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Abstract

Demand-Adaptive Systems (DAS) display features of both traditional fixed-line bus services
and purely on-demand systems such as dial-a-ride, that is they offer demand-responsive
services within the framework of traditional scheduled bus transportation. A DAS bus
line serves, on one hand, a given set of compulsory stops according to a predefined schedule
specifying the time windows associated with each, providing the traditional use of the transit
line, without requiring any reservation. On the other hand, passengers may also issue requests
for transportation between two desired, optional, stops, which induces detours in the vehicle
routes. The design of a DAS line is a complex planning operation that requires to determine
not only its design in terms of selecting the compulsory stops, but also its master schedule
in terms of the time windows associated with the compulsory stops. Designing a DAS thus
combines elements of strategic and tactical planning. In this paper we focus on determining a
master-schedule for a single DAS line. We propose a mathematical description and a solution
framework based on the estimation of a number of statistical parameters of the demand and
the DAS line service. Results of numerical experiments are also given and analyzed.

Keywords: Public transit, demand-responsive systems, demand-adaptive systems, schedul-
ing



1 Introduction

Traditional transit services are particularly suited to handle situations where the demand
for transportation is strong, i.e., when there is a consistently high demand over the territory
and for the time period considered. The high degree of resource sharing by a large number
of passengers makes it then possible to provide efficiently and economically high quality, i.e.,
frequent, services operating generally high-capacity vehicles over fixed routes and schedules.
Routes and schedules may and do vary during the day, but, in almost all cases, they are
not dynamically adjusted to the fluctuations of demand. In contrast, when the demand for
transportation is weak, e.g., during out of rush-hour periods or in low-population density
zones, operating a good-quality traditional transit system is very costly. In particular the
fixed structure of traditional transit services cannot economically and adequately respond
to significant variations in demand.

Demand-responsive systems are a family of mass transportation services which, as their
name suggests, are responsive to the actual demand for transportation in a specific time
period. Such services evolve toward a personalization of mass services: itineraries, schedules,
and stop locations are variable and determined according to the needs for transportation as
they change in time. Demand-responsive systems were introduced under the name of Dial-
a-Ride (DAR) as door-to-door services for users with particular needs or reduced mobility,
such as handicapped and elderly people (Ioachim et al. 1995 [10], Toth et al. 1996 [14])
The flexibility of DAR systems to respond to varying individual requests for transportation
provides the means to offer more personalized services, while still maintaining a certain
degree of resource sharing. This has lead certain transportation or city authorities to extend
DAR services to more general transportation settings.

DAR systems display, however, a number of drawbacks, some of which follow from the
extreme flexibility inherent in the system definition. Thus, for example, because the supply
of transportation service changes according to needs expressed for particular time periods,
neither the transit operator nor the users may predict the vehicle itineraries, stop locations,
and associated schedules. As a consequence, users are obliged to book the service well in
advance of the actual desired time of utilization and the actual pick up time is very much
left to the discretion of the operator. For similar reasons, it is extremely difficult to integrate
DAR and other traditional transit services.

A new type of demand-responsive systems, denoted Demand-Adaptive System (DAS ) has
been introduced to address some of these issues (Malucelli et al. 1999 [12], Quadrifoglio et
al. 2007 [13]). DASs are transit services displaying features of both traditional fixed-line bus
service and purely on-demand systems such as DAR. In other words, a DAS attempts to offer
demand-responsive services within the framework of traditional scheduled bus transporta-
tion. The relevance of this kind of hybrid services in general public transit is also underlined
in [8] (Hickman et al. 2000) and in [9] (Horn 2002).

A DAS bus line serves, on one hand, a given a set of compulsory stops according to a
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predefined schedule specifying the time windows associated with each, providing the tradi-
tional use of the transit line, without in-advance reservations. On the other hand, similarly to
DAR services, passengers may issue requests for transportation between two desired, optional
stops (not necessarily on the same line), which induces detours in the vehicle routes.

Similarly to most transportation systems dedicated to serve several demands with the
same vehicle, traditional transit systems involve a complex planning system made up of
many interrelated decisions. Schematically, the design of the system in terms of line routes
is determined during the so-called strategic planning phase, timetables and vehicle schedules
and routes are part of the tactical planning phase, and crew schedules are built during
operational planning (Ceder et al. 1997 [2]). Comparatively, purely on-demand services
such as DAR, need little strategic design, mainly to define service areas and the composition
of the fleet (e.g., number and type of vehicles). The most important planning process for
DAR is at the operational level when routes and schedules are determined little time before
actual operations and are possibly dynamically modified one service has begun.

DAS services combining characteristics of traditional and on-demand systems require
both a system-design phase and an operational, time and user request-dependent adjustment
of vehicles routes and schedules. The latter has been addressed in [11] (Malucelli et al. 2001)
and in [6] (Crainic et al. 2005). The former forms the topic of this paper. It is, in a certain
sense, a more complex planning operation than for traditional transit because it requires
not only to determine the design of the line as the selection of the compulsory and optional
stops, but also the determination of the time windows associated with the compulsory stops.
Designing a DAS thus combines elements of strategic and tactical planning. To emphasize
this characteristics, we identify the process as the master-route network and the master-
schedule, respectively.

In this paper we focus on determining a master-schedule for a single DAS line. We
propose a mathematical description and a solution framework based on the estimation of
a number of statistical parameters of the demand and the DAS line service. A sampling
approach is used for the estimations.

The remaining part of the paper is organized as follows. We give a brief description
of DAS services in Section 2, while commonalities and differences among scheduling DAS,
DAR, and traditional transit services are discussed in Section 3. Section 4 is dedicated to
the description of the DAS line master-scheduling problem and the solution framework we
propose. We discuss the effectiveness of the method and report computational results in
Section 5. We conclude in Section 6.

2



2 Demand Adaptive Systems

Demand adaptive systems were first introduced in [12] (Malucelli et al. 1999) and then
treated in a more general context in [6] ( Crainic et al. 2005) (see also Crainic et al. 2000,
2001 [4, 5] and Malucelli et al. 2001 [11]). A similar type of service is also described in [13]
(Quadrifoglio et al. 2007).

A DAS targets low-density/volume demand areas and attempts to conjugate the advan-
tages of traditional transit transportation services and the flexibility of on-demand person-
alized services. It is based on the observation that even in such areas there are locations
where a relatively important part of the overall demand may be consistently found: railway
and underground stations, shopping centers, hospitals, etc. This leads to the possibility to
economically design a backbone transit service covering these most attractive stops, while al-
lowing vehicles to detour as needed to pick up and drop off passengers at the other stops. The
latter capability, combined to an on-request booking system, increases customer satisfaction
and the dimension of the potential user group.

In its most general form, a DAS is made up of several lines and is connected to the
lines of the traditional transit system. Several vehicles operate on each DAS line providing
service among a sequence of compulsory stops. Each compulsory stop is served within a
predefined time window. The collection of time windows corresponding to the compulsory
stops, including the start and end of the line, makes up the master schedule of the DAS line.
This makes up the traditional part of a DAS. Additional service and flexibility is provided
by allowing customers to request service from and to optional stops, that is, stops which are
served only if a request is issued and it is accepted. We identify users who request service at
an optional stop as active, while users moving only between compulsory stops are identified
as passive.

Figure 1: A Basic DAS Line Serving the Compulsory Stops

To serve optional stops, the vehicle must generally deviate from the shortest path joining
two successive compulsory stops. The set of optional stops that it is possible to visit between
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Figure 2: The DAS Line Serving Optional Stops

two consecutive compulsory stops is part of the design of the DAS line and is denoted segment.
An optional stop cannot belong to more than one segment. Figure 1 depicts the basic DAS
service of the compulsory stops, while Figure 2 illustrates the same DAS line when user
requests for optional stops are present.

Transfers between DAS lines and between these and regular transit lines take place at
compulsory stops. Time windows play an important role in this context because they estab-
lish time relations among different DAS and traditional lines which share the same compul-
sory stops. The time windows in the master schedule also influence the flexibility the service
may provide for user requests at optional stops. The wider they are, the more flexibility
there is. Yet, it is not possible to increase their width arbitrarily, because the service would
slow down excessively, loosing attractiveness. Notice finally, that the time windows and the
segment specification provide an a priori guarantee relative to the longest time users might
have to spend traveling on the line. In any case, the detours associated with optional stops
must be consistent with the time windows at compulsory stops.

A DAS service is currently operated in Los Angeles County (Quadrifoglio et al. 2007
[13]) as a nighttime service. The system is called by the authors MAST and slightly differs
from DAS because, instead of considering a set of optional stops, it defines a service area and
allows service among any point in such an area. This is possible because the road network
is very regular and the line covers a quasi rectangular area with a single vehicle traveling
back and forth within this rectangular. The service could be assimilated to a circular DAS
line with 5 segments. Another implementation of a DAS service is the one we are currently
studying in the city of Brescia, in northern Italy. The line links some of the suburbs, mainly
mountainous regions, to the center of the city. The DAS line which we are planning consists
of 6 segments and a total of 53 optional stops. At the moment we are studying several
possible designs and we are simulating the operations. A discussion on such a topic goes
beyond the purpose of this paper and it is the subject of an ongoing work.
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3 Scheduling Issues in DAS, DAR and Traditional Tran-

sit Systems

Scheduling is a fundamental planning activity for any transportation system, in particular for
DASs, DAR and traditional transit systems. The nature of the scheduling process changes
significantly, however, according to the type of service at hand.

In traditional transit systems, a schedule indicates the passing times at each stop of each
line. Vehicles are supposed to follow these times as strictly as possible, since users of the
system base their trip plans on the published schedules. Scheduling problems in traditional
transit system belong to the so-called tactical planning level, the line definitions and the
service frequencies being usually assumed known. Once the schedule has been established,
it remains unchanged for medium-term periods, such as six months or one year. For a more
in-depth discussion of scheduling issues in traditional transit systems, the interested readers
are referred to [2] (Ceder et al. 1997).

The situation is different for DAR systems. Schedules are still indicating vehicle itineraries,
stops, and passing times, but these are particular to each vehicle tour according to the actual
requests for transportation accepted for the corresponding time period. This corresponds
to an operational planning level activity that decides on all schedule components (i.e., line
itinerary, stops, and passing times), which are valid only for the duration of the specific
service. See [3] (Cordeau et al. 2003) for a review of the topic.

The case of DASs is more complex. Because DAS aims to provide demand-responsive
services within the framework of traditional scheduled transit transportation, its scheduling
combines the two planning processes briefly sketched above. Two schedules are thus built.
A master schedule defines the partial line (vehicle) itineraries, the sequence of compulsory
stops, and time windows at these stops. This schedule plays the same role for the transit
authority and the passive users of the system as the schedule in traditional transit sys-
tems. At operation time, the actual schedule is built to incorporate the additional, optional
stops corresponding to the accepted active-user requests, while respecting the time windows
constraints imposed by the master schedule. The problem of finding a DAS schedule at
operational level was addressed in [11] (Malucelli et al. 2001), and in [6] (Crainic et al.
2005).

Building the master schedule is a tactical planning level activity, where actual service
times at compulsory stops are modified according to the season. It is also an important
component of the strategic planning process, as the definition of the segments making up
the line requires the specification of time windows at compulsory stops. The next section is
dedicated to these issues for a single DAS line.
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4 The DAS Line Master Scheduling Problem

This section is dedicated to the issue of determining the master schedule of a single DAS line,
that is, determining the time windows for the compulsory stops of the line. This so-called
DAS Line Master Scheduling Problem (DLMSP) may be viewed as the last stage of the DAS
line design problem which is addressed in more depth in [7] (Errico 2008).

The single-line DAS design problem assumes that the territory to be covered by the
DAS line has been determined, the travel times between any pair of potential stops in
the territory (these include transfer points to other lines or transportation systems) have
been accurately estimated, and that a measure of the transportation demand among the
potential stops is available. For a given time horizon where demand is assumed stable (e.g.,
morning rush hour), the DAS line design problem is made up of several interrelated decisions
regarding the selection of compulsory stops among all the potential stops in the territory,
their sequencing, the partitioning of the optional stops into segments, and the determination
of the master schedule, that is the definition of the time windows vehicles will have to respect
at compulsory stops. The first three components make up the so-called topological-design
phase of the problem and a number of methodological approaches are proposed in [7] (Errico
2008) to address various problem settings, e.g., objectives to be satisfied (vehicle cost, travel
time experienced by users, a combination thereof, etc. - we use a combination), whether all
potential stops should be reachable by the designed line, and so on. The last component of
the design process constitutes the object of this paper.

A formal model for DLMSP is presented in Section 4.1. In Section 4.2 we focus on the
Single Segment Master Scheduling Problem, a core subproblem in addressing the DLMSP.
Section 4.3 presents the complete solution approach we propose for the DLMSP.

4.1 Problem description and modeling

The problem of building the DAS line master schedule, that is, to fix the time windows at
all compulsory stops of the line, assumes two inputs. The first consists in the topological
design of the line: the ordered set of compulsory stops and the associated set of optional
stops partitioned into segments. The demand for transportation between the stops of the
line makes up the second input.

The choice of time windows must be performed taking into account several conflicting
goals. First, the master schedule should provide sufficient time between compulsory stops
such that, during actual operations, vehicles may serve all requests for service at optional
stops. Second, for economical reasons, the total maximum time of the line should be as short
as possible. Finally, quality of service criteria also induce conflicting actions: while users
already on the bus prefer narrow time windows, to avoid long delays at compulsory stops,
and short travel times between consecutive compulsory stops, to avoid being on the bus for
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long, users at optional stops prefer longer travel times that allow vehicles to detour by their
stop.

To illustrate the incompatibility of these goals, consider that simultaneously enforcing
small time windows and high probability of being able to serve all potential requests implies
a rather long travel time for each segment compared to the corresponding shortest path.
But, since the actual number of requests is usually small compared to the total potential
number, such a strategy would result in vehicles arriving at compulsory stops well before the
earliest departure time, significant dead times at compulsory stops for users, and long ride
times for the line. To avoid this, time windows have to be smaller, resulting in a smaller
probability of being able to serve the whole set of issued requests. This is indeed general
DAS operational policy (Malucelli et al. 1999 [12] and Crainic et al. 2005 [6]), requests that
cannot be accommodated being either lost, served by a later vehicle or by taxi, according to
the policy of the transit company.

We thus assume a maximum width for time windows at compulsory stops and aim to
select the time displacement among them which minimize the maximum vehicle ride time
while guaranteeing to serve the set of requests with a given probability. The maximum
width and the service probability are, of course, managerial decisions and thus application
dependent.

Demand for transportation is usually described as the number of potential trips that
might be requested during the time period considered for each pair of stops. Based on this
information, it is straightforward to compute the probability of at least a request being issued
for a given pair of stops, as well as the probability of each optional stop of being requested
for service either to board or unboard a vehicle. We work with this last set of probabilities
in the model we propose. Consequently, the goal of serving the whole set of requests with a
given probability becomes serving the whole set of requested stops with a given probability.
This makes it easier to address the problem.

To formally write the model, consider a sequence of compulsory stops H = {f0, f1, . . . , fn}.
Sets of optional stops Fh, with h = 1, . . . , n are associated with each pair of consecutive
compulsory stops 〈fh−1, fh〉. The sets Fh are mutually disjoint. We define a directed graph
Gh = (Nh, Ah) for any pair 〈fh−1, fh〉 such that Nh = Fh∪{fh−1, fh} and Ah = Nh×Nh. We
call Gh a segment and G = ∪Gh. A traversing (travel) time cij is associated with each arc
(i, j) ∈ A. A probability pi of being requested for service is associated with each optional
stop si ∈ ∪hFh.

The DLMSP consists in associating to each compulsory stop fh a time window [ah, bh]
such that the vehicle must not leave the compulsory stop fh before ah, nor after bh; it
is allowed, however, to arrive to fh before ah. Our goal is to find the best sequence
{〈a1, b1〉, 〈a2, b2〉, . . . , 〈an, bn〉} which, with a given probability Pǫ, guarantees service for ev-
ery optional stop which can be requested for service. We define the best sequence as the one
displaying the smallest value of bn.
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For the sake of simplicity of exposition, we consider the case where all time windows are
of equal width bh − ah = δ, which reduces the problem to that of finding the best sequence
{b0, b1, . . . , bn}. The procedure we propose extends straightforwardly, however, to the cases
when 1) the time windows are fixed but different for the compulsory stops, and 2) time
windows are bounded by a maximum width value but are allowed to be smaller. The latter
case could also consider finding, for a given compulsory stop fh, the maximum ah which
guarantees with a given probability no vehicle dead time at fh.

We now focus on a core subproblem that estimates the travel time, and thus the time
window at the destination compulsory stop, of a single segment. The full algorithm will then
bring together the sequence of segments making up the route.

4.2 The Single Segment Subproblem

How long does it take to travel a segment? The answer obviously depends on what optional
stops have to be serviced and this is usually different each time a vehicle travels the line and
the segment, because service at optional stops follows particular user requests that have been
accepted. Consequently, such operational information must be estimated for the tactical-
planning purpose of building a master schedule. We propose a statistical estimation of the
travel time of a given segment based on an efficient sampling procedure.

Consider the generic segment Gh = (Nh, Ah), and recall that Nh = Fh ∪ {fh−1, fh}, fh−1

and fh are the initial and terminal compulsory stops of the segment, respectively, Fh is a set
of optional stops, and Ah = Nh×Nh. Let L̄h−1 represent the departure time from compulsory
stop fh−1.

As indicated previously, each optional stop si ∈ Fh has a positive known probability pi

of being active, that is, of being requested for service during a particular vehicle run. We
assume these probabilities to be mutually independent. The set of optional stops that are
simultaneously active during a vehicle run, Sh ⊆ Nh, is denoted the active set (with every
si ∈ Sh being active, while every si ∈ Fh \ Sh not being active). The probability of any set
Sh to be active, pSh

, is positive and may be easily derived from the probabilities pi of its
active optional stops.

The time required by a vehicle to travel from the initial to the terminal compulsory stop of
segment h serving a given set Sh of active optional stops in Sh is denoted Hh and is called the
service time of set Sh. Assuming an efficient operation of the line, the service time Hh may be
approximated at planning level as the duration of the shortest path starting in fh−1, ending
in fh, and passing by all the stops of the active set Sh. We thus used a Minimum Hamiltonian
Path solver to compute Hh for our experimentations. (More sophisticate procedures may be
implemented to take advantage of particular application attributes, but this does not change
the general behavior of the proposed methodology.)
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The service time associated with segment h is of course a random variable at planning
level and we denote it Hh(ω). The goal of the Single Segment Meta Schedule Problem
(SSMST ) is to determine the lowest value bh which guarantees, with probability 1 − ǫ, that
the vehicle has sufficient time to serve an active set. That is, fix bh = H1−ǫ

h + L̄h−1, where
H1−ǫ

h is such that P{Hh(w) ≤ H1−ǫ
h } ≥ 1 − ǫ.

The computation of H1−ǫ
h requires the knowledge of the Cumulative Distribution Function

(CDF) and thus of the Probability Mass Function (PMF) of the random variable Hh(ω).
Since the latter requires 2|Nh| Minimum Hamiltonian Path computations, this approach is
not computationally affordable in most cases. Consequently, we estimate the PMF and
sampling appears as the method of choice.

It is difficult to estimate how large a sample that represents adequately the population
of active sets should be, but we suppose it could become quite large. Then, for computing
efficiency reasons, we propose instead the very simple following algorithm:

• Take a number {r1, r2, . . . , rl} of random samples of relatively small cardinality;

• For each sample rk, compute its PMFk and CDFk, as well as the value of bk
h;

• Compute the mean value and standard deviation of bk
h; If the standard deviation is

close to the mean value, that is if the solution is precise, stop;

• Otherwise, increment the cardinality of the samples and iterate the previous steps.

The undeniable advantage of this algorithm is its simplicity. On the other side, one
cannot guarantee an unbiased solution, nor that the dimension of the samples will stay
within computationally reasonable dimensions. A number of parameters (e.g., the number
of samples) must also be calibrated. Yet, as illustrated by the results of Section 5, the
method is very effective and adverse effects are not noticeable.

4.3 Solution Approach to DLMSP

We now present the complete solution method for the DAS line master schedule problem,
where we need to sew segments together.

In the previous subsection, we decoupled segments by assuming that the vehicle departure
time from its initial compulsory stop fh−1 was known for each segment Gh. Actually, this
is true for the first segment only, the departure time from the first compulsory stop f0

being here arbitrarily denoted t = 0, which also translates into P{L0(ω) = 0} = 1. For
all subsequent segments, the departure time depends upon the arrival time of the previous
segment, which depends in turn on its departure and service times and so on. Since service
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times are random variables, segment departure times for all segments but the first are also
random variables.

We therefore introduce the random variable Lh(ω) representing the vehicle departure
time from compulsory stop fh, where ah ≤ Lh(ω) ≤ bh. We introduce also the random
variable Th(ω):

Th(ω) = Lh−1(ω) + Hh(ω) (1)

not constrained to belong to [ah, bh]. The vehicle departure times at two consecutive com-
pulsory stops and the service time for the segment to which they belong to are then related
as follows:

Lh(ω) =











Th(ω) if ω | ah ≤ Th(ω) ≤ bh;

ah if ω | Th(ω) < ah;

bh if ω | Th(ω) > bh.

(2)

We assume in the following, without loss of generality but with a simplified notation, that
as long as a vehicle arrives at a compulsory stop fh during the interval [ah, bh], the arrival
and departure times coincide.

Recall that the value bh for segment Gh has to be such that it is possible to serve all
possible active sets with a given probability. We must therefore compute the PMF (and
consequently the CDF) of Th(ω), that is, select bh = T 1−ǫ

h , where T 1−ǫ
h is such that P{Th(ω) ≤

T 1−ǫ
h } > 1 − ǫ.

Notice that, by hypothesis, Hh(ω) and Lh−1(ω) are independent. Consequently, the PMF
of their summation, Th(ω), can be computed through the simple convolution of the PMFs
of Hh(ω) and Lh−1(ω). The problem of finding bh then reduces to the problem of estimating
the PMF of Hh(ω) and Lh−1(ω). We showed in the previous subsection how to compute the
CDF of Hh(ω). The CDF of Lh−1(ω) may be easily obtained from that of Th−1(ω).

We can now present the scheme of the algorithm we propose for the DLMSP. The algo-
rithm accepts as input the sequence of segments G = ∪1,2,...,nGh and the service probability
Pǫ = (1 − ǫ)n, and proceeds as follows:

1. For every segment Gh, h ∈ {1, 2, . . . , n}

(a) Compute PMF and CDF of Lh(ω)

(b) Compute PMF and CDF of Hh(ω)

(c) Compute PMF and CDF of Th(ω) as the convolution of the PMFs of Lh−1 and
Hh

(d) Compute T 1−ǫ
h and set bh = T 1−ǫ

h .

The algorithm returns the best sequence {b1, b2, . . . , bn} of latest departure times for the
segments, such that any randomly requested optional stop is served with probability Pǫ =
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(1 − ǫ)n. Notice that the expression for Pǫ is linked to expression of service probability for
a single segment 1 − ǫ by the hypothesis that single segment service times are mutually
independent.

5 Results

This section is dedicated to a discussion of computational results relative to the estimation
of the PMF of random variables Hh(w) when considering decoupled segments, as well as of
the corresponding values H1−ǫ

h . This is in fact the core point of the solution methodology
proposed. Experimental results support, in particular, the claim that precise and unbiased
values of H1−ǫ

h are obtained even for relatively small sample dimensions.

Name Longest 1-Path Hamiltonian Path Sum Prob > 50%

A20 1924.8 4113 9.03 9

B20 1925.43 4032 9.31 9

C20 1634.38 3695 9.94 8

A30 1924.8 4612 14.75 13

B30 1925.43 4464 14.84 13

C30 1667.65 4356 13.26 15

A40 1924.8 4972 22.5 14

B40 1925.43 5353 18.83 16

C40 1907.8 4947 22.64 14

A50 1924.8 5748 27.39 21

B50 1925.43 6462 25.13 20

C50 1907.8 5422 24.65 25

Table 1: Features of Test Problem Instances

We tested our algorithm over square-shaped segments with initial and terminal compul-
sory stops located at the extremities of one of the diagonals. Optional stops are uniformly
distributed on the square. Distances between optional stops are Euclidean and traveling
times are proportional to distances with proportionality constant 1. We generated instances
with a number of stops, including the two compulsory ones, varying from 20 to 50 by steps of
10. With each optional stop is associated a probability included in the open interval (0, 1).
For each problem dimension we randomly generated three instances, different both in the
possible locations of optional stops and the probabilities associated with them.

Table 1 displays the main features of the test problem instances: name; time length of
the longest path with only one optional stop and time length of the Hamiltonian path taken
over all optional stops which represent respectively a lower and upper bound on the value
of the latest departure time at the second compulsory stop; the sum of the probabilities
associated with optional stops, and the number of optional stop with probability grater than
50%. Hamiltonian paths are computed with a modified version of the Asymmetric TSP code
available in [1] (Carpaneto et al. 1995).
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Name&Dim. nSamples dimSamples 1-epsilon H1−ǫ Dev-Strd Time (sec.)
A20 10 50 0.95 3470.21 68.0074 3.46
A20 10 100 0.95 3472.21 60.9672 6.92
A20 10 150 0.95 3508.21 51.4296 10.38
A20 10 200 0.95 3504.21 39.2556 13.89
A20 10 250 0.95 3496.21 38.4318 17.34
A20 20 50 0.95 3476.21 81.2219 6.93
A20 20 100 0.95 3481.21 71.3583 13.87
A20 20 150 0.95 3497.21 55.9553 20.81
A20 20 200 0.95 3501.21 45.7384 27.72
A20 20 250 0.95 3491.21 36.4829 34.68
A20 30 50 0.95 3492.88 98.818 11.32
A20 30 100 0.95 3478.21 67.6535 22.62
A20 30 150 0.95 3490.88 56.1783 33.86
A20 30 200 0.95 3500.21 42.0714 45.21
A20 30 250 0.95 3492.88 34.3074 56.65
B20 10 50 0.95 3836.21 48.5283 3.63
B20 10 100 0.95 3840.21 38 7.22
B20 10 150 0.95 3822.21 31.241 10.81
B20 10 200 0.95 3830.21 30.7246 14.45
B20 10 250 0.95 3820.21 32.2955 18.03
B20 20 50 0.95 3827.21 48.2701 7.24
B20 20 100 0.95 3837.21 41.1461 14.45
B20 20 150 0.95 3822.21 31.8904 21.59
B20 20 200 0.95 3836.21 34.6121 28.82
B20 20 250 0.95 3830.21 36.1386 36.01
B20 30 50 0.95 3824.88 49.7896 11.78
B20 30 100 0.95 3836.88 43.2088 23.53
B20 30 150 0.95 3833.55 36.4417 35.42
B20 30 200 0.95 3836.88 37.6298 47.15
B20 30 250 0.95 3824.88 32.6803 58.82
C20 10 50 0.95 3124.21 42.2019 3.49
C20 10 100 0.95 3128.21 33.5708 6.99
C20 10 150 0.95 3112.21 10.8628 10.46
C20 10 200 0.95 3114.21 9.05539 13.94
C20 10 250 0.95 3116.21 10.8628 17.4
C20 20 50 0.95 3116.21 48.9183 6.99
C20 20 100 0.95 3129.21 34.5254 13.94
C20 20 150 0.95 3119.21 18.735 20.97
C20 20 200 0.95 3117.21 15.7162 27.93
C20 20 250 0.95 3112.21 13.8924 34.99
C20 30 50 0.95 3112.88 48.7237 11.46
C20 30 100 0.95 3134.88 32.4962 22.87
C20 30 150 0.95 3116.88 18.4662 34.26
C20 30 200 0.95 3114.21 16.3401 45.79
C20 30 250 0.95 3115.55 15.4596 57.28

Table 2: Results for Segments with 20 Nodes
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Name&Dim. nSamples dimSamples 1-epsilon H1−ǫ Dev-Strd Time (sec.)
A30 10 50 0.95 3926.21 86.3423 4.11
A30 10 100 0.95 3924.21 58.8303 8.27
A30 10 150 0.95 3932.21 53.2635 12.37
A30 10 200 0.95 3936.21 42.3674 16.49
A30 10 250 0.95 3950.21 31.9844 20.6
A30 20 50 0.95 3938.21 76.2889 8.26
A30 20 100 0.95 3926.21 63.6946 16.45
A30 20 150 0.95 3938.21 49.6286 24.74
A30 20 200 0.95 3934.21 36.8511 32.92
A30 20 250 0.95 3937.21 31.1609 41.17
A30 30 50 0.95 3933.55 81.4187 12.4
A30 30 100 0.95 3926.21 57.7062 24.75
A30 30 150 0.95 3930.88 47.1381 37.09
A30 30 200 0.95 3929.55 40.6448 49.31
A30 30 250 0.95 3936.88 36.1525 61.61
B30 10 50 0.95 4062.21 50.7642 5.54
B30 10 100 0.95 4088.21 38.0132 11.13
B30 10 150 0.95 4096.21 38.4187 16.7
B30 10 200 0.95 4088.21 32.2645 22
B30 10 250 0.95 4102.21 25.5734 27.6
B30 20 50 0.95 4075.21 52.7257 11.15
B30 20 100 0.95 4102.21 41.7133 21.99
B30 20 150 0.95 4104.21 34.9571 33.37
B30 20 150 0.95 4104.21 34.9571 33.37
B30 20 200 0.95 4089.21 40.4475 44.03
B30 20 250 0.95 4095.21 32.5883 54.95
B30 30 50 0.95 4086.21 59.0931 16.73
B30 30 100 0.95 4109.55 43.8634 33.32
B30 30 150 0.95 4096.88 37.2827 49.67
B30 30 200 0.95 4084.21 40.3733 65.4
B30 30 250 0.95 4098.21 28.7054 81.89
C30 10 50 0.95 3362.21 20.4695 3.8
C30 10 100 0.95 3390.21 33.2716 7.51
C30 10 150 0.95 3372.21 27.55 11.22
C30 10 200 0.95 3358.21 28.0535 14.99
C30 10 250 0.95 3366.21 24.0208 18.7
C30 20 50 0.95 3375.21 41.1825 7.56
C30 20 100 0.95 3370.21 32.573 14.98
C30 20 150 0.95 3367.21 29.7825 22.41
C30 20 200 0.95 3356.21 26.7208 29.8
C30 20 250 0.95 3362.21 23.9374 37.22
C30 30 50 0.95 3368.21 42.0357 11.26
C30 30 100 0.95 3373.55 32.1092 22.37
C30 30 150 0.95 3363.55 32.5883 33.54
C30 30 200 0.95 3354.21 27.8747 44.71
C30 30 250 0.95 3363.55 22.4277 55.78

Table 3: Results for Segments with 30 Nodes
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Name&Dim. nSamples dimSamples 1-epsilon H1−ǫ Dev-Strd Time (sec.)
A40 10 50 0.95 4552.21 52.4595 7.46
A40 10 100 0.95 4568.21 30.9516 14.67
A40 10 150 0.95 4562.21 33.6452 21.88
A40 10 200 0.95 4564.21 22.2711 29.4
A40 10 250 0.95 4562.21 22.1811 36.67
A40 20 50 0.95 4554.21 46.9042 14.68
A40 20 100 0.95 4567.21 29.189 29.4
A40 20 150 0.95 4557.21 27.0555 44.17
A40 20 200 0.95 4564.21 24.0832 58.71
A40 20 250 0.95 4560.21 20.1494 73.81
A40 30 50 0.95 4557.55 51.9808 21.86
A40 30 100 0.95 4564.21 29.2575 44.16
A40 30 150 0.95 4558.88 27.7849 66.37
A40 30 200 0.95 4562.21 22.4944 88.1
A40 30 250 0.95 4557.55 20.9284 109.74
B40 10 50 0.95 4362.21 23.9165 34.8
B40 10 100 0.95 4366.21 23.9165 64.79
B40 10 150 0.95 4378.21 11.8322 98.96
B40 10 200 0.95 4376.21 24.3311 131.69
B40 10 250 0.95 4382.21 20.2485 166.35
B40 20 50 0.95 4373.21 34.322 64.82
B40 20 100 0.95 4369.21 31.5595 131.72
B40 20 150 0.95 4382.21 21.4009 197.53
B40 20 200 0.95 4373.21 20.4939 261.99
B40 20 250 0.95 4375.21 24.0832 322.11
B40 30 50 0.95 4375.55 38.3406 98.98
B40 30 100 0.95 4370.21 31.3369 197.57
B40 30 150 0.95 4373.55 22.9783 287.2
B40 30 200 0.95 4370.21 22.4054 388.42
C40 10 50 0.95 4258.21 77.3434 10.67
C40 10 100 0.95 4256.21 53.963 20.65
C40 10 150 0.95 4284.21 51.5364 30.84
C40 10 200 0.95 4314.21 46.4327 42.43
C40 10 250 0.95 4314.21 49.7594 52.17
C40 20 50 0.95 4256.21 81.4739 20.63
C40 20 100 0.95 4293.21 62.1289 42.4
C40 20 150 0.95 4312.21 59.3127 62.74
C40 20 200 0.95 4323.21 37.6829 83.53
C40 20 250 0.95 4323.21 44.4747 104.5
C40 30 50 0.95 4273.55 86.406 30.82
C40 30 100 0.95 4294.88 61.2862 62.75
C40 30 150 0.95 4316.21 60.1498 95.12
C40 30 200 0.95 4324.88 43.2666 123.76
C40 30 250 0.95 4318.88 45.5851 153.86

Table 4: Results for Segments with 40 Nodes
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Name&Dim. nSamples dimSamples 1-epsilon H1−ǫ Dev-Strd time (sec.)
A50 10 50 0.95 4960.21 43.795 33.38
A50 10 100 0.95 4954.21 26.7582 63.34
A50 10 150 0.95 4964.21 29.9333 97.89
A50 10 200 0.95 4970.21 34.3802 128.29
A50 10 250 0.95 4968.21 19.9499 162.8
A50 20 50 0.95 4962.21 39.7744 63.34
A50 20 100 0.95 4962.21 40.2492 128.26
A50 20 150 0.95 4969.21 30.9839 191.93
A50 20 200 0.95 4963.21 32.619 252.65
A50 20 250 0.95 4953.21 32.0312 308.64
A50 30 50 0.95 4970.21 47.7703 97.9
A50 30 100 0.95 4954.21 39.3954 191.93
A50 30 150 0.95 4958.88 37.2022 278.73
A50 30 200 0.95 4958.88 31.3688 365.49
A50 30 250 0.95 4950.21 30.0333 453.32
B50 10 50 0.95 4854.21 33.3766 41.39
B50 10 100 0.95 4880.21 45.607 83.79
B50 10 150 0.95 4874.21 21.7256 125.1
B50 10 200 0.95 4874.21 23.5372 174.17
B50 10 250 0.95 4884.21 22.2261 214.45
B50 20 50 0.95 4871.21 47.5184 83.8
B50 20 100 0.95 4887.21 40.2492 174.18
B50 20 150 0.95 4881.21 23.1517 255.68
B50 20 200 0.95 4888.21 32.3419 340.3
B50 20 250 0.95 4888.21 29.0861 430.86
B50 30 50 0.95 4870.88 45.9565 125.09
B50 30 100 0.95 4890.21 37.1483 255.78
B50 30 150 0.95 4888.21 28.9482 387.66
B50 30 200 0.95 4886.88 28.4956 513.3
B50 30 250 0.95 4888.88 28.2489 638.01
C50 10 50 0.95 4496.21 43.2435 88.62
C50 10 100 0.95 4518.21 51.1859 184.92
C50 10 150 0.95 4506.21 41.1339 273.92
C50 10 200 0.95 4494.21 21.8174 363.81
C50 10 250 0.95 4500.21 23.622 436.01
C50 20 50 0.95 4511.21 55.9464 184.86
C50 20 100 0.95 4515.21 45.3652 364.03
C50 20 100 0.95 4515.21 45.3652 364.03
C50 20 150 0.95 4497.21 41.6173 521.95
C50 20 200 0.95 4487.21 23.0651 686.62
C50 20 250 0.95 4495.21 30.5941 851.22
C50 30 50 0.95 4508.21 50.9706 273.88
C50 30 100 0.95 4514.21 53.7215 521.82
C50 30 150 0.95 4491.55 38.9615 766.99
C50 30 200 0.95 4486.88 20.3961 1016.13
C50 30 250 0.95 4490.21 28.5657 1265.88

Table 5: Results for Segments with 50 Nodes
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Tables 2, 3, 4, and 5 report the computational results over the four sets of problem
instances. The columns display, respectively, the name of the instance and its dimension,
the number of samples created, their dimensions, the value 1 − ǫ, the average of H1−ǫ over
the number of samples, the standard deviation, and the computing time in CPU seconds.

The experimental results indicate that increasing the dimension of the sample yields
more precise solutions. The number of samples is relatively less important. The results also
indicate that, in general, the standard deviations are very good, being average estimated
values - standard deviation ratios smaller than 2% even in the worst case.

Regarding possible biases, we compared the values obtained by using our algorithm to
those obtained by computing H1−ǫ using a single sample of cardinality 100000. As supported
by the figures in Table 6, the values we found are very good.

Name&Dim. nSamples dimSamples 1-epsilon H1−ǫ Dev-Strd Time sec.

A20 1 100000 0.95 3514.21 0 714.33

A30 1 100000 0.95 3954.21 0 848.39

A40 1 100000 0.95 4554.21 0 1472.54

A50 1 100000 0.95 4954.21 0 5983.55

Table 6: Values of H1−ǫ Computed over 100000-large Samples

To conclude, notice that the values of H1−ǫ are remarkably smaller than those of the
Hamiltonian path characterizing segments. They should actually be even better in practice.
This is because in our experimentation we considered probabilities associated with optional
stops uniformly distributed in the interval (0, 1). Yet, in the real word, stops with a value
close to 1 would most likely be chosen as compulsory stops. In other words, in an actual im-
plementation of a DAS service, optional stops are not requested frequently and consequently
we expect better H1−ǫ - Hamiltonian path-length ratios.

6 Conclusions

In this paper, we examined from a scheduling point of view a new type of semi-flexible transit
service, the Demand-Adaptive Service. Comparing it to traditional transit and dial-a-ride
services, we introduced the “new” scheduling requirements of DAS, which we identified as the
construction of a master schedule. We formalized the master scheduling problem for a single
DAS line and proposed a solution framework based on decoupling the origin-destination
demand and using a particular sampling technique. Computational results show that the
method we propose is efficient and produces high-quality results.
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