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In this work, a previously proposed methodology for the optimization of analytical
scale protein separations using ion-exchange chromatography is subjected to two
challenging case studies. The optimization methodology uses a Doehlert shell design
for design of experiments and a novel criteria function to rank chromatograms in order
of desirability. This chromatographic optimization function (COF) accounts for the
separation between neighboring peaks, the total number of peaks eluted, and total
analysis time. The COF is penalized when undesirable peak geometries (i.e., skewed
and/or shouldered peaks) are present as determined by a vector quantizing neural
network. Results of the COF analysis are fit to a quadratic response model, which is
optimized with respect to the optimization variables using an advanced Nelder and
Mead simplex algorithm. The optimization methodology is tested on two case study
sample mixtures, the first of which is composed of equal parts of lysozyme, conalbumin,
bovine serum albumin, and transferrin, and the second of which contains equal parts
of conalbumin, bovine serum albumin, tranferrin, â-lactoglobulin, insulin, and R
-chymotrypsinogen A. Mobile-phase pH and gradient length are optimized to achieve
baseline resolution of all solutes for both case studies in acceptably short analysis
times, thus demonstrating the usefulness of the empirical optimization methodology.

Introduction
High performance liquid chromatography (HPLC) is a

separation technique commonly used in the pharmaceu-
tical industry for both preparative and analytical scale
separations. Optimal operating conditions for analytical
scale separations, where analysis and quantification of
the feed mixture is desired, result in baseline separation
of each solute in the feed mixture in an acceptably short
overall analysis time. Baseline separation is desired to
maximize product purity and minimize downstream
processing costs, while a short overall analysis time leads
to increased productivity and decreased methods devel-
opment time. HPLC methods development is tradition-
ally accomplished through an exhaustive trial-and-error
experimental procedure. This is extremely inefficient as
a result of lengthy development times and the large
amounts of potential product that are wasted in the
search for acceptable, though not necessarily optimal,
operating conditions.

Ion-exchange chromatography (IEC) is a mode of
HPLC operation that is typically used at the clinical and
preclinical analytical stages to separate small concentra-
tions of proteins and other bioproducts. In IEC an
ionically charged column packing facilitates the fraction-
ation of the feed mixture based on the affinity of the

individual solutes for the column packing. Methods
development for analytical scale separations is difficult
and complex in IEC because of the high degree of
interaction among process variables, which can be cat-
egorized as either online or a priori variables. A priori
variables include parameters such as the chemistry and
size of the column packing and the size of the column
itself and must be selected on the basis of past chromato-
graphic experiences prior to online optimization. Online
process variables such as the composition, pH, ionic
strength, and flow rate of the mobile phase and the
column temperature can be manipulated and optimized
online.

The two most influential online process variables in
IEC are the pH and ionic strength of the mobile phase.
The pH of the mobile phase affects the formal charge of
the protein molecules and thus their affinity for the
charged column packing. The ionic strength of the mobile
phase is indicative of the concentration of counterions
present and controls the elution of bound proteins from
the column. Elution is usually performed by introducing
a linear salt gradient of increasing ionic strength to the
column using a salt such as NaCl (Wankat, 1990).
Simultaneous optimization of mobile phase pH and ionic
strength is a challenging problem because of the complex
interactions between these two process variables and the
inherent nonlinearity of the ion-exchange purification of
multicomponent protein mixtures.

Recently, success has been reported in predicting
chromatograms with theoretical models (Gallant et al.,
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1995; Galushko, 1991; Galushko et al., 1994; Gu, 1995).
However, these fundamental models, which require
knowledge of the thermodynamic and kinetic properties
of the system and the feed mixture, are of little use in
analytical applications where the chromatographer has
little, if any, a priori knowledge of the feed mixture
composition. To accurately predict chromatograms with
these models at the analytical stage, it is therefore
necessary to estimate adsorption isotherm constants for
each individual solute in the feed mixture at each mobile
phase composition and ionic strength investigated. This
leads to excessive experimentation and causes such an
approach to the optimization problem to be costly and
inefficient.

In the past, several academic researchers, more re-
cently joined by industrial researchers, have applied
empirical optimization methods to reversed-phase chro-
matographic separations. These empirical methods gen-
erally utilize a statistical factorial design, which uni-
formly samples the experimental domain, to generate an
experimental test matrix and a response or criteria
function to rank chromatograms in order of desirability
(Cotton and Down, 1983; Hu and Massart, 1989; Lind-
berg et al., 1981; Jandera and Prokes, 1991). Several such
criteria functions, also known as chromatographic re-
sponse functions (CRFs), are reported in the literature,
the most popular and basic of these being the resolution
statistic, which quantifies the separation of neighboring
peak pairs (Klein and Rivera, 2000). Results of criteria
function analysis are typically fit to second-order poly-
nomial response models (Bourguignon et al., 1993). Once
a criteria function is chosen and the experimental data
is regressed to a response model, the model is optimized
in the experimental variables to maximize the criteria
function. Techniques used previously to maximize the
values of these chromatographic response models include
computerized grid searches (Cotton and Down, 1983;
Lundell and Markides, 1993), response surface modeling
(Felinger and Guiochon, 1992; Felinger and Guiochon,
1994; Wang et al., 1991), and the sequential simplex
method (Berridge, 1985; Palasota et al., 1992; Wang et
al., 1993).

In this work, a previously developed methodology for
IEC optimization that is based on the empirical strategy
outlined above and requires a minimum of experimenta-
tion is reviewed (Klein and Rivera, 1998). The usefulness
of the technique is demonstrated through two illustrative
case studies. Specifically, the pH and ionic strength (slope
of a linear salt gradient) are simultaneously optimized
for the separation of two feed mixtures containing four
and six proteins commonly found in the pharmaceutical
industry, respectively, while requiring as few as seven
experiments. As a result of the strictly empirical nature
of the methodology, no previous knowledge of the feed
mixture is necessary, and the method is applicable to
separations in which the feed is partially or totally
unknown, which is frequently the case in industrial
applications. Furthermore, the optimization methodology
is such that the inclusion of additional optimization
variables such as mobile-phase flow rate and temperature
is a straightforward task.

Optimization Methodology
The complete optimization methodology, which is

presented elsewhere in full detail (Klein and Rivera,
1998), is outlined in Figure 1. To begin the optimization
all a priori or fixed process variables such as column size
and packing are selected on the basis of past chromato-
graphic experiences and/or vendor recommendations. The

remaining variables such as mobile-phase composition,
flow rate, and temperature are optimized online with the
methodology described below. In this study, the online
variables investigated are the pH and steepness of the
linear ionic concentration gradient in the mobile phase.

The experimental domain is defined by placing bounds
on the optimization parameters, and a Doehlert shell
design (Doehlert, 1970) is used to generate the experi-
mental matrix. The chromatographic peaks generated by
these experimental conditions are classified by a vector
quantizing network (VQN) on the basis of peak geometry.
The VQN is trained to recognize the desirable class of
Gaussian-shaped peaks, as well as peaks that exhibit
undesirable tailing or shoulders, which are indicative of
coeluting solutes.

To rank chromatograms in order of desirability, it is
necessary to assign a numerical value to the result of
each experimental separation using a criteria function
(Klein and Rivera, 2000). The most commonly used of
these response criteria is the resolution function:

where Rij is the resolution between peaks i and j, ti is
the elution time of peak i, and wi is the baseline
bandwidth of peak i (Figure 2).

The individual peak resolutions can be summed to give
an overall resolution for the chromatogram. However, the
resolution does not account for total analysis time, nor
does it include a penalty for chromatograms that exhibit
fewer peaks than others. This information is extremely
important when dealing with an unknown sample, and
it is desirable to incorporate these data in the response
function. That is, there must be a way to penalize
chromatograms that do not contain as many peaks as
other chromatograms in an attempt to attain complete

Figure 1. Flowchart of the optimization algorithm.

Rij )
2(tj - ti)
wi + wj

(1)

Biotechnol. Prog., 2000, Vol. 16, No. 3 507



resolution of the feed mixture, even if the number of
solutes in the feed mixture is unknown.

The chromatographic optimization function (COF) used
in this study has the form

where fi and gi are parameters used to describe the
separation of peak pair i (Figure 2), np is the number of
peak pairs, M is the number of expected peaks, N is the
number of peaks eluted, tm is the maximum desirable
total analysis time, t is the elution time of the last peak,
Ki is the penalty based on neural network peak clas-
sification, n is the number of peaks, and A and B are user-
adjustable weights.

The first term of the COF describes the degree of
separation between neighboring peak pairs. The second
term accounts for the fact that some chromatograms may
contain more or fewer peaks than others and assigns a
penalty to chromatograms that contain fewer than the
expected number of peaks (i.e., chromatograms where
peaks coelute). In cases where the expected number of
peaks is unknown, the value of M can be set arbitrarily,
thus assigning a penalty that is proportional to the
number of peaks exhibited by each chromatogram. The
third term accounts for total analysis time, which it is
desirable to minimize in the optimization problem. The
final term in the COF assesses a penalty based on neural
network classification of the peak geometry so that the
optimization is forced toward areas of the parameter
space that produce Gaussian-shaped peaks.

To numerically optimize the chromatographic optimi-
zation function (COF, eq 2) in the experimental param-
eters it is necessary to represent the experimental results
with an empirical model. The COF values resulting from
the Doehlert matrix experiments are fit to a second-order
polynomial model, which is dependent on both pH and
gradient column volumes (CV), using a least-squares
approach. The model is of the form

where y ) COF, x1 ) pH, and x2 ) CV.
Finally, the response model is optimized using a

constrained, variable-sized, sequential simplex algorithm
to find the values of the experimental parameters (pH

and slope of the salt gradient) at which the COF is
maximum. An additional experiment is performed at
these optimal conditions, and the resulting COF is used
to update response model parameters. As is depicted in
Figure 1, optimization continues in this iterative manner
until the chromatographer is satisfied with the resulting
separation.

It should be noted that it is straightforward to expand
the optimization methodology to allow the optimization
of additional process variables by adding appropriate
terms to the response model of eq 3 and increasing the
dimensionality of the Doehlert design. Moreover, this
methodology is sufficiently generic that it can be applied
to all modes of HPLC operation, including normal- and
reversed-phase HPLC. In addition, the empirical nature
of the methodology is such that no a priori knowledge of
the sample mixture is required.

Experimental Method

Equipment. The chromatographic station consists of
two Waters 510 HPLC pumps (Waters; Milford, MA), a
Waters 590 programmable HPLC pump, a Waters auto-
matic gradient controller, a Waters 440 UV detector
operating at 280 nm, and a Waters 746 data module/
integrator. The signal from the UV detector is also logged
to a data file on a Gateway 2000 486 PC using PC-Lab
Card’s PCL-812PG data acquisition card (Advantech Co.,
LTD; Sunnyvale, CA) and VisSim software (Visual Solu-
tions; Westford, MA). The column employed is a weak
anion exchanger Toyopearl column with DEAE (diethyl-
aminoethyl) chemistry (Supelco; Bellefonte, PA).

Mobile-Phase Preparation. The mobile phase con-
sists of two buffers that are mixed to the desired mobile-
phase ionic strength by controlling the flow rates of their
respective pumps. Buffer A contains 10 mM tris[hy-
droxymethyl]aminomethane (Tris) and 10 mM 1,3-bis-
[tris(hydroxymethyl)methyl-amino]propane (Bis) (Sigma,
Ltd., St. Louis, MO). Buffer B contains 10 mM Tris, 10
mM Bis, and 1 M NaCl. Buffer pH is adjusted off-line to
the desired pH of each run using 1 M HCl and 1 M
NaOH. The initial and final concentrations of the salt
gradient in all experiments are 0.0 and 0.5 M, respec-
tively. Each experiment is followed by a 100% buffer B
(1 M NaCl) wash to clean any remaining solutes from
the column. All buffers are dissolved in deionized water,
filtered through a 40 µm Millipore filter, (Bedford, MA)
and degassed with helium before use. Mobile-phase flow
rate is 1.5 mL/min.

Sample Preparation. The proteins included in the
feed mixtures are bovine serum albumin (BSA), lysozyme
(L), conalbumin (C), R-chymotrypsinogen A (A), trans-
ferrin (T), insulin (I), and â-lactoglobulin (â-L) (Sigma,
St. Louis, MO). All proteins are dissolved in deionized
water to concentrations of 6 mg/mL. Equal volumes of
each standard protein solution are combined to give the
final feed mixtures, yielding protein concentrations of 1.5
mg/mL and 1 mg/mL for the four- and six-protein
mixtures, respectively. Sample size is 25 µL for all
experiments.

Results and Discussion

The experimental domain is defined by placing con-
straints on the optimization variables such that the pH
is bound between 6 and 9 and the salt gradient length is
bound between 5 and 20 column volumes (CV). The limits
on pH are imposed because of concerns of protein
denaturation at extremely acidic or basic conditions. The
upper limit on gradient length is set as a result of

Figure 2. Definition of the resolution criteria (eq 1) and
chromatographic optimization function (COF, eq 2) parameters
f, g, t, and w.

COF ) ∑
i)1

np

[ln(fi/gi)] - A(M - N) + B(tm - t) + ∑
i)1

n

Ki

(2)

y ) a1 + a2x1 + a3x2 + a4x1
2 + a5x2

2 + a6x1x2 (3)
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analysis time considerations, and the lower limit is set
to ensure that a linear gradient rather than a step change
in ionic strength is employed. On the basis of these
imposed constraints, the Doehlert shell design is em-
ployed to generate the experimental matrix shown in
Table 1.

The maximum desired analysis time, tm, of the COF
(eq 2) is chosen to be 20% of the full range of the
constraints imposed on the length of the salt gradient (8
CV). The adjustable weights, A and B, are set at 2 and
0.1, respectively, for case study 1 and 3 and 0.1, respec-
tively, for case study 2 so that each term in the chro-
matogram is of the same order of magnitude, namely,
that of unity. The higher value of A is required for case
study 2, which involves a six-protein mixture, because
the first term in the COF ( eq 2) becomes largely negative
as a result of the large number of peaks in the summa-
tion. This higher value of A allows for chromatograms
exhibiting more peaks, even though partially overlapping,
to be ranked higher than chromatograms containing
fewer peaks, which indicates coelution and is highly
undesirable.

Case Study 1. The protein mixture investigated in the
first case study is a quaternary protein mixture contain-
ing 1.5 mg/mL each of lysozyme (L), conalbumin (C),
bovine serum albumin (BSA), and transferrin (T). The
optimization of this mixture is complex since the pI
values of BSA and T and thus their affinity for the
column packing are similar (approximately 4.8 for BSA
and 5.0 for transferrin (Budavari, 1989)). Therefore,
achieving complete resolution of the BSA and T presents
a challenge to the optimization methodology.

The Doehlert design experiments (Table 1) are per-
formed, and values of the chromatographic optimization
function (COF, eq 2) are determined for each experiment
and are reported in Table 2. The sum of individual peak
pair resolutions (eq 1) is also calculated for each experi-
ment and reported in Table 2. These COF and resolution
sum values are fit to the quadratic response model of eq
3. Response model coefficients are reported in Table 3,
while model predictions of the COF and resolution sum
are reported in Table 2. Values of the R2 statistic are
found to be 0.87 and 0.93 for the COF and resolution
summation models, respectively. While additional experi-
ments will result in a more accurate model and higher
R2 values, the goal of this work is to optimize the
separation with the least possible amount of experimen-
tation.

The conditions first found as optimum using the COF
(pH of 6.0 and 5.0 CV) produce an undesirable chromato-

gram with unresolved peaks. The results of the COF
analysis of this experimental point are added to the
existing matrix of data, and a new optimum is calculated,
so that in this case study eight experiments instead of
seven are used to find the optimum operating conditions.
The new optimum COF value is found to exist at a pH of
7.4 and 19.2 CV, which corresponds well with an inspec-
tion of the response model surface (Figure 3).

Note that there is a local COF optimum at a pH of
approximately 7.5 and 5 CV, which is due to the third
term in the COF. That is, total analysis time will be a
minimum at low values of the gradient length. Thus the
sensitivity of the response model to the weighting con-
stants in the COF (eq 2) is a factor that must be
considered, and the weights employed require careful
selection based on the overall goals of the separation. The
weights reported here have been found to be appropriate
for a wide range of IEC protein purifications (Klein and
Rivera, 1998).

A chromatogram run at these optimum conditions
confirms that baseline separation of all solutes occurs at
these conditions (Figure 4). In this case study, the

Table 1. Doehlert Design Experimental Matrix

experiment

1 2 3 4 5 6 7

pH 7.5 9.0 8.2 6.0 6.8 6.8 8.2
CV 12.5 12.5 19.0 12.5 6.0 19.0 6.0

Table 2. Experimental Results vs Model Predictions for
Case Study 1

COF ∑Rij

expt pH CV data model data model

1 7.5 12.5 -1.67 -1.07 11.20 11.27
2 9.0 12.5 -2.95 -2.72 2.73 4.82
3 8.2 19.0 -0.91 -1.42 13.05 10.99
4 6.0 12.5 -1.18 -1.80 4.49 2.32
5 6.8 6.0 -0.34 -0.97 5.24 7.37
6 6.8 19.0 -1.19 -0.74 6.63 8.68
7 8.2 6.0 -1.05 -1.21 10.02 7.89
8 6.0 5.0 -2.24 -1.60 n/a n/a

Figure 3. Resolution summation (top) and COF (bottom)
response surfaces for case study 1. Optimal conditions found at
x (pH 7.8, CV 17.7 for the resolution summation and pH 7.4,
CV 19.2 for the COF).

Table 3. Model Parameters and R2 Regression Statistics
for Case Study 1

COF ∑Rij

a1 -2.94E+01 -1.85E+02
a2 7.87E+00 5.12E+01
a3 -2.05E-03 -6.09E-02
a4 -5.27E-01 -3.42E+00
a5 6.71E-03 -1.25E-02
a6 -2.20E-02 7.42E-02
R2 0.87 0.93
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optimum value of the resolution summation is also found
in approximately the same area of the experimental
domain, at a pH of 7.8 and 17.7 CV (Figure 3). The
unlikely good agreement found between the COF and
resolution summations in this case study stems from the
fact that the separation of solute peaks is the crucial term
in the COF as a result of the complexity of the feed
mixture.

Case Study 2. The protein mixture investigated in the
second case study is a six-protein mixture containing 1
mg/mL each of conalbumin (C), â-lactoglobulin (â-L),
insulin (I), R-chymotrypsinogen A (A), bovine serum
albumin (BSA), and transferrin (T). This case study is
extremely challenging as a result of the number of solutes
in the feed mixture and the fact that many of the solutes
exhibit similar retention behavior. COF and resolution
summation values are reported for the Doehlert experi-
ments in Table 4, and response model coefficients are
reported in Table 5. The R2 statistics for this case study
are 0.98 for both the COF and the resolution summation
models.

The optimum COF value is found to exist at a pH of
9.0 and 19.7 CV, which corresponds well to the response
plot found in Figure 5. The chromatogram produced at
these final conditions exhibits baseline separation of all
of the solutes in the mixture, though the first peak
exhibits extreme tailing and the second peak is shoul-
dered (Figure 6). Though these peak geometries are less
than desirable, they are tolerable and are expected since
the adsorption is extremely nonlinear as a result of the

large number of components in the feed mixture. If higher
yield or purity is desired for these first two peaks, they
can be collected and rechromatographed individually.

The conditions of the optimum resolution summation
are found to be a pH of 6.8 and 20.0 CV (Figure 5). Figure
6 contains a chromatogram from a Doehlert matrix
experiment that was run at a pH of 6.8 and 19.0 CV. As
can be seen, serious peak overlap exists at these condi-
tions. Only two peaks are resolved at these conditions,
which means that four of the six solutes in the feed
mixture coeluted and are hidden. This is extremely
undesirable and demonstrates the importance of the term
in the COF that accounts for the number of peaks eluted.
It can be concluded that in this particular case study the
COF is far superior to the resolution summation for
ranking chromatograms in order of desirability.

Conclusions
A novel approach to optimal HPLC methods develop-

ment is proposed for the ion-exchange separation of
protein mixtures. The methodology is composed of a
Doehlert factorial design of experiments, a new criteria
function to quantify and rank the quality of the separa-
tions, a vector quantizing neural network for automatic
peak classification, and a variable-sized simplex algo-
rithm for response surface optimization. The methodology
is illustrated for the simultaneous optimization of pH and
ionic strength (salt gradient length) of the mobile phase
to maximize protein separation while decreasing total
analysis time. However, this methodology can easily be
extended to the optimization of a larger number of
process variables.

Figure 4. Case study 1: chromatogram at maximum COF with
optimum pH 7.4, CV 19.2.

Table 4. Experimental Results vs Model Predictions for
Case Study 2

COF ∑Rij

expt pH CV data model data model

1 7.5 12.5 -7.66 -7.66 8.91 8.91
2 9.0 12.5 -5.23 -6.30 5.23 4.20
3 8.2 19.0 -8.56 -7.49 6.01 7.03
4 6.0 12.5 -9.74 -8.67 4.28 5.30
5 6.8 6.0 -6.85 -7.92 7.99 6.96
6 6.8 19.0 -9.22 -10.28 10.40 9.38
7 8.2 6.0 -9.40 -8.33 7.17 8.20

Table 5. Model Parameters and R2 Regression Statistics
for Case Study 2

COF ∑Rij

a1 3.57E+00 -1.10E+02
a2 -2.41E+00 2.96E+01
a3 -7.66E-01 1.41E+00
a4 7.64E-02 -1.85E+00
a5 -2.11E-02 5.75E-04
a6 1.65E-01 -1.83E-01
R2 0.98 0.98

Figure 5. Resolution summation (top) and COF (bottom)
response surfaces for case study 2. Optimal conditions found at
x (pH 6.8, CV 19.0 for the resolution summation and pH 9.0,
CV 19.7 for the COF).
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The COF criteria function employed in this work is
found to be useful and far superior to the resolution
summation in representing the quality of the chromato-
grams. A variable-sized simplex algorithm is utilized in
conjunction with a quadratic response model to determine
the optimal operating conditions for feed mixtures con-
taining four and six proteins that are commonly found
in the pharmaceuticals industry. Results are acceptable,
with baseline resolution of all solutes and a relatively
short analysis time being realized for both of the test
mixtures. Furthermore, because of the empirical nature
of the optimization methodology, this method can be
applied to separations where no prior knowledge of the
feed mixture composition exists, which is frequently the
case in industrial applications.

Nomenclature
A user-adjustable weight
ai response model parameters
B user-adjustable weight
COF chromatographic optimization function
fi measure of separation of peak pair i (Figure 2)
gi measure of separation of peak pair i (Figure 2)
Ki peak geometry penalty for peak i
M number of expected peaks
N actual number of eluted peaks
np number of peaks exhibited on chromatogram
Rij resolution between peaks iand j
∑Rij summation of individual peak pair resolutions

over the entire chromatogram
t total analysis time

ti elution time of peak i
tm maximum desirable total analysis time
wi baseline bandwidth of peak i
xi independent response model variables
y dependent response model variable
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