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In this article, we analyze the singular function boundary integral method (SFBIM) for a two-dimensional
biharmonic problem with one boundary singularity, as a model for the Newtonian stick-slip flow problem. In
the SFBIM, the leading terms of the local asymptotic solution expansion near the singular point are used to
approximate the solution, and the Dirichlet boundary conditions are weakly enforced by means of Lagrange
multiplier functions. By means of Green’s theorem, the resulting discretized equations are posed and solved
on the boundary of the domain, away from the point where the singularity arises. We analyze the convergence
of the method and prove that the coefficients in the local asymptotic expansion, also referred to as stress
intensity factors, are approximated at an exponential rate as the number of the employed expansion terms is
increased. Our theoretical results are illustrated through a numerical experiment. © 2011 Wiley Periodicals,
Inc. Numer Methods Partial Differential Eq 000: 000–000, 2011
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I. INTRODUCTION

Boundary singularities appear in many problems governed by elliptic partial differential equa-
tions. These arise when there is a suddden change in the boundary conditions (e.g., domains with
cracks) and/or on the boundary itself (e.g., re-entrant corners). It is well known that ignoring their
presence can adversely affect the accuracy and the convergence of standard numerical methods,
such as finite element, boundary element, finite difference, and spectral methods. One way to
deal with singularities is to incorporate their local form into the numerical scheme, something
that has been successfully done for two-dimensional Laplacian problems (see, e.g., [1,2] and the
references therein).

In the case of two-dimensional Laplacian problems with one boundary singularity, the local
solution expansion is given by

u =
∞∑

j=1

αjr
βj φj (θ), (1)

Correspondence to: C. Xenophontos, Department of Mathematics and Statistics, University of Cyprus, 1678 Nicosia,
Cyprus (e-mail: xenophontos@ucy.ac.cy)

© 2011 Wiley Periodicals, Inc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357545144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 CHRISTODOULOU ET AL.

where (r , θ) are polar coordinates centered at the singular point, αj ∈ R and βj , φj are, respec-
tively, the eigenvalues and eigenfunctions of the problem, which are uniquely determined by
the geometry and the boundary conditions along the boundaries sharing the singular point. The
αj s, called singular coefficients (or stress intensity factors if the boundary value problem arises
from structural mechanics), are primary unknowns in many applications. With standard numerical
schemes, such as the finite element method (FEM), the singular coefficients are calculated via
a postprocessing procedure (see, e.g., [3, 4]). The singular function boundary integral method
(SFBIM), belongs to the class of Trefftz methods in which the singular coefficients are calcu-
lated directly. It was originaly developed for two-dimensional Laplacian problems with boundary
singularities, by Georgiou and coworkers [1, 5], and was recently extended to biharmonic prob-
lems [6–8]. See also [9–11] for reviews of Trefftz methods and recent works with applications to
biharmonic problems.

The SFBIM uses the leading terms of the local asymptotic expansion to approximate the solu-
tion. The associated functions rβj φj (θ) are used to weight the governing biharmonic equation in
the Galerkin sence. This allows for the reduction of the discretized equations to boundary inte-
grals by means of Green’s theorem. Any Dirichlet boundary conditions are weakly enforced by
means of Lagrange multipliers, which are calculated directly together with the unknown singular
coefficients; hence, no postprocessing of the numerical solution is performed.

The implementation of the method for the solution of Laplacian and biharmonic problems
with boundary singularities has given highly accurate numerical results [6–8,12,13]. The conver-
gence of the SFBIM, for Laplacian problems, has been investigated theoretically in [14], where
it was shown that the absolute difference between the true and approximate singular coefficients
decreases at an exponential rate as the number N of the terms in the numerical approximation
is increased. The main goal of this article, is to extend the analysis to the case of biharmonic
problems and establish the (exponential) convergence rates observed in numerical simulations
[6–8]. It should be noted that the Collocation Trefftz method also yields exponential convergence
rates, when applied to biharmonic problems, as was shown in [10, 15].

The rest of this article is organized as follows: In Section II the formulation of the method
for a model two-dimensional biharmonic problem with a boundary singularity is presented. In
Section III the convergence analysis is carried out. Finally, in Section IV, we discuss the efficient
implementation of the method and in Section V, we illustrate it through a numerical experiment.
Throughout this article the usual notation Hk(�) will be used for spaces containing functions
defined on the domain � ⊂ R

2 with boundary ∂�, having k generalized derivatives in L2(�).
The norm and seminorm on Hk(�), will be denoted by ‖ · ‖k,� and | · |k,�, respectively. For the
case when k is noninteger and/or negative, we utilize the definitions and concepts given in [16].
The letters C, c, with or without subscripts, will be used to denote generic positive contants, with
possible different values in each occurence.

II. THE MODEL PROBLEM AND ITS FORMULATION

We consider the following model two-dimensional biharmonic problem (depicted graphically in
Fig. 1): Find u such that

∇4u = 0 in �, (2)
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FIG. 1. The model biharmonic problem with one singular point.

with

u = 0,
∂u

∂n
= 0 on S1

u = 0, ∇2u = 0 on S2

∇2u = 0,
∂(∇2u)

∂n
= 0 on S3

u = g(r , θ), ∇2u = 0 on S4




, (3)

where ∂� = ∪4
i=1Si . A boundary singularity arises at the intersection of S1 and S2 (point O) due

to the sudden changes in the boundary conditions. The function g is assumed to be smooth enough
and such that no other boundary singularities arise (at the endpoints of S4). We also assume that
the only singularity present is the one at the point O. The above boundary value problem models
the so-called Newtonian stick-slip flow problem [6].

For two-dimensional biharmonic problems, the solution in the neighbourhood of the boundary
singularity is given by an asymptotic expansion of the form [6]:

u(r , θ) =
∞∑

j=1

αjr
µj +1f1(θ , µj) +

∞∑
j=1

βjr
ρj +1f2(θ , ρj ), (4)

where αj and βj are the unknown singular coefficients, µj and ρj are the two sets of sin-
gularity powers (i.e., the eigenvalues of the problem) arranged in ascending order, and the
functions f1(θ , µj) and f2(θ , ρj ) represent the θ -dependence of the eigensolution. The func-
tions rµj +1f1(θ , µj) and rρj +1f2(θ , ρj ) are called singular functions. As we are considering a
model for the stick-slip problem where S1 and S2 meet at an angle π , the eigenvalues µj , ρj are
real and the functions f1(θ , µj), f2(θ , ρj ) are even and odd, respectively [17, 18]. In fact, in this
setting, one finds that
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4 CHRISTODOULOU ET AL.

f1(θ , µj) = cos(µj + 1)θ − cos(µj − 1)θ , µj = j − 1

2
, j = 1, 2, . . . (5)

f2(θ , ρj ) = (ρj − 1) sin(ρj + 1)θ − (ρj + 1) sin(ρj − 1)θ , ρj = j + 1, j = 1, 2, . . . (6)

Now, suppose v is a function which satisfies

∇4v = 0 in �

v = 0,
∂v

∂n
= 0 on S1

v = 0, ∇2v = 0 on S2




. (7)

One choice for v is

v = γj r
µj +1f1(θ , µj) + δj r

ρj +1f2(θ , ρj ),

for some constants γj and δj . Multiplying the governing biharmonic equation by v, integrating
over � and using Green’s formula, we obtain

−
∫∫

�

∇v · ∇(∇2u) +
∫

∂�

v
∂(∇2u)

∂n
= 0.

Using Green’s formula once again, the above expression becomes:∫∫
�

∇2v∇2u −
∫

∂�

∇2u
∂v

∂n
+

∫
∂�

v
∂(∇2u)

∂n
= 0.

Considering the boundary conditions in (3) and (7), we find that∫∫
�

∇2v∇2u +
∫

S4

v
∂(∇2u)

∂n
= 0. (8)

Now, on S4 we have u = g and thus∫
S4

(u − g)
∂(∇2v)

∂n
= 0,

which added to (8) gives∫∫
�

∇2v∇2u +
∫

S4

v
∂(∇2u)

∂n
+

∫
S4

u
∂(∇2v)

∂n
=

∫
S4

g
∂(∇2v)

∂n
.

Letting

λ = ∂(∇2u)

∂n
|S4 , µ = ∂(∇2v)

∂n
|S4 , (9)

we get ∫∫
�

∇2v∇2u +
∫

S4

vλ +
∫

S4

uµ =
∫

S4

gµ, (10)
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which leads to the following variational formulation: Find (u, λ) ∈ V1 × V2 such that ∀ (v, µ) ∈
V1 × V2

B(u, v) + b(u, v; λ, µ) = F(v, µ), (11)

where

B(u, v) =
∫∫

�

∇2v∇2u

b(u, v; λ, µ) =
∫

S4

uµ +
∫

S4

vλ

F(v, µ) =
∫

S4

gµ




. (12)

The spaces V1 and V2 are defined as

V1 = H 2
∗ (�) =

{
v ∈ H 2(�) : v|S1∪S2 = 0,

∂v

∂n

∣∣∣∣
S1

= 0

}
, V2 = H− 3

2 (S4). (13)

Remark 1. The above formulation will be used in the analysis of the method. As described in
Section IV, an equivalent formulation will be used for the implementation, which will involve only
one-dimensional integrations along the parts of the boundary that are away from the singular
point.

III. DISCRETIZATION AND ERROR ANALYSIS

To describe the discrete analog of (11), boundary part S4 is divided into sections �i , with
i = 1, . . . , n such that S4 = ∪n

i=1�i . Let hi = |�i | and set h = max1≤i≤n hi . Now, let

v
(1)

j = rµj +1f1(θ , µj) and v
(2)

j = rρj +1f2(θ , ρj )

denote the singular functions, and define the following finite dimensional space:

V1
N = span

{
v

(1)

j

} ∪ span
{
v

(2)

j

}
, j = 1, 2, . . . , N . (14)

We assume that for each segment �i , there exists an invertible mapping Fi : I = [−1, 1] → �i

and define the space

V h
2 = {

λh : λh|�i
◦ F−1

i ∈ Pk(I ), i = 1, . . . , n
}

, (15)

where Pk(I ) denotes the set of polynomials of degree ≤ k on I . Then the discrete version of (11)
reads: Find (uN , λh) ∈ [V1

N × V2
h] ⊂ [V1 × V2] such that

B(uN , vN) + b(uN , vN ; λh, µh) = F(vN , µh)∀(vN , µh) ∈ V N
1 × V h

2 , (16)

with B(u, v), b(u, v; λ, µ) and F(v, µ) given by (12).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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We have the following result, which is a generalization of Theorem 4.5 from [19].

Theorem 1. Let (u, λ) and (uN , λh) be the solutions to (11) and (16), respectively. Suppose
there exist positive constants c0, c, β∗ and γ , independent of N and h such that the following
three conditions hold:

B(vN , vN) ≥ c0‖vN‖2
2,� and |B(u, vN)| ≤ c‖u‖2,�‖vN‖2,� ∀ vN ∈ V1

N , (17)

∃ 0 �= wN ∈ V1
N s.t.

∣∣∣∣
∫

S4

µhwN

∣∣∣∣ ≥ β∗‖µh‖− 3
2 ,S4

‖wN‖2,� ∀ µh ∈ V2
h, (18)

∣∣∣∣
∫

S4

λvN

∣∣∣∣ ≤ γ ‖λ‖− 3
2 ,S4

‖vN‖2,� ∀ vN ∈ V1
N . (19)

Then,

‖u − uN‖2,� + ‖λ − λh‖− 3
2 ,S4

≤ C
{

inf
vN ∈V1

N
‖u − vN‖2,� + inf

ηh∈V2
h
‖λ − ηh‖− 3

2 ,S4

}
, (20)

with C ∈ R
+ independent of N and h.

Proof. Obviously, ∀ (v, µ) ∈ V1 × V2 we have

B(u − uN , v) = −b(u − uN , v; λ − λh, µ) = −
∫

S4

(u − uN)µ −
∫

S4

(λ − λh)v.

Since u = g on S4 and
∫

S4
µh(uN − g) = 0 ∀ µh ∈ V h

2 , we have

∫
S4

µh(uN − u) = 0 ∀ µh ∈ V h
2 , (21)

and

B(u − uN , vN) = −
∫

S4

(λ − λh)vN ∀ vN ∈ V N
1 . (22)

Letting wN = uN − vN ∈ V N
1 we obtain

B(vN − uN , wN) = B(u − uN , wN) + B(vN − u, wN)

= B(vN − u, wN) −
∫

S4

(λ − λh)wN

= B(vN − u, wN) −
∫

S4

(λ − ηh)wN −
∫

S4

(ηh − λh)wN ,

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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with ηh ∈ V h
2 arbitrary. Using the definition of wN and (21) with µh = λh − wh ∈ V h

2 , we further
have

B(vN − uN , wN) = B(vN − u, wN) −
∫

S4

(λ − ηh)wN −
∫

S4

(uN − vN)(ηh − λh)

= B(vN − u, wN) −
∫

S4

(λ − ηh)wN −
∫

S4

uN(ηh − λh) +
∫

S4

vN(ηh − λh)

= B(vN − u, wN) −
∫

S4

(λ − ηh)wN −
∫

S4

u(ηh − λh) +
∫

S4

vN(ηh − λh)

= B(vN − u, wN) −
∫

S4

(λ − ηh)wN −
∫

S4

(u − vN)(ηh − λh).

This along with Eqs. (17) and (19) give

c0‖wN‖2
2,� ≤ |B(wN , wN)| ≤ |B(uN − vN , wN)|

≤ |B(vN − u, wN)| +
∣∣∣∣
∫

S4

(λ − ηh)wN

∣∣∣∣ +
∣∣∣∣
∫

S4

(ηh − λh)(u − vN)

∣∣∣∣
≤ c‖vN − u‖2,�‖wN‖2,� + γ ‖λ − ηh‖− 3

2 ,S4
‖wN‖2,� + γ ‖ηh − λh‖− 3

2 ,S4
‖u − vN‖2,�

≤ C1

{(‖vN − u‖2,� + ‖λ − ηh‖− 3
2 ,S4

)‖wN‖2,� + ‖ηh − λh‖− 3
2 ,S4

‖u − vN‖2,�

}
,

with C1 ∈ R satsifying C1 ≥ max{c, γ }. This is an inequality of order 2: c0x
2 ≤ bx + d, where

x = ‖wN‖2,�, b = C1

{‖vN − u‖2,� + ‖λ − ηh‖− 3
2 ,S4

}
, d = C1‖ηh − λh‖− 3

2 ,S4
‖u − vN‖2,�.

For any ε > 0, we have

d ≤ C1

2

{
1

ε
‖u − vN‖2,� + ε‖ηh − λh‖− 3

2 ,S4

}2

.

Therefore, we have the bound

x ≤ b + √
b2 + 4c0 d

2c0
,

or, equivalently,

‖wN‖2,� ≤ C2

{
‖vN − u‖2,� + ‖λ − ηh‖− 3

2 ,S4
+ 1

ε
‖vN − u‖2,�

}
+ C2ε‖λh − ηh‖− 3

2 ,S4
, (23)

with C2 ≥ 1
c0

max{C1,
√

c0C1/2}. Next, using Eq. (18) with µh = λh − ηh we have that there

exists a nonzero vN ∈ V N
1 such that

‖λh − ηh‖− 3
2 ,S4

≤ 1

β

∣∣∣∫S4
(λh − ηh)vN

∣∣∣
‖vN‖2,�

. (24)
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8 CHRISTODOULOU ET AL.

Also, it follows from (22) that∣∣∣∣
∫

S4

(λh − ηh)vN

∣∣∣∣ =
∣∣∣∣
∫

S4

(λh − λ)vN +
∫

S4

(λ − ηh)vN

∣∣∣∣
≤ |B(u − uN , vN)| +

∣∣∣∣
∫

S4

(λ − ηh)vN

∣∣∣∣
≤ c‖u − uN‖2,�‖vN‖2,� + γ ‖λ − ηh‖− 3

2 ,S4
‖vN‖2,�.

Hence, (24) becomes

‖λh − ηh‖− 3
2 ,S4

≤ C3{‖u − uN‖2,� + ‖λ − ηh‖− 3
2 ,S4

}
≤ C3{‖u − vN‖2,� + ‖vN − uN‖2,� + ‖λ − ηh‖− 3

2 ,S4
},

with C3 ≥ 1
β

max{c, γ }. Since ‖vN − uN‖2,� = ‖wN‖2,�, using (23) leads to

‖λh − ηh‖− 3
2 ,S4

≤ C3(1 + C2/ε)‖u − vN‖2,� + C3(C2 + 1)‖λ − ηh‖− 3
2 ,S4

+ C3C2ε‖λ − ηh‖− 3
2 ,S4

.

Choosing ε = 1/(2C3C2) we get, for some constant C4 > max{C2, C3},
‖λh − ηh‖− 3

2 ,S4
≤ C4

{‖u − vN‖2,� + ‖λ − ηh‖− 3
2 ,S4

}
,

and using the triangle inequality we have

‖λh − λ‖− 3
2 ,S4

≤ ‖λh − ηh‖− 3
2 ,S4

+ ‖ηh − λ‖− 3
2 ,S4

≤ C
{‖u − v‖2,� + ‖λ − ηh‖− 3

2 ,S4

}
.

Similarly, using the above inequality and (23), we finally get

‖u − uN‖ ≤ ‖u − vN‖2,� + ‖vN − uN‖2,�

≤ ‖u − vN‖2,� + ‖wN‖2,�

≤ C
{‖u − vN‖2,� + ‖λ − ηh‖− 3

2 ,S4

}
,

which gives the desired result.

Before verifying that (17)–(19) hold for our problem, consider the following: For any

w =
∞∑

j=1

αjv
(1)

j +
∞∑

j=1

βjv
(2)

j

we can always write

w = wN + rN , (25)

where

wN =
N∑

j=1

αjv
(1)

j +
N∑

j=1

βjv
(2)

j ∈ V N
1 , rN =

∞∑
j=N+1

αjv
(1)

j +
∞∑

j=N+1

βjv
(2)

j , (26)
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with αj and βj the real singular coefficients. We will assume that there exists a constant α ∈ (0, 1)

such that for � = 0, 1, 2 ∣∣∣∣∂�(rN)

∂r�

∣∣∣∣ ≤ CN�αN . (27)

Note that when r < 1, assumption (27) can be replaced by the assumption that the singular
coefficients are bounded, since then, due to the fact that f1(θ , µj) and f2(θ , ρj ) are biharmonic,
we have

|rN | ≤
∞∑

j=N+1

|αj |rµj +1 +
∞∑

j=N+1

|βj |rρj +1 ≤ C1
rµN+1+1

1 − r
+ C2

rρN+1+1

1 − r
≤ CαN ,

with r < α < 1 and C ∈ R
+ independent of α and N . Similarly,

∣∣∣∣∂rN

∂r

∣∣∣∣ ≤
∞∑

j=N+1

|αj |(µj + 1)rµj +
∞∑

j=N+1

|βj |(ρj + 1)rρj

=
∞∑

j=N+1

|αj |(µj + 1)

{
d

dr

∫ r

0
ξµj dξ

}
+

∞∑
j=N+1

|βj |(ρj + 1)

{
d

dr

∫ r

0
ξρj dξ

}

= d

dr

( ∞∑
j=N+1

|αj |(µj + 1)

{∫ r

0
ξµj dξ

}
+

∞∑
j=N+1

|βj |(ρj + 1)

{∫ r

0
ξρj dξ

})

≤ d

dr

( ∞∑
j=N+1

|αj |rµj +1 +
∞∑

j=N+1

|βj |rρj +1

)

≤ C1
d

dr

(
rµN+1+1

1 − r

)
+ C2

d

dr

(
rρN+1+1

1 − r

)

≤ CNαN .

(The case � = 2 follows in a similar fashion.)
In the case r ≥ 1 one may partition the domain � into subdomains in which separate approxi-

mations may be used, including one (near the singular point O) that is valid for r < 1. The solution
over the entire domain can then be composed by combining solutions from each subdomain and
properly dealing with their interactions across the interfaces separating them (see, e.g., [20] where
this idea was applied to a Laplacian problem).

We are now ready to verify that (17)–(19) hold for the problem (16). We have (see, e.g. [21]),

B(v, v) =
∫∫

�

∇2v∇2v =
∫∫

�

|∇2v|2 ≥ C0‖v‖2
2,� ∀ v ∈ V1

and ∃ c ∈ R
+ such that

|B(u, v)| ≤ c‖u‖2,�‖v‖2,� ∀ u, v ∈ V1,

therefore (17) is verified.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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To verify (18) we consider the following auxiliary problem:

∇4w = 0, in �, (28)

with the boundary conditions

w = 0,
∂w

∂n
= 0 on S1

w = 0, ∇2w = 0 on S2

∂(∇2w)

∂n
= 0, ∇2w = 0 on S3

∇2w = 0,
∂(∇2w)

∂n
= µh on S4




, (29)

where µh ∈ V h
2 in (29). By using Green’s formula we obtain

∣∣∣∣
∫

S4

wµh

∣∣∣∣ =
∣∣∣∣
∫

S4

w
∂(∇2w)

∂n

∣∣∣∣ =
∣∣∣∣
∫∫

�

w∇4w +
∫∫

�

∇w · ∇(∇2w)

∣∣∣∣
=

∣∣∣∣−
∫∫

�

∇2w∇2w +
∫

∂�

∇2w
∂w

∂n

∣∣∣∣
=

∣∣∣∣
∫∫

�

∇2w∇2w

∣∣∣∣ =
∫∫

�

(∇2w
)2

≥ C0‖w‖2
2,�. (30)

Note that (see, e.g., [22])

‖µh‖2
− 3

2 ,S4
=

∥∥∥∥∂(∇2w)

∂n

∥∥∥∥
2

− 3
2 ,S4

≤ C‖w‖2
2,�, C ∈ R

+, (31)

so, by (30),

∣∣∣∣
∫

S4

µhw

∣∣∣∣ ≥ β‖w‖2,�‖µh‖− 3
2 ,S4

, (32)

with β ∈ R
+ independent of w and h. Now, let wN ∈ V N

1 be such that w = wN + rN , as given by
(25)–(26). We have

∣∣∣∣
∫

S4

µhwN

∣∣∣∣ =
∣∣∣∣
∫

S4

µhw −
∫

S4

µhrN

∣∣∣∣ ≥
∣∣∣∣
∫

S4

µhw

∣∣∣∣ −
∣∣∣∣
∫

S4

µhrN

∣∣∣∣ (33)

and ∣∣∣∣
∫

S4

µhrN

∣∣∣∣ ≤ C1‖µh‖− 3
2 ,S4

‖rN‖2,�, C1 ∈ R
+. (34)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Now, combining (31)–(33) we obtain∣∣∣∣
∫

S4

µhwN

∣∣∣∣ ≥ β‖w‖2,�‖µh‖− 3
2 ,S4

− C1‖µh‖− 3
2 ,S4

‖rN‖2,�. (35)

Also, from the reverse triangle inequality,

‖w‖2,� = ‖wN + rN‖2,� ≥ ‖wN‖2,� − ‖rN‖2,�,

and by (34), we get∣∣∣∣
∫

S4

µhwN

∣∣∣∣ ≥ β(‖wN‖2,� − ‖rN‖2,�)‖µh‖− 3
2 ,S4

− C1‖µh‖− 3
2 ,S4

‖rN‖2,�. (36)

Therefore, ∣∣∣∣
∫

S4

µhwN

∣∣∣∣ ≥ β‖wN‖2,�‖µh‖− 3
2 ,S4

− (C1 + β)‖µh‖− 3
2 ,S4

‖rN‖2,�. (37)

Since by assumption (27), rN converges to zero exponentially (or, equivalently wN converges to
w exponentially), we have

lim
N→∞

‖rN‖2,�

‖wN‖2,�
= 0,

which means that for any ε > 0 there exists N∗ such that
‖rN ‖2,�
‖wN ‖2,�

< ε whenever N > N∗. Hence,

for N sufficiently large we may write

‖rN‖2,�

‖wN‖2,�
≤ β

2(C1 + β)
.

Combining (36) with (37) yields∣∣∣∣
∫

S4

µhwN

∣∣∣∣ ≥ β

2
‖µh‖− 3

2 ,S4
‖wN‖2,�.

By replacing β

2 by β∗, inequality (18) is obtained. Finally, condition (19) follows from (see, e.g.,
[22]) ∫

S4

λvN ≤ γ ‖λ‖− 3
2 ,S4

‖vN‖2,� ∀ vN ∈ V N
1 , with γ ∈ R

+.

The above analysis leads to the following theorem.

Theorem 2. Let (u,λ) and (uN ,λh) be the solutions to (11) and (16), respectively. If λ ∈ Hk(S4),
for some k ≥ 1, then there exists a positive constant C, independent of N and h, such that as
N → ∞

‖u − uN‖2,� + ‖λ − λh‖− 3
2 ,S4

≤ C{N 2αN + hk+1},

with α ∈ (0, 1).
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12 CHRISTODOULOU ET AL.

Proof. From Theorem 1 we have

‖u − uN‖2,� + ‖λ − λh‖− 3
2 ,S4

≤ C
{

inf
vN ∈V1

N
‖u − vN‖2,� + inf

ηh∈V2
h
‖λ − ηh‖− 3

2 ,S4

}
, (38)

with C ∈ R
+ independent of N and h. Note that by (25) and (26)

inf
vN ∈V1

N
‖u − vN‖2,� ≤ ‖u − wN‖2,� = ‖rN‖2,�.

Using assumption (27) we get

inf
vN ∈V1

N
‖u − vN‖2,� ≤ CN 2αN , (39)

where the constant C > 0 is independent of N and α. Next let λI be the kth-order interpolant of
λ. Then, since λ ∈ Hk(S4) and λh is the best approximation, we have

‖λ − λh‖− 3
2 ,S4

≤ ‖λ − λh‖0,S4 ≤ ‖λ − λI‖0,S4 ≤ hk+1‖λ‖k,S4 ≤ Chk+1,

which, along with (38)–(39) gives the desired result.

The approximation of the singular coefficients is given by the following.

Corollary 1. Let

u =
∞∑

j=1

αjr
µj +1f1(θ , µj) +

∞∑
j=1

βjr
ρj +1f2(θ , ρj ) (40)

and

uN =
N∑

j=1

αN
j rµj +1f1(θ , µ) +

N∑
j=1

βN
j rρj +1f2(θ , ρj ) (41)

satisfy (11) and (16), respectively, with αj , βj and αN
j , βN

j denoting the true and approximate
singular coefficients. Then, there exists a positive constant C ∈ R

+, independent of N and α, but
depending on j , such that as N → ∞∣∣(αj − αN

j

)∣∣ + ∣∣(βj − βN
j

)∣∣ ≤ CN 2αN . (42)

Proof. We begin by noting the following (which can be obtained by elementary calculations):

∫ 2π

0
f1(θ , µj)f1(θ , µk)dθ = 2πδj ,k (43)

∫ 2π

0
f1(θ , µj)f2(θ , ρk)dθ = 0 ∀j , k = 1, 2, . . . (44)

∫ 2π

0
f2(θ , ρj )f2(θ , ρk)dθ = 2π

4k2 − 4k + 5

4k2 + 4k + 1
δj ,k (45)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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where f1, f2 are given by (5)–(6) and δj ,k is the Kronecker delta. Now, in (40) take a fixed
r = r0 < 1, multiply by f1(θ , µk) and integrate from θ = 0 to θ = 2π . Using (43) and (44) we
find that

∫ 2π

0
u(r0, θ)f1(θ , µk)dθ = 2πr

µk+1
0 αk . (46)

Next, multiply (40) by f2(θ , ρk) and integrate from θ = 0 to θ = 2π , to get with the aid of (44)
and (45),

∫ 2π

0
u(r0, θ)f2(θ , ρk)dθ = 2πr

ρk+1
0

4k2 − 4k + 5

4k2 + 4k + 1
βk . (47)

Similarly, one obtains expressions like (46), (47) corresponding to the approximate coefficients
αN

k , βN
k , i.e. Eqs. (46), (47) with u replaced by uN and αk , βk replaced by αN

k , βN
k , respectively.

Therefore, we have

∣∣αk − αN
k

∣∣ ≤ 1

2πr
µk+1
0

∫ 2π

0
|u − uN ||f1|dθ ≤ Ĉk‖u − uN‖0,�,

∣∣βk − βN
k

∣∣ ≤ 4k2 + 4k + 1

2πr
ρk+1
0 (4k2 − 4k + 5)

∫ 2π

0
|u − uN ||f2|dθ ≤ C̃k‖u − uN‖0,�,

where the Cauchy-Schwartz inequality and the smoothness of f1, f2 were used. The positive
constants Ĉk , C̃k depend only on k (and r0).

The result then follows from (39) and the fact that ‖u − uN‖0,� ≤ ‖u − uN‖2,�.

Note that the above corollary establishes the exponential convergence of the SFBIM, in the
case of the biharmonic problem shown in Fig. 1; the term N 2 in (42) can be absorbed in the expo-
nentially decaying term αN . This result is analogous to the one obtained in [14] for 2D Laplacian
problems.

IV. IMPLEMENTATION

We now give a description of the implementation of the method, as mentioned in Remark 1.
Recall the discrete problem given by (16), which may be rewritten in mixed form as follows: Find
(uN , λh) ∈ [V N

1 × V h
2 ] ⊂ [V1 × V2] such that

∫∫
�

∇2vN∇2uN +
∫

S4

vNλh = 0 ∀ vN ∈ V N
1 , (48)

∫
S4

µhuN =
∫

S4

µhg ∀ µh ∈ V h
2 . (49)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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We may reduce the double integral in (48) using Green’s second identity and the boundary
conditions in (3) and (7), as follows:∫∫

�

∇2vN∇2uN =
∫

∂�

(
∇2vN

∂uN

∂n
− uN

∂(∇2vN)

∂n

)

=
∫

S3∪S4

(
∇2vN

∂uN

∂n
− uN

∂(∇2vN)

∂n

)
. (50)

Hence, the problem (48)–(49) becomes: Find (uN , λh) ∈ [V N
1 × V h

2 ] ⊂ [V1 × V2] such that∫
S3∪S4

(
∇2vN

∂uN

∂n
− uN

∂(∇2vN)

∂n

)
+

∫
S4

vNλh = 0 ∀ vN ∈ V N
1 , (51)

∫
S4

µhuN =
∫

S4

µhg ∀ µh ∈ V h
2 . (52)

Obviously, if (uN , λh) ∈ [V N
1 × V h

2 ] ⊂ [V1 × V2] solves (48)–(49) (or (16)), then it also solves
(51)–(52). Now suppose that (uN , λh) ∈ [V N

1 × V h
2 ] ⊂ [V1 × V2] solves (51)–(52). We have from

(50) that ∫
S3∪S4

(
∇2vN

∂uN

∂n
− uN

∂(∇2vN)

∂n

)
=

∫∫
�

∇2vN∇2uN ,

hence, adding Eqs. (51)–(52) and using the above fact, we find that∫∫
�

∇2vN∇2uN +
∫

S4

vNλh +
∫

S4

µhuN =
∫

S4

µhg,

which shows that (uN , λh) solves (16). Equations (51)–(52) are used in the implementation, since
they are posed only on the boundary of the domain away from the singular point. This reduces
the dimension of the problem by one and leads to significant computational savings.

Now, to obtain a linear system of equations corresponding to (51)–(52), we approximate u and
λ by means of

uN =
N∑

i=1

αN
i v

(1)

i +
N∑

i=1

βN
i v

(2)

i ∈ V N
1 , (53)

and

λh =
M∑

k=1

γkψk ∈ V h
2 (S4), (54)

with αN
i , βN

i and γk the unknowns in the system, and V N
1 = span{v(1)

i }N
i=1 ∪ span{v(2)

i }N
i=1,

V h
2 = span{ψk}M

k=1. Upon inserting (53) and (54) into (51)–(52), a (2N +M)× (2N +M) linear
system of the following composite form is obtained:


K11 K12 �1

K21 K22 �2

�T
1 �T

2 0







−→α−→
β−→γ


 =




−→
0−→
0−→
G


 , (55)
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FIG. 2. Stick-slip problem; g(y) = 1
2 y(3 − y2) − 1.

where −→α = [αN
1 , . . . , αN

N ]T ,
−→
β = [βN

1 , . . . , βN
N ]T , −→γ = [γ1, . . . , γM ]T , and

[K11]i,j =
∫

S3∪S4

{
∇2v

(1)

j

∂v
(1)

i

∂n
− v

(1)

i

∂

∂n

(∇2v
(1)

j

)}
, i, j = 1, . . . , N ,

[K12]i,j =
∫

S3∪S4

{
∇2v

(1)

j

∂v
(2)

i

∂n
− v

(2)

i

∂

∂n

(∇2v
(1)

j

)}
, i, j = 1, . . . , N ,

[K21]i,j =
∫

S3∪S4

{
∇2v

(2)

j

∂v
(1)

i

∂n
− v

(1)

i

∂

∂n
(∇2v

(2)

j )

}
, i, j = 1, . . . , N ,

[K22]i,j =
∫

S3∪S4

{
∇2v

(2)

j

∂v
(2)

i

∂n
− v

(2)

i

∂

∂n
(∇2v

(2)

j )

}
, i, j = 1, . . . , N ,

[�1]k,j =
∫

S4

ψk v
(1)

j , k = 1, . . . , M , j = 1, . . . , N ,

[�2]k,j =
∫

S4

ψk v
(2)

j , k = 1, . . . , M , j = 1, . . . , N ,

[−→G ]� =
∫

S4

g ψ�, � = 1, . . . , M .

It is easily shown that the coefficient matrix in (55) is nonsingular provided 2N > M . Hence,
N should be chosen larger than M/2, but not too large since for excessively large values of N

the linear system (55) becomes ill-conditioned and the results obtained are unreliable. As a final
remark, we should point out that all integrals involved in the determination of the coefficient
matrix (and right hand side) in (55) are along the parts of the domain boundaries that do not con-
tain the singularity. These are one dimensional and can be approximated by standard techniques,
such as Gaussian quadrature.

V. NUMERICAL RESULTS

In this section, we illustrate the main theoretical findings through one numerical experiment,
as described below. As the method is proposed for the efficient approximation of the singular

Numerical Methods for Partial Differential Equations DOI 10.1002/num



16 CHRISTODOULOU ET AL.

FIG. 3. Approximation of Lagrange multipler function along S4. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

FIG. 4. Error in coefficient αN
j . [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 5. Error in coefficient βN
j . [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

cofficients, the numerical results shown below correspond to how fast (and accurately) these
coefficients are approximated. The interested reader is referred to [6–8] for additional numerical
results obtained with the SFBIM for biharmonic problems arising in Stokes flow and in fracture
mechanics.

We are considering the boundary value problem depicted graphically in Fig. 2, which is the
classical stick-slip flow problem from fluid mechanics [6]. We note that the boundary of the
domain consists of five parts, with S4 and S5 being the portions of ∂� where Lagrange multipliers
will be applied, since Dirichlet boundary conditions are prescribed there.

We implemented our method, as explained in Section IV, using piecewise quadratic polyno-
mials for the approximation of the Lagrange multiplier functions, on a subdivision of S4 and S5

characterized by a meshwidth h – for simplicity a uniform subdivision of the same meshwidth h

was used for both portions of the boundary. All integrals involved were approximated by a 15-
point Gaussian quadrature on each element. Systematic runs were performed to find the “optimal”
combination of N and h (or M), which ultimately was chosen as the one that gave the “smoothest”
approximation to

λ4 := ∂∇2u

∂n

∣∣∣∣
S4

.

This is shown in Fig. 3 which shows that for M = 39 and N = 45 the approximation to the
Lagrange multipler function on S4 is free of oscillations. Using this pair of values, the constant α

in (42) is calculated by “balancing” the error estimate of Theorem 2, i.e.,

N 2αN ≈ hk+1.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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We find that α ≈ 0.87, from which subsequent “optimal” pairs of N and M may be found.
Figures 4 and 5 show the (percentage relative) error in the approximation of the first five

coefficients αj , βj , j = 1, . . . , 5, in a semilogarithmic scale, as N is increased. The exponential
convergence is clearly visible, as the curves are (essentially) straight lines, even for small values
of N . We should mention that for α1 there is an exact answer [23], while for the rest we used a
reference value for the computations.

The authors thank the anonymous referee whose comments helped improve the article in its
present form.
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