree with 
Miner's and Robinson's laws in the case of pure fatigue, or 

pure creep, respectively, we have g(0) = 1 and g ( l ) = 0. 
Otherwise, g(C) is to be determined from experimental creep-
fatigue failure data. Figure 1 shows a bilinear form for g(C), 
a form which is often used within the context of the ASME 
Code. 

As we have noted, replicated experimental data for the quanti­
ties A/,- and 7} exhibit considerable amounts of scatter. Hence, 
it seems reasonable to take the point of view that the quantities 
A/,- and 7} are random variables, for which the probability density 
functions (pdf 's) , /w:(n,) and fritj), may be determined from 
experimental data. If this is the case, the prediction of creep-
fatigue failure becomes inherently a probabilistic problem. One 
may then seek to calculate the probability that failure will occur 
after a total creep time / and after a total number of fatigue 
cycles n, where t = 2 j = 1 tj and n = 2f=1 «,-. We will discuss 
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three techniques for accomplishing this, one based upon the 
numerical integration of exact relations from probability theory, 
the second upon the well-known Monte Carlo technique, and 
the third upon the second-order reliability method (SORM). 

2 Numerical Integration 

We first consider the derivation of an exact expression for 
the failure probability. Analytically, it is somewhat simpler to 
deal with the survival probability, which is related quite simply 
to the failure probability by Pr {survival} = Pr {S} = 1 — 
Pr {failure}. The survival probability is equal to the probability 
that the points C, F lie within the region ,A in Fig. 1, or Pr {S} 
= Pr{(C, F) e ,y/}. Let/T i N(t , n) be the joint probability 
density function (jpdf) for T and N, where we use the standard 
notation that upper-case variables denote the random variables 
themselves, whereas lower-case variables denote the variables 
in the jpdf and T = (TltT2, ... ,Tt), etc. Then the probability 
of survival can be computed directly in terms of the underlying 
random variables 7} and A/, by 

Pr{S} = Pr{(C, F) C <A) 

= Pr{0 < C s l , 0 < F s g(C)} 

= Pr{a, < Tt < oo, . . . , a, =s T, < » , 

b\ =s TV, < <», . . . , bk == Nk < °o} 
rtco rtoo i»oo poo 

= • • • •• • /T,N(TI, . . . , r,, 

V\, . . . , vk)dvk . . . dv\dri . . . drt (1) 
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Fig. 1 Bilinear form for creep-fatigue failure function 

where 

a, = ; bt = n, 

1 - X i 
g h1 

=1 r, ; = 1 Vj 

(2) 

In almost all cases, the integral in Eq. (1) must be evaluated 
numerically. 

We now give an example based upon experimental creep and 
fatigue failure data for AISI Type 316 stainless steel, for which 
sufficient data exist to allow the estimation of the required jpdfs. 
For this material, the boundaries of the creep-fatigue failure 
envelope, as given by the ASME Code, have the bilinear form 
shown in Fig. 1, with the value of c being approximately 0.3. 

In order to calculate the survival probability, we need first 
to specify the jpdfs for the failure times at the desired stress 
levels and for the number of cycles to failure at the desired 
strain ranges. Figure 2 shows three sets of replicated uniaxial 
stress creep rupture data at 1100°F (593°C) at three different 
stress levels for AISI Type 316 stainless steel, taken from the 
work of Garofalo et al. (1961). At each stress level, the data 
are scattered by approximately a factor of 2. When plotted on 
log-normal probability paper, the data sets can be seen to fall 
roughly along straight lines, indicating that the scatter in the 
rupture times at a given stress level can be reasonably well-
represented by a log-normal distribution. Hence, we will assume 
that the jpdf for the creep failure times at differing stress levels 
is jointly log-normally distributed. 

It is analytically more convenient to work with the simpler 
joint normal distribution, so we define new random variables 
by Uj = In Tj, where the 7} are the random failure times at the 
y'th stress level. Then, the Uj will be jointly normally distributed, 
with jpdf 

fV(U,, . . . , « ; ) 
1 

(27r) i / 2det(G) 
expt-k'fc-'p] O) 

where p r = (u, - fj,lt . . . , ut — /j,t), JJ,J is the expected value 
of Uj, the matrix G is the variance-covariance matrix for the 
Uj, and det (G) denotes the determinant of G. Both //, and G 
may be estimated from the statistics of the logarithms of the 
failure times. 

Fatigue failure data often seem likewise to be log-normally 
distributed (Schijve, 1994), although there do not, to our knowl­
edge, exist enough replicated data for Type 316 stainless steel 
to support the assumption of log-normality for this particular 
material. It seems reasonable, however, to make this assump­
tion. Hence, if we define V, = In Nt, where the TV, are the 
random cycles-to-failure at the ith strain range, then we will 
assume the jpdf for the V, to have the form 

/ vO i , Vk) 
1 

(27rr 2 det (H) 
e x p t - i q T T ' q ] (4) 

where the quantities in Eq. (4) are defined analogously to those 
inEq. (3). 

The estimation of the statistical parameters required by Eq. 
(4) is somewhat problematic, given the apparent sparsity of 
replicated fatigue failure data for Type 316 stainless steel. We 
have very roughly estimated the required parameters from a 
nonarchival data set consisting of two cycles-to-failure values, 
taken at 1100°F (593°C), at each of three strain ranges, Ae = 
0.35, 0.40, and 0.60 percent. The corresponding values for the 
mean and standard deviations of the logarithms of the cycles-
to-failure are (14.84, 0.47), (12.85, 0.24), and (9.41, 0.48). 
The two data points at each strain range do not suffice to allow 
a determination of the correlation coefficients for the data sets, 
and here we have assumed values of the correlation coefficient 
of 0.75 between the data sets at 0.35, 0.40 and 0.40, 0.60 per­
cent, and a value of 0.50 between the data sets at 0.35, 0.60 
percent. 

Finally, we will assume that U,- and V; are independent ran­
dom vectors. This implies that the jpdf for the failure times and 
the cycles-to-failure has the form 

/u,v(«i . • « l . V\, • • • , « * ) 

= / u ( « i , u,)fv(vi, . . . , vk) (5) 

We subsequently shall have more to say about the validity of 
this assumption. At the moment, we will simply note that it 
considerably simplifies the ensuing calculations. 

The jpdf / u v is related to / T N by the change-of-variables 
theorem (Elishakoff, 1983), which states that 

/ T , N ( * I . • . •, t,, n u . . . , nk) 

= \J\fvy(uu ,uhvu...,vk) (6) 
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A o = 34.7 ksi (239 MPa) 
• o = 31.6 ksi (218 MPa) 
• o = 28.8 ksi (199 MPa) 

ln(Tf) 

Fig. 2 Creep rupture data plotted on log-normal paper 
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where || denotes the absolute value, and J is the Jacobian deter­
minant associated with the change in variables, i.e., 

dUi 

dT, 

dNk 

dNk 

1 

T, . . . T,N, ... Nk 
(7) 

Hence, from Eqs. (1) , ( 5 ) - ( 7 ) , we have 

Pr{5} = j ... J/B(lnT,, . . . , lnT,) 

X/V(ln ( / , , ••• . In vk) 
dvk dv^dTi... dT\ 

(8) 
Ti . . . TtVx . . . Vk 

We now consider a simple creep-fatigue loading history con­
sisting of periods of constant stress creep at a = 28.9 ksi (199 
MPa) and of pure fatigue cycling at a strain range of Ae = 
0.30 percent. Let X = 1/7/ and Y = l/N. In this case, Eqs. 
(3) - (4) and (8) lead to the following expression for the proba­
bility of survival after a total creep time t at stress level a and 
a total of n cycles at a strain range Ae as: 

flclt p(l/n){\-atx) 

fx.r(x,y)dydx 
Jo Jo 

(•1/1 rt\/an)(\-tx) 

PrfS) 

/ •1/I 7»(1 

Jell Jo 
fx,r(x,y)dydx (9) 

where 

fx.y(x,y) = 

X exp (10) 

and a = (1 - c)/c. Here \xa and /xe are, respectively, the mean 
values of the logarithms of the failure times and the cycles-to-
failure at the indicated stress and strain range levels, while rja 

and 7?e are the corresponding standard deviations of the logarith­
mic values. 

The integrals in Eq. (9) were evaluated using standard numer­
ical integration techniques. The results are shown in Fig. 3, 

Fig. 3 
range 

Failure surface for one creep period and cycling at one strain 

plotted in terms of failure probability as a function of creep 
time t and number of fatigue cycles n. Not unexpectedly, the 
combined effects of creep and fatigue act to substantially in­
crease the failure probability in comparison to the cases of pure 
creep or pure fatigue. 

3 Monte Carlo Simulation 
A rapid and simple alternative to the numerical evaluation of 

the failure probability is the well-known Monte Carlo technique, 
which we will briefly describe in the context of the present 
problem. This method has the attractive feature that it com­
pletely avoids numerical evaluation of integrals of the sort de­
scribed in the previous section, but instead works directly with 
the basic equation defining the creep-fatigue failure envelope 

V Hi v 1L 
T 

(11) 

In a single Monte Carlo simulation, one generates a total of 
k random cycles-to-failure Nt and / random failure times 7}, 
using a random number generator. Then, for given values of n, 
and tj, failure occurs whenever 

Y Hi. > Y -L 
T 

(12) 

This process is repeated a large number of times, with the 
probability of failure being estimated as the number of instances 
of failure divided by the total number of simulations. 

As an example, we consider a situation with three creep hold 
periods, and three periods of fatigue cycling. For the creep 
periods, 50 percent of the total creep time t was assumed to be 
spent at a stress level of o\ = 28.9 ksi (199 MPa), 30 percent 
at a2 = 31.6 ksi (218 MPa), and the remaining 20 percent at 
<r3 = 34.7 ksi (239 MPa). Likewise, 60 percent of the total 
number of cycles n were assumed to be spent at a strain range 
of Ae, = 0.35 percent, with 20 percent at Ae2 = 0.40 percent 
and 20 percent at Ae3 = 0.60 percent. 

Each Monte Carlo simulation requires two triplets of random 
numbers, (7 \ , T2, T3) and (Nu N2, N2). These were obtained 
by using a normal (Gaussian) random number generator to 
generate triplets (Xu X2, X3) of independent, normally distrib­
uted random numbers with zero mean and unit variance. To 
obtain from these, for example, three random failure times (T\, 
T2, 7"3) which are jointly log-normally distributed, we take, as 
before, pT = (Ux - fi,, U2 - n2, U3 - JJ,}), where U-, = In 
(Ti) and fj,t is the expected, or mean value of In (T,•). Now 
introduce the change of variables p = ZY, where Y r = (Yi, 
Y2, 73), and Z is the matrix whose columns are the eigenvectors 
of G. Then we may write the quadratic form appearing in Eq. 
(3) as 

P rG - ' i + —= + — 
a2 a3 

(13) 

where (a i , a2, a3) are the eigenvalues of the variance-covari-
ance matrix G. Hence, (Yu Y2, Y3) are normally distributed, 
independent random numbers with zero mean and variance 
(l/au \/a2, l / a 3 ) , and we may write (Yu Y2, Y3) = 
(Xxl{ai, X2Ha2, X3 /va3). A similar procedure yields the three 
random cycles-to-failure (Nlt N2, N3). 

The results are shown in Fig. 4, where, again, we plot the 
probability of failure versus total creep time t and total number 
of cycles n. Each point on the plot was the result of 5000 
Monte Carlo trials. Figure 4 is qualitatively similar to Fig. 3. 
Quantitatively, the probability of failure at a given time and/or 
number of cycles has been increased from that shown in Fig. 
3, due to the presence of creep hold times at higher stress levels 
and fatigue cycling at higher strain ranges. 
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Fig. 4 Failure surface for creep at three stress levels and fatigue, at 
three strain ranges 

4 Second-Order Reliability Method 

Here we briefly outline the second-order reliability method 
(SORM) and describe how it is applied to the problem at hand. 
SORM is an approximate technique for the solution of reliability 
problems which has found wide use in various applications. 
As we shall discuss later, the approximation improves as the 
probability of failure decreases. A good general description of 
the technique is given by Madsen et al. (1986). 

In general, the first step is to express the failure function F 
= g(C) in terms of standard independent normal variables Xlt 

. . . , Xk+I. From the analysis in the previous sections, we may 
write, for example, 

. . . GuXi G12X2 G]iXj 
l n ( r , ) = — 1 + —*— + . . . + - 7 — + //, (14) 

where ^ - £(ln Tt), and E( ) denotes the expected value. 
The failure function thus becomes 

I n,e-^ f l e-H^i'm = # ( l ^ " ^ n r V / f f j (15) 
i=l j = l \ i = l )=\ ' 

where /j,,+j = E(ln Nj) and the quantities yt are the eigenvalues 
of the matrix H. One then seeks the failure point X *, which 
is defined as the point on the failure surface in the space of the 
variables Xt, defined by Eq. (15), which has minimum distance 

p = 12 X f2 to the origin. The region about this point may 

be expected to make the largest contribution to the integral for 
the failure probability. This point may be determined using 
standard constrained minimization techniques, e.g., Schittkow-
ski (1986), the constraint being that the point lies on the failure 
surface. However, in the present case, it was found to be simpler 
to utilize (15) to numerically determine the value of one of the 
variables in terms of the values of the remaining k + j — 
1 variables, thus resulting in an unconstrained minimization 
problem. 

Let the failure surface given by (15) be denoted by h {X,) = 
0, defined so that the region h(Xt) > 0 corresponds to the safe 
region. Further, let Xf= /3bt, so that b is a unit vector from 
the origin to the failure point. The failure surface in the neigh­
borhood of the failure point is then approximated by a parabolic 
surface obtained by Taylor series expansion about the failure 
point. To accomplish this, we construct the (k + I) X (k + I) 

orthonormal matrix H whose last column is the vector b , and 
introduce the change of coordinates 

X, = H„Y, + /3b, (16) 

where the summation convention for repeated subscripts is im­
plied. With this transformation, the origin of the K-coordinate 
system lies at the failure point, with the Y„ coordinate normal 
to the failure surface. Then, the equation for the failure surface 
becomes 

hWM + 0b,) = 0 (17) 

which implicitly defines Y„ = f(Yu Y2, . . . , y„_i). Because Y„ 
is normal to the failure surface, Yu Y2, . . . , Yn-\ must lie in 
the tangent plane. This implies that, at the failure point 

8Y. 

dYt 

BY* 
dY2 

dYn = 0 (18) 

Hence, by Taylor series expansion in the neighborhood of the 
failure point 

y„ =/(*- , , y2, 
"-'> 2dY,8Yj 'J (19) 

for i, j = 1, ..., k + I - 1. Again, the summation convention 
is implied, and the second derivative in Eq. (19) is evaluated 
at the point Yt - ... Yk+,^, = 0. From Eq. (17), we have that 
d2hldY, dYj = 0,i,j=l,...,k + l~l, and this, in conjunction 
with Eqs. (16) and (18), leads to 

F = 
1 mn 

d2f 
dY,„dYn giHin 

(20) 

where the range of summation over the indices i and j is 1 -> 
k + I, but m, n = 1, . . . , k + I - 1. Here g, = (dhldXt)]^, 
and D is the matrix whose entries are the second-order partial 
derivatives evaluated at the failure point, i.e., 

A, = 
d2h 

dXidXj 

Truncating Eq. (19) at the first term, we have 

Y„~liFvYtYj 

(21) 

(22) 

The principal curvatures K,, i = 1, 2, . . . , k + I - 1 of the 
parabolic approximation to the failure surface given by Eq. (22) 
are simply the eigenvalues of F . With this approximation, it 
becomes possible to derive asymptotic estimates for the proba­
bility integral (Tvedt, 1983; Breitung, 1984), or to rewrite the 
probability integral in a form suitable for efficient numerical 
evaluation (Tvedt, 1988). Then, a three-term approximation to 
the failure probability is (Tvedt, 1983; Breitung, 1984) 

where 

Pr{ failure} = A, + A2 + A3 

k+l-l 

A, = *(-£) n (i + p«iY 

(23) 

(24) 

A 2 = [ / ? * ( - / 3 ) - 0 ( / J ) ] 
* + / - 1 k+l- 1 

x { n (i + p«i)'m - n (i + (P + UK,-)-"2} 
j=i y=i 

k+l-l 

Ai = (p+ l)[/3*(-/3) - <£(/?)]{ II (1 + 0Ki)~m 

J=I 
k+l-\ 

- R e [ I ! (1 + (P + i)K,yV2}} (25) 
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and <E>( ) is the standard normal cumulative distribution func­
tion, and 4>( ) the corresponding standard normal density func­
tion. 

Alternatively, an exact integral formulation for the failure 
probability computed from the parabolic approximating surface 
has been given by Tvedt (1988). This is 

Pr{failure} = <£(/?) Rej i - j e*Mdu\ (26) 

where 
k+l-l 

<K") = j(w + /3)2 - In («) - \ X In (1 - Kju) (27) 

In order to place this in a form suitable for efficient numerical 
evaluation, the contour of integration is shifted to the left of 
the origin to the saddle point denned by IA'(K,) = 0 where 
( ) ' indicates differentiation with respect to u. Then, with the 
change of variables « = «., + ibv, where b = ^2l\p"(us), Eq. 
(26) becomes 

Pr{failure} = &<£(/?) J - J e**w cos (lm(^))dv (28) 

In this form, the integral is especially suited to trapezoidal rule 
evaluation. 

Figure 5 shows some results for the case considered in Fig. 
3, with the probability of failure according to the SORM approx­
imation computed along the intersection of the surface shown 
in Fig. 3 with the plane n = 2500*. Also shown are results 
obtained from numerical integration and Monte Carlo simula­
tion. The Monte Carlo simulations show the 99 percent confi­
dence bounds corresponding to each value of /, constructed by 
carrying out 100 separate simulations of 106 trials each. Al­
though the Monte Carlo bounds are quite tight for higher proba­
bilities of failure, they become increasingly wide with decreas­
ing probability of failure, with the lower bound tending to zero 
for sufficiently small values of t. The results from numerical 
integration diverge from the SORM and Monte Carlo results 
for small values of t. Because SORM is known to be asymptoti­
cally exact for small failure probabilities, this is likely an indica­
tion of increasing error in the numerical integration as the proba­
bility of failure decreases. Figure 6 shows similar results for 
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; /n /' -L / / 
n= 25001 
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/ i / / 
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i 

i 

integration 
• Monte Carlo 

mean 

/ i 
/ 1 

/ i / / 
i 

i 
i 

i i i 

75 100 125 150 175 

t(hrs) 

200 

Fig. 5 Results from exact integration, Monte Carlo, and SORM for one 
creep stress level, one fatigue strain range 

the case considered in Fig. 4, computed along the intersection 
of the surface with the plane n = 50*. Here, the Monte Carlo 
simulations predicts zero failure probability for sufficiently 
small values of t. In most cases considered, the SORM failure 
probabilities computed from Eq. (28) were found to differ by 
less than 1 percent from those computed by the asymptotic 
approximation given by Eqs. ( 2 3 ) - ( 2 4 ) . 

5 Discussion 

In the foregoing, we have demonstrated how the very marked 
scatter present in creep rupture times-to-failure and in fatigue 
cycles-to-failure may be taken into account in constructing 
probabilistic models of creep-fatigue failure. Because it is the 
simplest and most widely used, although not necessarily the 
best, of the available creep-fatigue failure models, we have 
chosen to do this in the context of the damage fraction summa­
tion model incorporated into the ASME Code. We have pre­
sented three methods for determining the probability of survival 
under creep-fatigue conditions, one based upon numerical inte­
gration of the probability integral, another upon Monte Carlo 
simulation, and the third upon the second-order reliability 
method (SORM). 

The accuracy of the formulation based upon the exact proba­
bility integral is limited only by the accuracy of the numerical 
techniques used to evaluate the multiple integrals involved in 
the expression for the failure probability. However, the compu­
tational effort required for the numerical evaluation of these 
integrals rises rapidly with the number of random variables, and 
becomes prohibitive if more than four or so integrations are 
required. In the present case, it was found not to be possible to 
compute in a reasonable time the sixfold probability integral 
for the examples shown in Figs. 4 and 6. Thus, this technique 
is usable only with a relatively small number of creep hold 
times at different stress levels and/or fatigue periods at different 
strain ranges. In addition, the results appear to become less 
accurate as the failure probabilities become smaller. 

In contrast, Monte Carlo techniques allow quite rapid esti­
mates of the failure probability to be made for any number of 
creep/fatigue cycles within the range of practical interest. The 
accuracy of the estimation, of course, improves with the number 
of Monte Carlo trials. However, Monte Carlo techniques have 
the marked disadvantage that the estimates for small values of 
the failure probability are known to be poor, and may require a 
prohibitively large number of trials in order to obtain acceptable 
accuracy. In general, formal statistical tests, such as the confi­
dence bounds we have used here, are required to assess accu­
racy. Nevertheless, a commonly applied rule-of-thumb is that, 
to obtain acceptable accuracies for failure probabilities on the 
order of 10~", 10"+2 Monte Carlo trials are necessary. This is 
a particular disadvantage in the present case, because, for well-
designed pressure vessel and piping systems, the failure proba­
bility may expected to be quite low. 

Of the three techniques we have outlined here, the second-
order reliability method (SORM) appears for several reasons 
to be best suited to the solution of the probabilistic creep-rupture 
problem. It is capable of handling with reasonable computa­
tional effort realistic numbers of creep hold times at varying 
stress levels and/or fatigue cycle periods at varying strain 
ranges. Furthermore, in contrast to Monte Carlo simulation, it 
yields quite good estimates of the failure probability when the 
failure probability is small. In fact, it is known (Breitung, 1984) 
to yield asymptotically exact results in the limit as the failure 
probability becomes small. Because the failure probability is 
typically small in most applications, this is the regime of engi­
neering interest. 

A drawback in the present case is the lack of a nonsmooth 
failure surface (Fig. 1). If the SORM failure point should hap­
pen to lie at the intersection of the two linear portions of the 
surface, then SORM is inapplicable, because it requires the 
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Fig. 6 Monte Carlo and SORM results for three creep stress levels and 
three fatigue strain ranges 

existence of continuous second derivatives at this point. How­
ever, the bilinear failure surface merely represents a convenient 
fit to the experimental creep-fatigue failure data, and this prob­
lem could be avoided by refitting the data with a sufficiently 
smooth function. 

Figure 5 shows a comparison of results obtained by the 
three methods outlined here for the case treated in Fig. 3, with 
creep at a single stress level interspersed with periods of fa­
tigue cycling at a single strain range. It can be seen that for 
failure probabilities down to about 10~5, the predictions of 
the three methods agree quite well. For probabilities below 
this value, the results from the numerical integration fall below 
the predictions of the other two methods, probably due to 
increasing numerical error. Additionally, the confidence 
bounds on the Monte Carlo simulations begin to widen mark­
edly, with the lower bound eventually falling to zero. This 
illustrates the tendency of the Monte Carlo method to perform 
poorly at low failure probabilities. Figure 6 shows similar 
results for the case treated in Fig. 4, with creep at three differ­
ent stress levels and fatigue cycling at three different strain 
ranges. In this latter case, it was found to be computationally 
infeasible to numerically compute the sixfold multiple integral 
expression for the failure probability, and only Monte Carlo 
and SORM results are shown. Here the SORM results agree 
quite well with the Monte Carlo mean values for failure proba­
bilities down to 10"6 — 10~7, although the confidence bounds 
at these levels become quite wide. For failure probabilities 
less than about 10"7, however, the Monte Carlo method with 
10s trials predicts zero probability of failure. Increasingly large 
numbers of trials would be required to obtain accurate results 
at these low probability levels. 

In the foregoing, we have assumed that the stress and strain 
range histories are piecewise constant, and have not attempted 
to treat the more considerably more complicated case of contin­
uously varying stress and/or strain range histories. We will, 
however, sketch out the primary considerations here. For defi-
niteness, suppose that the stress history is continuously time-
varying, given by a(t). Then the time-fraction rule for creep 
damage generalizes to 

Jo 

dr 

T(a(r)) 
(29) 

where T(a) denotes the random failure time at stress level a. 
Thus, T becomes a stochastic process, indexed by the stress 

level a. One may reasonably assume that the process is station­
ary. In order to completely specify the process, the autocorrela­
tion function for the process must be known, which must be 
estimated from experimental data. In general, when stochastic 
processes are involved, estimations of failure probabilities are 
much more difficult to obtain, and techniques for doing so are 
not as well developed as for the case we have considered 
here. The SORM technique, for example, is applicable only 
in certain limited circumstances, and Monte Carlo simulation 
becomes much more complicated. 

Although we have chosen to present the probabilistic failure 
prediction techniques outlined here in the context of the simple 
damage fraction summation rule, they are equally applicable 
to more sophisticated, and presumably more accurate, creep-
fatigue failure prediction models, such as those cited in the 
References. The damage fraction summation model is well 
known to lead to systematically inaccurate failure predictions 
in certain circumstances, and more complicated models are 
capable of doing better in this regard. However, the scatter in 
the experimental data is no less for more complicated models 
than for simpler models, and this scatter, if not taken into 
account, is quite capable of overwhelming any increase in 
predictive ability associated with more sophisticated creep-
fatigue failure models. 

Perhaps the primary difficulty encountered in trying to make 
the sort of probabilistic creep-rupture calculations outlined here 
is not the calculations themselves, but the paucity of experimen­
tal data upon which to base the calculations. Replicated sets of 
creep rupture and fatigue failure data are not plentiful, and 
replicated creep-fatigue data seem to be almost nonexistent. 
Obviously, any predictions of the probability of creep-fatigue 
failure are strongly dependent upon the form of the distributions 
assumed, and these can be determined only from experimental 
data. In particular, in the absence of experimental data, we 
have assumed that the random failure times in creep Tt are 
independent of the random number of cycles-to-failure in fa­
tigue Ni. However, metallurgical evidence indicates that, at 
elevated temperatures, low-cycle fatigue and creep damage 
mechanisms are often quite similar, e.g., intergranular cavita­
tion. Hence, the assumption of independence is quite question­
able. Unfortunately, to our knowledge, the experimental data 
which might link creep and fatigue failure statistically are not 
available at the present time. 
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