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Laminar Fully Deweloped Flow and 
Heat Transfer in Triangular 
Plate-Fin Ducts 
This paper presents a numerical investigation of fully developed flow and heat 
transfer in triangular cross section plate-fin ducts encountered in compact heat 
exchangers. Heat conduction in the fin and convection in the fluid are analyzed 
simultaneously as a conjugate problem. Overall and local results are presented for 
representative values of the duct aspect ratio and a fin conductance parameter. 

Introduction 

Compact heat exchangers are characterized by a high ratio 
of heat transfer area to core volume, usually in excess of 700 
m2/m3 [1]. Fins are commonly used between the plates in 
such heat exchangers to increase their compactness, and this 
practice often results in plate-fin flow passages of triangular 
cross section, as shown in Fig. 1. The heat transfer jiroblem 
posed by such plate-fin ducts requires a simultaneous analysis 
of conduction in the fin and forced convection in the flow 
passage [2], A numerical investigation of this conjugate 
problem is presented in this paper. 

The plate-fin passages encountered in compact heat ex
changers usually have small hydraulic diameters. This results 
in high area densities and high heat transfer coefficients, and 
the Reynolds number range for such passages, particularly for 
gases, usually falls well within the laminar flow regime [2]. 
Furthermore, with highly compact continuous plate-fin 
passages, such as those encountered in vehicular gas turbines, 
fully developed conditions can prevail over a substantial 
portion of the flow length [2]. In this paper, attention is 
limited to laminar fully developed flow and heat transfer in 
triangular plate-fin passages. 

Laminar fully developed flow and heat transfer in ducts of 
triangular cross section have been analyzed by Kays [3], 
Schmidt and Newell [4], Nakamura et al. [5], Sparrow and 
Haji-Sheikh [6], Shah [7], Schneider and LeDain [8], and 
others. A comprehensive review of many of these in
vestigations is available in a monograph by Shah and London 
[2]. The results of these investigations are useful in the design 
of plate-fin ducts, but they are strictly applicable only to fins 
of very high, or infinite, thermal conductance. In this in
vestigation, fins of finite thermal conductance are considered. 
Thus the results presented in this paper complement and 
extend those in [2-8]. 

The importance of solving the conjugate problem in the 
analysis of heat transfer in finned ducts has been discussed by 
Shah and London [2], and demonstrated by Sparrow et al. [9] 
and Soliman et al. [10], The mathematical model of the 
conjugate plate-fin duct problem presented in this paper is 
similar to that proposed in [9]. It is assumed in this model that 
longitudinal heat conduction (in the flow direction) is 
negligible in the plates, fins, and fluid. The influence of 
longitudinal conduction in a heat exchanger is to reduce its 
effectiveness for a given number of transfer units [1]. This 
reduction may be quite serious in heat exchangers with short 
flow lengths, but it is not expected to be serious in the fully 
developed flow regime analyzed in this paper. An analysis of 
this effect is available in [1]. 

Spatially averaged, or overall, and local results are 

FINS 

Fig. 1 Triangular plate-fin ducts encountered in compact heat ex
changers 
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Fig. 2(a) Typical plate-fin duct cross section, showing the calculation 
domain and related nomenclature; (b) skew-symmetric heat flux 
distributions on the upper and lower fin-fluid interfaces 

presented in this paper. The overall results include friction 
factor-Reynolds number products and mean Nusselt num
bers. The local results include velocity distribution in the 
fluid, and temperature and heat flux distributions along the 
plates and fins. The results depend on the duct aspect ratio 
and a fin conductance parameter. These parameters are 
assigned values that are representative of triangular plate-fin 
ducts commonly encountered in compact heat exchangers. 
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Problem Formulation 

In a majority of compact heat exchangers, the plate-fin 
flow passages are very small compared to the overall core 
dimensions [1, 2]. In this analysis, therefore, it is assumed 
that the core is an infinite matrix of similar plate-fin passages, 
as shown in Fig. 1. Numerous symmetry surfaces exist in such 
a matrix. Furthermore, for any given fin in the central region 
of such a core, the fluid flow in the passages adjacent to its 
upper and lower surfaces is skew-symmetric; therefore, the 
heat flux distributions on its two surfaces are skew-
symmetric, as is qualitatively illustrated in Fig. 2(b). Ad
vantage is taken of these features to limit the calculation 
domain to only 1/4 of the total cross-sectional area between 
two similar fins, as shown by the shaded region in Fig. 2(a). 

Two types of thermal boundary conditions are considered 
in this analysis. In one, the temperature of the plates Tw is 
assumed to be constant, both in the streamwise direction and 
in any cross section: The symbol (T)will be used to denote this 
boundary condition. In the other, a uniform rate of heat input 
per unit length Q' is prescribed, and the plates are regarded as 
being highly conductive, or sufficiently thick, so that their 
temperature Tw is uniform in any cross section but varies 
axially: This boundary condition will be denoted by the 
symbol (kl). In both these categories of the problem of in
terest, the fin temperature distribution 7} is determined by 
conduction within the fin and convection in the fluid. At the 
fin-plate interface, it is assumed that Tj = T„. In practice, 
however, because the rate of heat transfer at the plate-fin 
interface is usually much greater than that passing through a 
comparable area on the unfinned portion of the plate, the 
temperature at the plate-fin interface may be depressed 
relative to that of the surrounding plate material. Sparrow 
and Lee [11] have shown that this base temperature 
depression could result in a significant decrease in the fin heat 
transfer relative to that predicted by a model which neglects 
this base temperature depression, but its influence on the total 
(fin + plate) rate of heat transfer is not as serious. Fur
thermore, for a fixed plate area, as the number of fins in
creases, the effect of the base temperature depression becomes 
progressively less important [11]. Heggs and Stones [12] have 
also investigated this problem, using a two-dimensional 
model of heat conduction in the fin. It should also be noted 
that the (T) and ({TJ) boundary conditions imposed on the 

N o m e n c l a t u r e 

a, b = constants in interpolation function for <j>f, 
equation (23) 

A,B, C = constants in interpolation function for <j>, 
equation (22) 

aha„,bj — constants in discretization equation, 
equation (24) 

ch dh eit fj = constants in discretization equation, 
equation (25) 

cp = specific heat at constant pressure, J/kg»K 
DH = hydraulic diameter, equation (27), m 

/ = Darcy friction factor, equation (26) 
h = heat transfer coefficient, equation (28), 

W/m2«K 
H = spacing between plates, Fig. 2(a), m 

;' = index in fin node numbering scheme, Fig. 
4(b) 

I,J= indices in node numbering scheme, Fig. 3 
k = thermal conductivity, for fluid if no 

subscript, W/m«K 
L = length of the fin, Fig. 2(a), m 
£ = nondimensional fin length =L/H 

M = total number of nodes along the centerline, 
Y=0 

plates may not correspond to those encountered in practice, 
but they represent extreme or bounding cases of the actual 
conditions in compact heat exchangers [1, 2, 13]. 

As shown in Fig. 2(a), the spacing between the plates is 
denoted by H, s is half the distance between adjacent fin 
attachment points on any given plate, L is the length of the 
fin, and the fin thickness is denoted by /. Two Cartesian 
coordinate systems, (x, y) and (£*, »)*), are used in the 
analysis: The x axis is aligned along the centerline between 
two adjacent fins, and the £* axis is oriented along the fin. 
Mathematical descriptions of the fluid flow and heat transfer 
problems of interest are presented in the remainder of this 
section in terms of the following dimensionless coordinates 
and geometrical parameters 

X=x/H; Y=y/H;Z = £*/H; r] = -q*/H 

Z= (z/H)/(xvH/d); $=H/s (1) 

where a is the thermal diffusivity of the fluid (a = k/pcp), and 
f is the aspect ratio of the plate-fin duct. 

Fluid Flow. In the fully developed region, u = v = 0, 
w=w(x, y), p is uniform in any given cross section, dp/dz is 
constant, and for a constant-property Newtonian fluid flow, 
the z-momentum equation reduces to 

d2W/dX2 + d2W/dY2 + l=0 (2) 

where Wis a nondimensional axial velocity 

(H2/^-dp/dz) v ' 

The boundary conditions on Ware the following: At X= 1, or 
along the plate, W=0; along the centerline, or Y=0, 
dW/dY=0; and along the fin, or X= fy, W=0. 

Heat Transfer: (T)Boundary Condition. In this category 
of problems, the thermally fully developed region is 
characterized by a dimensionless temperature distribution 
that remains invariant with the streamwise coordinate [2, 3] 

(Tw-T)/(Tw-Tb) = d(X,Y) (4a) 

where Tb is the fluid bulk temperature. In the thermally fully 
developed region, the difference between Tb and T„ decays 
exponentially with z, so that 

[d(Tw- Tb)/dZ]/(Tw - Tb) = const = - X (4b) 

N = total number of nodes along the plate, 
X=\ 

Nu = Nusselt number, equation (28) 
p = pressure, N/m2 

q = heat flux, W/m2 

qu = heat flux on the upper fin-fluid interface, 
Fig. 2(b), W/m2 

qi = heat flux on the lower fin-fluid interface, 
Fig. 2(b), W/m2 

qp = heat flux to the fluid at the plate-fluid 
interface, W/m2 

qh qp = mean values of qt and qp, respectively, 
W/m2 

Q = total surface-integrated heat loss over the 
fin and the plate, W/m 

Qf = surface-integrated heat loss over the fin, 
W/m 

Q' = constant rate of heat transfer to the fluid 
per unit axial length, equation (15), W/m 

Re = Reynolds number, equation (26) 
s = half-distance along the plate between 

successive plate-fin junctions, Fig. 2(a), m 

Journal of Heat Transfer FEBRUARY 1986, Vol. 108/25 
Downloaded From: https://heattransfer.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



(56) 

(6) 

Noting that u = v = 0, and neglecting longitudinal heat 
conduction and viscous dissipation, the energy equation in the 
fluid reduces to the following 

dT /d2T d2T\ 
pwc"Tz=k\w+^) (5a) 

In terms of 6, X, and the dimensionless variables defined in 
equation (1), it can be shown that 

pwcp (dT/dz) = k(Tw - Tb)(W/ mXd/H2 

(d2T/dx2) = ~(Tw-Tb)(d
1e/dX2)/H2\ 

(d2T/y2) = -(Tw-Tb)(d
2d/dY1)/H2 

and equation (5 a) can be rewritten as follows 

d2e/dx2 + d2e/dY2 + \(w/w)d=o 
At X=l, or along the plate, 0 = 0; and along the centerline, or 
7 = 0 , (d0/dY) = O. The normalized velocity distribution 
(W/W) in equation (6) is obtained from the fluid flow 
analysis. 

At any location £* along the fin, there is a balance between 
the net conduction along the fin and the heat transfer from the 
surface of the fin to the fluid. In the context of a one-
dimensional model of the fin, this energy balance can be 
expressed as 

kft(d
2Tf/d^2) = qu+ql (7) 

where the subscript / refers to the fin, and qu and qt are the 
heat fluxes on the upper and lower surfaces of the fin, 
respectively 

qu=-k(BT/dn*)u\ q, = k(dT/dr,*), (8) 

In this equation, the temperature gradients correspond to 
those on the fluid side of the fin-fluid interfaces, and k is the 
thermal conductivity of the fluid. With reference to the skew-
symmetric heat flux distributions shown in Fig. 2(b), it can be 
established that qu and q, are related by the following 
equation 

Qu\ -•Qi 
i-r 

(9) 

Advantage is taken of this relationship between q„ and qt to 
limit the calculation domain to the shaded region shown in 
Fig. 2(a). In dimensionless terms, equations (7-9) can be 
combined and expressed as follows 

Q(d2d//c!!;2) = l(dd/dv)i + (de/drl)!i^] (10) 

where (dd/dri) is the normal gradient of 6 in the fluid on the 
lower surface of the fin, the subscript / has been dropped for 
compactness in the presentation; £ = (LJH) = [1 +( l / f ) 2 ] ' / , ; 
and 0 is the fin conductance parameter, given by 

U={kft)/(kH) (11) 

At^ = 0 a n d a t ^ = £ , 9 / = 0. 
For any given set of f and Q, equations (6) and (10), along 

with the aforementioned boundary conditions, pose an 
eigenvalue problem. The eigenvalue X has to be found so that 
the solution satisfies the following requirement, which follows 
from the definition of the bulk temperature 

2{\\(W/W)8dXdY=\ (12) 

where the integration is carried out over the shaded region in 
Fig. 2(a). 

In the solution of this eigenvalue problem, it is convenient 
to define a variable \j/ as follows 

t = 6/\; 4>f = ^f/\ (13) 

In terms of 4>, equations (6) and (10), and the associated 
boundary conditions, remain unchanged, and equation (12) 
yields 

\=\/[2l\\(W/W)^dXdY] (14) 

An iterative numerical method is used to solve this conjugate 
heat transfer problem. Details of this method are presented 
later in this paper. 

Heat Transfer: (gj) Boundary Condition. In this 
problem, a uniform rate of heat input per unit axial length Q' 
is prescribed, and the plate temperature Tw is assumed to be 
uniform in each cross section but varies axially. With this 
boundary condition, and assuming that viscous dissipation is 
negligible, all temperatures vary linearly with axial distance in 
the thermally developed region, and an overall energy balance 
yields the following 

8T/dz = dTb/dz = dTw/dz = 2Q' /(pwHscp) (15) 

Furthermore, in the thermally developed regime, the 
following dimensionless temperature remains invariant with 
the stream wise coordinate [2, 3] 

{T„-T)/(Q'/k) = T(X, Y) (16) 

Nomenclature (cont.) 

S = volumetric source term, equation (19) 
t = fin thickness, Fig. 2(a), m 

T = temperature, K 
Tb = fluid bulk temperature, K 
Tf = temperature inside the fin, K 
T„ = plate temperature, K 

u,v,w = fluid velocity components in the x, y, and z 
directions, respectively, m/s 

W = dimensionless axial velocity of the fluid, 
equation (3) 

w, W = mean values of w and W, respectively 
x, y, z = Cartesian coordinates, Figs. 1 and 2(a), m 

X, Y, Z = nondimensional coordinates, equation (1) 
a = thermal diffusivity = k/pcp, m 2 /s 
f = aspect ratio = H/s 

= total (fin + plate) surface efficiency ob
tained using the proposed conjugate 
analysis, equation (33) 

= total (fin + plate) surface efficiency ob
tained using conventional analysis, 
equation (31) 

= nondimensional temperature, equation (4) 

e = 

'/O.r 

^0,c 

X 

p 

T 

Q = 

Subscripts 
a, b,c,0 = 

e,w = 

f = 
HI = 

T = 

half-angle between adjacent fins, Fig. 2(a), 
deg 
eigenvalue, equations (4a) and (14) 
dynamic viscosity of the fluid, kg/m«s 
Cartesian coordinates, Fig. 2(a), m 
nondimensional coordinates, equation (1) 
mass density of the fluid, kg/m3 

dimensionless temperature, equation (16) 
dimensionless temperature = 8/X 
general scalar dependent variable, equation 
(19) 
fin conductance parameter, equation (11) 

values pertaining to specific locations in the 
domain discretization, Fig. 4(a) 
control volume face locations in the fin 
discretization, Fig. 4(b) 
values or variables pertaining to the fin 
pertaining to the thermal boundary con
dition of prescribed Q' 
pertaining to the thermal boundary con
dition of prescribed Tw 
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Fig. 3 Domain discretization scheme 

Using equations (15) and (16), the energy equation (5a) in the 
fluid can be written in the following dimensionless form 

d2T/dX2 + d2T/dY2+2{(W/W) = 0 (17) 

At X=l, or along the plate, r = 0; and along the centerline, or 
Y= 0, dr/dY= 0. The normalized velocity distribution (Wl W) 
in equation (17) is obtained from the fluid flow analysis. 

The thermal analysis of the fin is similar to that presented in 
the previous section, and the governing equation for TJ is the 
following 

Q(d2Tf/de)=[(dT/dr))i + (dT/dr))l_i] (18) 

where fi is the fin conductance parameter given by equation 
(11), and (dr/drj) is the normal gradient of Tin the fluid on the 
lower surface of the fin; the right side of equation (18) reflects 
the skew-symmetric distributions of the heat flux at the upper 
and lower fin-fluid interfaces, as shown in Fig. 2(b). At £ = 0 
and at £=£, 7y = 0. 

Equations (17) and (18), subject to the aforementioned 
boundary conditions, were solved by an iterative numerical 
method described in the next section. 

Numerical Method 

A control volume finite element method was used to solve 
the mathematical models described in the previous section. 
This method is briefly described in this section; a detailed 
description of the method is available in [14]. 

Domain Discretization. The shaded region in Fig. 2(a) is 
first discretized into three-node triangular elements. Then the 
centroids of the elements are joined to the midpoints of the 
corresponding sides to create polygonal control volumes 
surrounding each node in the calculation domain. A sample 
domain discretization is shown in Fig. 3; the solid lines denote 
the domain and element boundaries, and the dashed lines 
represent the control volume faces. The nodes along the 
centerline, Y=0, are numbered / = 1, 2, 3, . . . , M; and along 
the plate, X=\, the nodes are numbered 7 = 1 , 2 , 3, . . . , N. 
In all discretizations used in this investigation, the same 
number of nodes was used along the centerline, the plate and 
the fin boundary: M=N in all cases. Thus the nodes in the 
proposed discretization scheme are arranged in a line-by-line 
pattern, with the lines parallel to the sides of the triangular 
calculation domain. This arrangement of nodes facilitates the 
storage, assembly, and solution of the discretization 
equations. 

The fin is discretized into control volumes and nodes which 

Fig. 4 Details of the discretization of (a) the flow passage, and (b) the 
fin 

are compatible with the discretization of the flow passage, as 
illustrated in Fig. 3. 

Conservation Equation for a Control Volume. Equations 
(2), (6), and (17) can be integrated over a control volume V 
and cast in the following general form 

\dVV<t>-nds+\ySdV=0 (19) 

where 0 is a general scalar dependent variable, S is interpreted 
as a volumetric source term, 9K is the surface of the control 
volume, and n is a unit outward normal to the differential 
area element ds. The fluid flow problem can be modeled by 
setting 4>= W and 5 = 1 ; the (T) heat transfer problem can be 
simulated by setting <t> = ip and S=X( Wl W)^\ and by setting 
</> = r a n d 5 = 2f( W/W), the @ heat transfer problem can be 
modeled. 

When applied to the polygonal control volume associated 
with a typical node /, such as the one shown in Fig. 4(a), 
equation (19) can be written as follows 
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Tablet Overall fluid flow results 

c 

1 1 . 4 3 0 

3 . 7 32 

1 . 732 

1 . 0 0 0 

0 . 5 7 7 

A n g l e «C 20 

10° 

3 0° 

60° 

90° 

120° 

f . R e [ P r e s e n t ] 

5 0 . 1 8 8 

5 2 . 5 2 0 

5 3 . 7 4 4 

5 2 . 9 3 6 

5 1 . 2 2 4 

f . a e [ 2 ] 

4 9 . 9 0 

5 2 . 2 6 

5 3 . 3 3 

5 2 . 6 1 

5 0 . 9 8 

f . R e [8 ] 

5 0 . 0 4 4 

5 2 . 3 4 6 

5 3 . 3 6 0 

5 2 . 6 4 5 

5 0 . 9 7 0 

Table 2 Comparison of average Nusselt numbers for fi = oo 

r, 

1 1 . 4 3 0 

3 . 7 3 2 

1 . 7 3 2 

1 . 0 0 0 

0 . 5 7 7 

NuT [ P r e s e n t ] 

1 . 7 2 6 

2 . 2 8 4 

2 . 5 0 0 

2 . 3 5 9 

2 . 0 3 1 

N u y [8 ] 

1 . 7 0 0 

2 . 2 7 4 

2 . 4 9 7 

2 . 3 5 8 

2 . 0 2 9 

Nu [ P r e s e n t ] 

2 . 4 6 7 

2 . 9 2 1 

3 . 1 1 0 

2 . 9 7 9 

2 . 6 8 1 

Nu m [ 8 , 

2 . 4 3 7 

2 . 9 1 0 

3 . 1 1 1 

2 . 9 8 3 

2 . 6 8 4 

Ci (4>f) i = di(<S>f) /+1 +e, (</>/),-[ +// (25) 

Solution of the Discretization Equations 

Fluid Flow. In the fluid flow problem, <j>=W and S = 1, 
and equation (24) represents a set of simultaneous, linear 
algebraic equations. In this investigation, these equations 
were solved by a line-by-line iterative method based on the 
rri-Diagonal-Matrix-^lgorithm (TDMA). Details of this 
method are available in [16]. It should be noted here that this 
scheme can be used because the proposed domain 
discretization scheme provides a line-by-line arrangement of 
the nodes. In all cases considered in this analysis, the 
iterations were terminated when all values of W had con
verged to at least five significant figures. 

Heat Transfer: (T) Problem. In this case, (j> = ip, 
S=\(W/W)\p, and 4>j= i/y. The normalized velocity 
distribution (Wl W) in this problem is obtained by solving the 
aforementioned fluid flow problem first. Equations (24) and 
(25) represent a coupled set of simultaneous linear algebraic 
equations which, together with equation (14), pose an 
eigenvalue problem. The following iterative procedure was 
used to solve this problem: (1) guess all unknown nodal values 
of 4>\ (2) using this 4> distribution, calculate the coefficients in 
equation (25), and solve this set of equations, using TDMA, 
to obtain the fin temperature distribution ty; (3) with the 
available <j> distribution, calculate X using equation (14); (4) 
with this value of X, and using the available 4>f values as 
boundary conditions at the fluid-fin interface, solve equation 
(24), using a line-by-line iterative method, to obtain a new <f> 
distribution; (5) return to step 2, and repeat until all <j> values 
and the value of X have converged to at least five significant 
figures; and (6) calculate the 9 distribution, using 0 = X</>. 

Heat Transfer: (jil) Problem. In this problem, 4> = J, 
S=2f (Wl W), and 4>f = rf. Again (Wl W) is obtained from the 
fluid flow analysis, and equations (24) and (25) represent a 
coupled set of simultaneous linear algebraic equations. The 
following iterative procedure was used to solve this set of 
equations: (1) Guess all unknown nodal values of 0; (2) using 
this </> distribution, calculate the coefficients in equation (25) 
and solve this set of equations, using TDMA, to obtain the fin 
temperature distribution <j>/, (3) using the available 4>f values 
as boundary conditions at the fluid-fin interface, solve 
equation (24), using a line-by-line iterative method, to obtain 

V f nrfs+ V f nds- SdV\ (20) 
.Jo J 0j J iaOf J 

+ [Similar contributions from other elements associated 
with node i] 

+ [Boundary contributions, if applicable] = 0 

This form of the conservation equation emphasizes that it can 
be assembled using an element-by-element procedure. 

Similarly, the fin equations (10) and (18) can be integrated 
over the control volume associated with a typical fin node i, 
such as the one shown in Fig. 4(b), and cast in the following 
general form 

= [j^ (a*/a,){df + j ^ o*/di-)£_{d$] (2i) 

Interpolation Functions. In the flow passage, all 
dependent variables are interpolated linearly in each three-
node triangular element 

4>=AX+BY+C (22) 
the constants A, B, and C in this interpolation function can be 
uniquely determined in terms of the nodal coordinates and the 
corresponding values of 4>. 

In the fin, the dependent variables are interpolated by 
piecewise linear functions in £. Thus between any two ad
jacent nodes 

4>f = ai+b (23) 

where a and b are unique functions of the nodal values of £ 
a n d <j>f. 

Discretization Equations. The interpolation functions 
given by equations (22) and (23) are used to obtain algebraic 
approximations to the integrals and derivatives in equations 
(20) and (21). The area and line integrals involved in this 
derivation are quite straightforward [14, 15], so the details 
will not be presented here. 

In a general form, the discretization equation for a node / in 
the flow passage can be expressed as follows 

ai<t>i=J^an4>„+bi (24) 
n 

where the summation is taken over all neighbors of node /. 
Similarly, a general representation of the discretization 
equation for a node i in the fin is 
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Fig. 5 Normalized velocity distributions along the symmetry boundary 
(Y = 0) for different aspect ratios 

a new 4> distribution; (4) return to step 2 and repeat until all </> 
values have converged to at least five significant figures. 

Results 

The numerical method described in the previous section was 
used to study fully developed flow and heat transfer in a total 
of thirty different triangular plate-fin ducts; five values of the 
aspect ratio were considered, f= 11.43, 3.732, 1.732, 1.0, and 
0.577; for each of these aspect ratios, six values of the fin 
conductance parameter were investigated, 0 = 00, 25, 10, 5, 2, 
and 1. These values of f and Q are characteristic of air flows in 
commonly encountered triangular plate-fin passages. 

Numerous preliminary runs were undertaken to (1) 
establish the validity of the computer implementation of the 
proposed numerical method, and (2) obtain grid con
figurations that provide a satisfactory balance between the 
accuracy and the computational cost of the results. The final 
choice for f> 1.732 was a 325-node (625-element) grid with a 
moderate stacking of nodes adjacent to the solid boundaries: 
the spacing of successive grid points along Y=0, moving 
away from the point X=Q toward the centroid of the 
triangular flow passage, was given by (Xi+l/X{) = 
((/ +1)//} '*2, and similar grid spacing was used in the vicinity 
of other solid boundaries. For f S 1.732 a 190-node (361-
element) uniform grid was used. 

The results of this study can be grouped into two main 
categories: overall results and local results. These two 
categories of results are presented and discussed next in this 
section. Following that, the results of this study are used to 
evaluate the validity of the conventional approach to the 
design of plate-fin ducts. 

Overall Results 

Fluid Flow: Overall fluid flow results will be presented in 
terms of the product of the Darcy friction factor and the 
Reynolds number 

C (-dp/dz)Dln/pwD,,\ / •Re = (26) 
[(f2 + l)'/2 + l ] 2 W 

where Dh is the hydraulic diameter 

D„ = (2/fc)/[(//2 + s2)Vl + s] (27) 

The values of / -Re obtained in this study and those reported 
in [2, 8] are presented in Table 1. Good agreement between the 
results is evident in all cases. 

Heat Transfer Results: The overall heat transfer 
characteristics of the triangular plate-fin ducts will be 
presented in terms of the average Nusselt number Nu and the 
ratio Q//Q; with reference to Fig. 2, Qf is the surface-
integrated heat loss from the lower surface of the fin to the 

Fig. 6 Nondimensional fin temperature distribution ( _ 
(J)): (a) f = 11.43; (b) f = 3.732; (c) f = 1.732; (d) f = 1.00; (e) {= 0.577 

fluid, and Q is the sum of Qf and the heat loss from the plate 
to the fluid over the range 0 % 
number was evaluated as follows 

y<k s. The average Nusselt 

h--
Q/(TW-Tb) _ 
(fP+s^'+s' 

Nu = 
hDh (28) 

In Table 2, the values of N u r and N u w for fi = oo are 
compared with those reported in [8]. In all cases, the 
agreement between the results is good. 

All overall heat transfer results are presented in Table 3. 
For all aspect ratios, N u r and Nuw/ decrease monotonically as 
the fin conductance parameter Q decreases. This indicates that 
for a fixed plate-fin geometry, a decrease in fin thermal 
conductivity lowers the average heat transfer coefficient h 
defined in equation (28). The ratio Q//Q decreases as Q 
decreases for a fixed aspect ratio. This is because low fin 
thermal conductivities lead to low values of Qj. For a fixed 
value of 0, Qf/Q increases with aspect ratio. The reason for 
this is that for high aspect ratios, the fin surface area con
stitutes the major part of the overall heat transfer area. It is to 
be noted that the Nu values for the (T) problem are con
sistently lower than the corresponding values for the 
(HJ) problem; this is consistent with the results for 0 = oo 
reported in [2, 8]. 

Local Results 

Nondimensional Velocity Distribution: Dimensionless 
velocity distributions (W/W) along the symmetry boundary 
(7=0) between two adjacent fins are presented in Fig. 5. 
These distributions are strongly influenced by the aspect ratio 
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Fig. 7 Nondimensjonal heat flux distribution on the lower fin-fluid 
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(d) f = 1.00; (e ) f= 0.577 

f. Furthermore, the maxima do not occur at the centroids of 
the triangular plate-fin passages, except when the passage is 
equilateral (£"= 1.732). The location of the maximum velocity 
point shifts toward the plate (X= 1) as the aspect ratio is 
increased. This is because the fluid flow seeks the path of least 
resistance; it is to be noted that the location of the maxima in 
Fig. 5 agree well with the corresponding results in [2]. 
Another interesting feature of the plots in Fig. 5 is that the 
maximum value of (WIW) for the equilateral passage 
(f= 1.732) is lower than that of other ducts. This indicates 
that for f= 1.732, the ^distribution over the cross section of 
the duct is not as nonuniform as that for other values of f. 

Nondimensional Fin Temperature: Distributions of (Tw — 
Tf)/(TW — Tb) are presented in Figs. 6(a-e). Results for both 
the (T) and (HJ) thermal boundary conditions are plotted on 
the same graphs, the former being shown by dashed lines and 
the latter by solid lines. Each graph corresponds to a par
ticular value of f and is parametrized by values of fl. It is to be 
noted that for all cases, the two end temperatures of the fin 
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Fig. 8 Dimensionless heat flux distribution on the plate-fluid interface 
( (H i ) ; © ) : (a) f = 11.43; (b) f = 3.732; (c) { = 1.732; (d) f = 1.00; 
(e){= 0.577 

are T„, and the heat flux distributions on the upper and lower 
fin-fluid interfaces are skew-symmetric. Therefore, the total 
surface heat flux (qu + qj) and the fin temperature distribution 
are symmetric about the center point of the fin; thus the range 
of the abscissa in Fig. 6 is 0 % \*/L % 0.5'. 

The curves corresponding to fl = oo coincide with the ab
scissa in all graphs. For a finite fl, Tf drops from T„ at the 
ends of the fin to its lowest value at the midpoint. This causes 
(T„ — Tf)/(TW — Tb) to increase from zero at (£VL) = 0 to its 
maximum value at (£*/Z,) = 0.5. For a given aspect ratio, this 
increase in (Tw — Tf)/(T„ — Tb) gets more pronounced as fl is 
decreased; this implies that for a fixed T„, or a given axial 
location along the duct, as fl decreases, the drop in Tf exceeds 
that in Tb. Another feature of the plots in Fig. 6 is that the 
temperature drop along the fin increases, consistently, with an 
increase in the aspect ratio. This may be explained by noting 
that an increase in aspect ratio f can be viewed as an increase 
in the fin length L for a fixed value of s\ hence a larger 
temperature drop at its center, which is now farther from the 
plates, is to be expected. 

For f= 11.43 and fl=l, it is seen that {(T„-Tf)I(Tw-
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Table 3 Overall heat transfer results 
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Nu 
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1 . 4 5 0 
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0 . 7 1 0 
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2 . 2 1 0 

2 . 1 0 5 

1 . 9 4 4 

1 . 5 7 5 

1 . 2 1 8 

2 . 5 0 0 

2 . 4 2 4 

2 . 3 2 2 

2 . 1 7 4 
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1 . 5 7 4 
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2 . 2 9 9 

2 . 2 2 0 

2 . 1 1 0 

1 . 8 9 0 

1 . 7 0 1 

2 . 3 0 1 

1 . 9 8 7 

1 . 9 3 1 

1 . 861 

1 . 7 3 8 

1 . 6 4 7 

Nu 
HI 

2 . 4 6 7 

2 . 2 5 4 

1 . 9 9 7 

1 . 6 8 2 

1 . 1 5 4 
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1 . 7 7 0 

1 . 3 4 8 

3 . 1 1 0 
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2 . 9 7 9 
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2 . 7 1 1 
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1 . 9 2 4 

2 . 6 8 1 
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2 . 4 3 1 

2 . 2 8 0 

2 . 0 5 3 

1 . 9 0 7 

(Q f /Q> T 

0 . 8 8 

0 . 8 8 

0 . 8 8 
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0 . 8 7 

0 . 7 7 0 
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0 . 7 2 6 

0 . 6 6 6 
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0 . 6 4 3 

0 . 6 1 9 

0 . 5 5 2 
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0 . 5 8 1 
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0 . 4 2 4 

0 . 3 2 8 

0 . 5 5 3 
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0 . 4 7 5 

0 . 4 1 7 

0 . 3 0 9 

0 . 2 2 1 

( Q f / Q ) 
1 HI 

0 . 9 0 5 

0 . 9 0 2 
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0 . 8 9 0 

0 . 8 6 9 

0 . 8 3 6 

0 . 7 8 1 

0 . 7 7 3 

0 . 7 6 2 

0 . 7 4 4 

0 . 6 9 5 

0 . 6 2 7 

0 . 6 6 8 

0 . 6 5 4 

0 . 6 3 4 

0 . 6 0 5 

0 . 5 3 0 

0 . 4 4 1 
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0 . 5 7 3 

0 . 5 4 4 

0 . 5 0 1 

0 . 4 0 7 

0 . 3 1 2 

0 . 5 4 5 

0 . 5 0 7 

0 . 4 5 9 

0 . 3 9 8 

0 . 2 8 9 

0 . 2 0 4 

Tb)}>\ in the vicinity of the midpoint of the fin; this in
dicates that in the central region of the fin, its temperature 
falls below the fluid bulk temperature. The plots in Fig. 6 also 
indicate that the dimensionless fin temperatures for the (T) 
and (kj) boundary conditions differ only slightly. 

Dimensionless Fin Heat Flux: Distributions of <?//<?, are 
presented in Figs. l(a — e), for both the (T) (dashed lines) and 
the ^U) (solid lines) boundary conditions. For each of the 
aspect ratios considered, the plots in Fig. 7 are parametrized 
by the fin conductance parameter Q; to avoid excessive 
crowding, however, the results for certain values of Q have 
been omitted. 

In all cases, the qt/qi distribution varies markedly along the 
fin. All qt/qt plots are significantly affected by the values of f 
and Q. For fixed values of Q, as f decreases, the location of the 
maxima of ?//<?/ shifts away from the vicinity of the plate at 
X= 1, and moves toward the end at X=0. This is in response 
to similar changes in the location of the maxima of the fluid 
velocity distribution. For a fixed aspect ratio, it is expected 
that as fi decreases, q, decreases. In Fig. 7, however, it is seen 
that for f< 1.732, the maxima in Qi/q/ increase as Q 
decreases; this indicates that the decrease in qt is faster than 
that in the maximum value of q/. 

In Fig. 2(b), the heat flux distributions on the lower and 
upper surfaces of the fin are shown to be skew-symmetric and 
positive. From the plots in Fig. 7, however, it is seen that 
qi/qt takes on negative values in the region adjacent to the 
plate at (£*//,)= 1, for f< 11.43 and small values of $2. This 
phenomenon, which may appear surprising at first, is 
physically meaningful. Using the information in Fig. 7 and 
noting that qu and qt are skew-symmetric, it can be deduced 
that the algebraic sum (qu + qf) is always positive. Thus the 
net heat transfer is always from the fin to the fluid. The 
negative part of the heat flux distribution on the individual fin 

Table 4 Total surface efficiencies obtained with the conventional and 
the proposed analyses 
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0.950 

0.909 
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0.738 
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0.699 

no,prop 
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0.971 
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0.617 

0.411 

1.000 

0.968 

0.922 

0.851 

0.690 

0.533 
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0.970 
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0.746 

0.630 

1.000 
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0.941 
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0.801 

0.721 

1.000 

0.864 

0.839 
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0.756 

0.716 

% Error 

0.00 

- 3.30 

- 6.60 

- 8.57 

- 2.92 

13.87 

0.00 

0.21 

0.87 

2.59 

8.99 

19.70 

0.00 

0.93 

2.15 

4.25 
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0.00 

0.41 

0.96 
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0.00 
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2.78 

-2.37 

© 
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0.706 

0.530 

0.408 
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% Error 
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5.32 
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0.99 
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surfaces implies, therefore, that the hot fluid in the corners 
formed by the fins and the plates transfers energy, via the fin, 
to the relatively less hot fluid in the corners formed by ad
jacent fins. In the context of compact heat exchanger design, 
therefore, it may be concluded that combinations of f and Q, 
which give rise to negative values of q//qh are not thermally 
efficient. 

Nondimensional Plate Heat Flux: Distributions of qp/dp 
are given in Figs. 8(o-e), for the (T) (dashed lines) and (Hi) 
(solid lines) boundary conditions. In all plots, qp/qp achieves 
its maximum value at Y=0, and decreases monotonically 
along the plate toward the corner of the duct. In the vicinity of 
the duct corners, the fluid velocity is lower than that in the 
region adjacent to the center of the plate (Y=0); on the other 
hand, the fluid temperature in the corners is higher than that 
in the region adjacent to the center of the plate. Both these 
phenomena adversely influence the convective heat transfer in 
the corners, in relation to that at the center of the plate; the 
plots in Fig. 8 reflect this reasoning. 

From Figs. 8(a-e), it is evident that for a fixed aspect ratio, 
the variation in qp/qp along the plate for high values of fi is 
larger than for low values of fi. This is because plate-fin ducts 
with high fi values, or high fin conductivity, have higher fin 
temperatures, and hence higher corner fluid temperatures, 
than those with low fi values; the closer the fluid temperature 
is to T„, the less receptive it is to heat transfer from the plate. 
Furthermore, the fluid velocity distribution in the region 
adjacent to the plate is less nonuniform along the plate for 
high aspect ratio ducts (f = 11.43 and 3.732) than that for low 
aspect ratio ducts (f= 0.577 and 1). Thus, for a fixed value of 
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fi, the variation in qp/qp along the plate for high aspect ratio 
ducts is somewhat lower than that for low aspect ratio ducts. 

Evaluation of the Conventional Approach to the Design of 
Plate-Fin Ducts. In the conventional approach to the design 
of plate-fin ducts [1], the less than 100 percent effectiveness of 
the fin surface is accounted for by using a fin efficiency rj/; 
and a total surface (plate + fin) efficiency ?)o 

Actual rate of heat transfer from the fin 
* Rate of heat transfer from the fin when fi = co 

Actual rate of heat transfer from the (plate + fin) 
0 Rate of heat transfer from the (plate + fin) when fj = oo 

(30) 
In the conventional approach, these efficiencies are obtained 
using standard fin theory, in which the surface heat transfer 
coefficient is assumed to be a constant. For the plate-fin ducts 
analyzed in this paper, the conventional approach yields 

_ tanh (mL/2) _ (2hn=oa\
 Vi 

Vf-™"~ (mL/2) ' m-\~l^r) 
(31) 

1?0,conv = l - {L/{L+S) }(l-1//,COnv) 

In terms of the dimensionless parameters used in this analysis, 
it can be shown that: 

mL = r{(i2 + l)'/2 + l)(r2 + l)Nun=0,-| '/, 

(32) 

{L/(L+s)} = (f2 + 1)V(«* + l)'A + 1) 

The results of the proposed conjugate analysis of plate-fin 
ducts can be used to calculate the total surface efficiency rj0 as 
follows 

1?o,Prop=Nu/Nu!)=00 (33) 
For laminar fully developed flow and heat transfer, with a 

given thermal boundary condition and fixed values of f and Q, 
the average heat transfer coefficient and the corresponding 
value of 7j0 are constant, independent of the Reynolds and 
Prandtl numbers. Values of r/0conv and rj0>prop for all theplate-
fin ducts considered in this study, for both the (T) and 
(kj) boundary conditions, are presented in Table 4. These 
results show that the conventional approach, for the 
parameters investigated, can lead to errors in the values of ?)0 
that range from - 8.57 to 29.94 percent. 
Concluding Remarks 

In this investigation, the heat transfer characteristics of 
triangular cross section plate-fin ducts have been determined 
by analyzing conduction in the fin and convection in the fluid, 
simultaneously, as a conjugate problem. This approach 
obviates the need for arbitrary assumptions about the heat 
transfer from the fin surface. The overall and local results 
presented in this paper highlight the importance of including 
the fin conductance parameter fi in the thermal analysis of 
triangular plate-fin ducts. In addition, they illustrate that the 
conventional approach to the design of plate-fin ducts, based 
on the standard fin theory, can lead to significant errors. 

Using the data in [1, 2], it may be established that the values 
of H and t characteristic of plate-fin ducts encountered in 
compact heat exchangers lie in the following ranges: 2.54 mm 
<//<20.9 mm, and 0.025 mm <?<0.254 mm, These values 
of H and t yield the following ranges of 0. ( = kft/kH): with 
copper fins (Ay = 400 W/m- °C) and air (£ = 0.0263 W/m-
°C), 18.2sO<1521; with aluminum fins (Ay^237 W/m-
°C) and air, 10.8<fi<901; with carbon steel fins (Ay = 60.5 
W/m-°C) and air, 2.75<fi<230; and with 304 stainless 
steel (Ay = 14.9 W/m- °C) and air, 0.68 <fi< 56.7. For air-to-

air compact heat exchangers, therefore, the results presented 
in this paper may be used to draw the following conclusions: 
With copper fins, Tf = Tw throughout the fin, and the results 
for 0=oo apply; with aluminum, carbon steel, and stainless 
steel fins, and for fins with Ay<200 W/m- °C, however, it 
could be erroneous to assume that Tf =• Tw throughout the fin, 
and the results of the conjugate problem analyzed in this 
paper should be used. 

Only triangular plate-fin ducts were investigated in this 
study. It should be noted, however, that the control-volume 
numerical method presented in this paper can be easily 
adapted for the analysis of other plate-fin ducts, such as 
trapezoidal plate-fin ducts, encountered in compact heat 
exchangers. 

It has been assumed in this work that the triangular plate-
fin ducts have sharp corners. In practice, however, soldering, 
brazing, or welding processes are used to attach the fins to the 
plates, and the fins may be formed by rolling or cold forging a 
continuous metal sheet. Thus rounded corners, and imperfect 
thermal contact between the fins and the plates, could result 
[1, 2]. An investigation of these effects would be a useful 
extension of this work. Another interesting and worthwhile 
extension of this study would be an analysis of developing 
flow and heat transfer in plate-fin ducts, accounting for axial 
heat conduction in the fins and the plates. An investigation of 
turbulent flows and complementary experiments to verify the 
numerical predictions are also desirable. 
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