
Improving I/O Performance in Smart TVs

Cheolhee Lee

Department of Computer and Software
Hanyang University

Seoul 133-791, Korea
Email: lch6719@hanyang.ac.kr

Taeho Hwang

Department of Computer and Software
Hanyang University

Seoul 133-791, Korea
Email: htaeh@hanyang.ac.kr

Youjip Won

Department of Computer and Software
Hanyang University

Seoul 133-791, Korea
Email : youjip.won@gmail.com

Abstract—To use the XML file, it must be converted into a
tree structure form in smart TV application. However, when
the application is terminated, tree are eliminated in process
address space. When application is restarted, XML file need to
be converted to tree again in order to execute application. This
study presents a Fast I/O technique that enables restarting a ap-
plication without data conversion process by adding persistency
in tree in a smart TV environment. Fast I/O technique provides
an object, in which the tree are saved adding persistency in
process address space. The data structure gains persistency
by saving the tree in an object and reusing it without data
conversion when restarting the application. Fast I/O technique
was applied in the web browser to parse HTML and skip the
process of composing a tree. Running time was reduced up to
61% in the test environment, consisting of CPU, memory, and
an SSD.

Keywords-Smart Tv; Web Browser; XML File; DOM Tree;
Persistency; mmap() System Call

I. INTRODUCTION

Modern TV is a computing device. It is loaded with

open source middleware, e.g. Android [1], and Tizen [2],

or proprietary middleware. It can execute variety of appli-

cations including web browser, video player and etc. Most

TV application maintains its content in XML format which

is stored in the NAND-flash based storage devices. To use

XML file the storage device, the application need to converts

the XML format contents into in-memory representation.

This process is called serialization [3]. This in-memory

representation include DOM tree and render tree [4]. For

web browser, the nodes of the tree contain information on

the web pages location, size, and colors of each elements

of the web page [4]. This process is very time-consuming

and cpu-intensive task which constitute significant fraction

of application start-up latency.

We design Fast I/O technique that adds persistency to

memory data that have been dynamically allocated in smart

TV. Persistency means that data in space can be reused

even after the corresponding application is terminated. By

applying this technique, persistency is added to tree in

applications using XML form such as web browsers in a

smart TV. Because saved tree can be reused even after a

process terminates, the process of converting XML file into

tree form can be omitted (Figure 1) which can improve the

performance of applications.

Figure 1. Web Browsing in Prsistent Object

In this work, we develop a set of interfaces to maintain the

in-memory representation of XML document in persistent

manner and the new type of heap segment, persistent heap.

We mmap the heap region to NAND storage area so that the

in-memory representation of XML object which resides at

heap segment becomes persistent. Subsequently, the lifetime

of the in-memory representation of the XML object becomes

orthogonal to the lifetime of the process which creates it.

The new set of interfaces allow the application programmer

to manipulate the object in the persistent heap, e.g. open,

close, read, write and etc. To support persistency for in-

memory data, this study presents objects that dynamically

allocate memory region. The object exists in process address

space and is mapped to files through mmap() system call.

The mapped file is called an object file. The object is not

volatile because it is saved in object file through page cache.

The object can be allocated a heap region in byte granularity.
Due to the virtual memory mechanism of the modern

Operating System, the virtual memory location of a file is

determined by the Operating System. The file can be mapped

into different locations in the virtual address space in each

execution of mmap. The pointers in the tree become invalid

if the file which harbors the tree is mapped into different

virtual address space.

II. RELATED WORK

Persistency [5] is a concept proposed by Atkinson in

1981. It means ‘data requiring system must be maintained

until its necessity disappears’. Grasshopper [6] is a single-

level store [7] operating system. Fully partitioned address

2014 International Conference on Future Internet of Things and Cloud

978-1-4799-4357-9/14 $31.00 © 2014 IEEE

DOI 10.1109/FiCloud.2014.71

399

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357545124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

space, which is the intermediate step between single ad-

dress space [8] and private address space [9], is provided.

Grasshopper must go through pointer swizzling [10] process

to solve pointer validness problems. Therefore, it requires

complicated code modification to be applied in applications.

SoftPM [11] secures memory data persistency through a

container. By saving the root node, all nodes that do not

belong in the container are moved to the next container and

persistency is added. Therefore, SoftPM automatically adds

persistency to memory data connected with the root node.

In SoftPM, since page mapping address is not fixed when

restoring stored container, swizzling process is required. On

the other hand, an object is mapped to the fixed address

space in Fast I/O technique and does not incur pointer

swizzling overhead. Mnemosyne [12] and NV-Heaps [13]

are studies on adding persistency in memory. These provide

address space that has persistency and selectively add per-

sistency to data to be reused without conversion process.

This study presents a technique that enable reusing tree

without process of conversion and to add persistency in

memory of systems that does not incur pointer swizzling

overhead.

III. DESIGN

The purpose of this technique is to add persistency to

XML file that have been changed to tree in a smart TV

and to reuse tree structure without data conversion process.

To achieve this, object having persistency is presented and

interface that dynamically allocates byte unit memory is

provided. The mechanism of this technique is as follows.

Figure 2. Persistency of Object

A file is created to save memory data. This file is then

mapped to process address space through mmap() system

call (Figure 2). The address space is called an object and

the file that is mapped to the object is called an object file.

Byte unit data, called a node, is allocated and removed in the

object. By mapping object file in process address space, the

object and the data in object can be reused after rerunning

the process. Metadata used to manage objects are saved in

a special object called metadata object.

A. Design Considerations

1) Pointer validness problems followed by object mapping
location: To reuse the data structure saved in an object,

object file must be mapped to the same process address

space. If the saved object file is mapped to process address

space when the location of data in the process address is

not fixed, the pointer value showing the connection between

nodes in the object becomes invalid (Figure 3). This problem

must be considered when reusing data structure in an object.

Figure 3. Pointer Validness Problem

2) Occurrence of collision between shared library and
object followed by location change of mmap base: In Linux,

shared library is loaded in mmap area. mmap base, which

is the starting point of mmap area is determined by adding a

random value to process address space address 0xB7701000

and mmap is allocated from this point. mmap base in the

beginning of the mmap area changes every time. A process

is rerun as address space layout randomization(ASLR) [14]

is applied and the address of shared library is changed.

When an object is created in process and process is rerun,

the location of loaded shared library changes which can

cause a collision with the object. For instance, after process

and creating an object in 0X3000, the object file cannot be

mapped to 0X3000 when shared library is loaded in 0X3000.

3) Object sharing problem between programs: The size

of loaded shared library is different for by each program run.

Thus, the area where shared library can be located also varies

in different programs. Because of this feature, a collision

between shared libraries can occur when an object used in

one program is used in another program (Figure 4).

Figure 4. Object sharing problem between programs

400

B. Design Considerations on Pointer Validness and Shared
Library Relocation

1) Fixed address mapping method: If an object file is

mapped to process address space when the location of data

in the process adress is not fixed, the pointer value showing

the connection between nodes in the object becomes invalid.

There are two ways to solve this problem. The first is the

offset based method which does not fix mapping address

of the object and uses relative address (offset value at file

setting) instead of object pointer in the object. The second is

using fixed address space to be mapped to objects in order

to secure validness of object pointer. In the first method,

because an offset value is used instead of an absolute address

of object pointer, pointer swizzling process is required to

gain the real address. The design in this study uses the

second method to always map the objects in the same

address space. In order to map objects in the same address

space, each object must be distinguished. To distinguish each

object, an object must have its own name and be managed

through namespace. Also, metadata must be maintained to

save mapping information of each object. Metadata showing

mapping information of namespace and object are managed

in a special object called metadata object.
2) Shared library area reservation: A collision between

objects can occur as loaded location of shared library

changes. To solve this problem, the area where shared library

can locate is calculated and objects are always allocated to

that fixed address. For this, anonymous mmap is done under

the loaded address of current shared library to reserve areas

around it so that the areas are not used for object creation

(Figure 5).

Figure 5. Shared Library Area Reservation

C. Object Protection and Node Allocation

Linux manages used address space by data struc-

ture called vm area struct. mmap() system call searches

vm area struct to map unused addresses. In fixed address

mapping method, objects must always be mapped to the

same address. However, address space cannot be used for

mapping if it is being used for other purposes. To prevent

an address space from being used for other purposes, a

reservation of address space for object mapping is done.

When starting a program, namespace is circulated to create

vm area struct for all object address spaces.

Node allocation in object is based on memory allocation

algorithm of glibc 2.11.1. Metadata exists in the first region

of each object to manage free chunks in the object. When

the system receives byte unit memory allocation request

by factor of object name, it searches namespace, finds the

object’s metadata, confirms free chunks in the object, and

allocates memory chunk that fits the requested size. When

available empty space is insufficient and the request cannot

be satisfied, the object is increased and memory chunk is

allocated to that spot. Increases in objects are continuous for

heap. However, continuous address space may already be in

use for some objects which would result in discontinuous

increase.

IV. IMPLEMENTATION

Fast I/O technique was implemented in x86-32bit environ-

ment with Linux version 2.6.35. To maintain high stability

and compatibility with Linux system, implementation took

place at library level without kernel modification.

A. Object Mapping Information Management

Mapping location of each object must be remembered for

fixed address mapping of objects. To distinguish each object,

all objects have a name. This is managed through namespace

which is composed of hash table. Metadata with mapping

information is composed as follows. Metadata p superblock

manages metadata of all objects, p ns entry and metadata

p vm area exists in each region (Figure 6).

Figure 6. Overall Structure of Fast I/O Mechanism

p superblock is implemented to manage metadata of

objects, p ns entry, in a hash table which allows fast inser-

tion, deletion, and searching of objects. Also, by managing

p ns entry by a list, p superblock does not need to search all

entries of hash table which makes sequential search easier.

p ns entry contains name fields of corresponding objects. It

401

manages p vm area, which is metadata of regions that make

up an object, in a list and maintains pointers of the first and

the last region. Since insertions and deletions of p vm area

only take place at the end of the objects, p vm area can

be managed by a list, without complicated data structure

such as a tree. p vm area saves information on offset of

object file and the location and size of process address space

to which the corresponding region is mapped. Also, prev,

next fields are maintained to approach other regions of the

corresponding object.

These metadata must also have persistency which means

that metadata must be managed in library. When manag-

ing metadata in kernel area, system calls are required for

namespace approach which slows down the process. Also,

since kernel modification damages compatibility, this study

manages namespace related metadata at library level without

kernel space. There is a unique object to save namespace

related metadata. This object is called metadata object. These

metadata managed node’s allocation/removal

B. Shared Library Reservation

To prevent collision between objects and relocated shared

library, the system checks relocation range of shared library

and allocates objects to lower address. Since shared library

is mapped to the starting address in mmap area, mmap base

must be known. mmap base is located random value away

from address 0xB7701000. The range of this random value

is between (-1M byte) and (+1M byte). Therefore, the lowest

address where shared library can be loaded is 0xB7701000

- 1M - (size of shared library). This address is called

p base. Collision with shared library can be prevented

if an object is allocated to address lower than p base.

An object is allocated through mmap() system call which

searches mmap base for lower address to allocate empty

address space. Therefore, for an object to be allocated to

address lower than p base, empty address space between

mmap base and p base must be reserved. When starting

a program, proc/maps file of the corresponding process is

called and parsed. The size of shared library is calculated

through parsed data. Then, p base is found and empty area

between mmap base and p base is reserved by anonymous

mmap. Therefore, objects allocated through mmap are al-

ways mapped to address lower than shared library.

C. Object Reservation

Objects are always mapped to the same address. There-

fore, collision occurs when the address space, to which

an object is to be mapped, is used for other purposes. To

prevent this, namespace is searched when starting a program

and address space is reserved for objects to be mapped.

Reservation means blocking usage of corresponding address

space through anonymous mmap.

Metadata p ns entry of object in namespace is managed

by hash table. Because only part of hash table is used,

searching all entries is a waste. Therefore, p ns entry are

managed by a list and all objects can be approached by

circulating this list. Also, the list of p vm area on each

object is circulated to reserve address space of all regions

of the corresponding object (Figure 7).

Figure 7. Shared library reservation and object reservation

D. Object Interface

In this section, object interface is described. Address

space of library area and all objects must be reserved by

calling p reserve() function before calling main function

when starting a program. Reserving shared library area

prevents a collision between shared library and an object

and reserving all objects prevents usage of object address

space for other purposes. p create() function is called for

object creation. 4KB sized object file is created when

p create() is called as factor of object name, and this file

is mapped to process address space for 4KB sized object

to be created. The function that allocates nodes in an

object is p malloc(). p malloc() function allocates object

name, receives memory size as factor, and searches and

returns free node in corresponding object. To reuse objects

created previously, p map() function is called and object

name is received as a factor. p map() searches metadata

of corresponding object(p ns entry) through hash function,

circulates metadata to all regions of an object, and maps

the metadata with object file. Objects can be approached

through this process and all nodes of tree data structure

can be approached by approaching the root node in object

through get prime node() function.

V. EVALUATION

This section explains the performance evaluation of Fast

I/O technique in smart TVs. The following two experiments

were conducted and the performance was measured. The

first experiment was to compare the performance of File I/O

to that of Fast I/O technique interface on object creation,

deletion, mapping, expansion, and reduction. The second

experiment was to measure and compare the performance

of smart TVs on executing simple web browser with and

402

without Fast I/O technique. The experiments were conducted

in AMD Phenom X4 925 Processor, 4GB DDR3 DRAM

environment. An SSD (60GB OCZ VERTEX2 SATA 2) was

used for storage and additional experiments were conducted

on web browser with ramdisk, 500GB, 7200RPM hard disk.

Dillo 2.2 [15] was used for web browser.

A. Interface

Performance of Fast I/O technique interface was measured

and compared to that of File I/O on object creation, mapping,

expansion, and reduction. With p create() command, Fast

I/O technique creates object file, maps the file to address

space after increasing its size, and creates metadata that

manage the object. To achieve the same tasks with file

system, open(), ftruncate(), mmap(), and fsync() functions

were used. Figure 8 shows measured performance on ob-

ject creation, deletion, expansion, and reduction. Fast I/O

technique interface and File I/O functions showed similar

performance overall.

0

100

200

300

400

500

600

p_create create p_delete delete p_extend extend p_reduce reduce

Ex
ec

ut
io

n
Ti

m
e

(u
se

c)

Figure 8. Fast I/O vs File I/O (create, delete, extend, reduce)

Figure 9 shows performance measurement on object map-

ping and removal. In common with other interfaces, interface

that file is mapped to process address space have similar

latency

0

10

20

30

40

50

p_map map p_unmap unmap

Ex
ec

ut
io

n
Ti

m
e

(u
se

c)

Figure 9. Fast I/O vs File I/O (map, unmap)

B. Web Browsing

In this study, cache mechanism of web browser was

changed by applying Fast I/O technique. When opening a

web page in the original web browser(Legacy Dillo), HTML

is received by web, cached in disk, HTML is parsed, and

tree is composed. The web page is displayed by a tree

and when the browser is closed, the tree are eliminated.

When opening a cached web page, HTML is read from

disk and generate a tree after parsing process. And the web

page is then displayed on the screen. When smart TV Fast

I/O technique(F-Dillo) is applied, the web browser creates

the tree structure through parsing process and caches the

structure. This tree is reused to display a cached web page

when a user re-visits the page after closing the web browser,

bypassing parsing process and tree building process.

0

30

60

90

120

150

R
Dillo

S H

Dillo

R
F-Dillo

S H R
Dillo

S H

Google

R
F-Dillo

S H R
Dillo

S H

Naver

R
F-Dillo

S H R
Dillo

S H

Daum

R
F-Dillo

S H R
Dillo

S H

AOL

R
F-Dillo

S H

Ex
ec

ut
io

n
Ti

m
e

(m
se

c)

Disk IO Time
Parsing Time

Drawing Time

Figure 10. Execution Time by Web Page

For performance evaluation, the time from starting a web

browser to displaying of web page is measured. Running

times for disk IO, parsing, and displaying steps were mea-

sured. Figure 10 shows the time measurements for disk IO,

parsing, and displaying steps. The original web browser and

the web browser with Fast I/O technique are marked as Dillo

and F-Dillo, respectively. For storage, ramdisk, an SSD, and

a hard disk were used which are shown as “R”, “S”, and

“H”, respectively, in Figure 10. With Fast I/O technique,

parsing time is removed but disk IO time is substantially

increased. This is due to the overhead caused by large tree

which increases to 10 times larger than the size of HTML.

When using a hard disk as storage, the overhead of disk IO

offsets the effect of omitting parsing process, and it can be

confirmed that Fast I/O technique is not appropriate in an

environment using a hard disk as storage. When using an

SSD as storage, parsing time was eliminated and disk IO

time increased as in an HDD environment. However, since

SSDs have Fast I/O speed, the performance enhancement

by parsing time omission is larger than overhead increase

by disk IO. With ramdisk, although parsing time was also

eliminated, increase in disk IO overhead was more severe

403

than with an SSD.

0

0.2

0.4

0.6

0.8

1.0

1.2

R S
Dillo

H R S
Google

H R S
Naver

H R S
Daum

H R S
AOL

H

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Figure 11. Normalized Execution Time by Web Page

Figure 11 shows running time of F-Dillo in an HDD

and an SSD environments, normalized against Legacy Dillo

running time. In an HDD environment, there were web pages

that showed reduced performance with Fast I/O technique

due to high disk IO overhead. However, with an SSD, all

web pages showed performance enhancement with Fast I/O

technique with maximum of 61% improvement.

VI. CONCLUSION

This study presents Fast I/O technique in a smart TV

environment. Through Fast I/O method, persistency can be

selectively added to memory data that have been dynami-

cally allocated. Applying this method, applications can reuse

XML’s tree without deserialization process even when a

process is rerun after it is terminated. However, as seen in the

experiment results, using Fast I/O technique increases disk

IO overhead for saving converted data structure. For storage

with slow input/output performance, such as a hard disk,

performance reduction from increased disk IO overhead

offsets the performance improvement from eliminating dese-

rialization step. Using Fast I/O technique is not appropriate

in such case. On the other hand, for SSDs with Fast I/O

characteristic, increase in disk IO overhead is relatively

small which brings overall performance improvement when

applying Fast I/O technique. Since smart TVs use NAND

based storage with relatively Fast I/O speed, performance

improvement can be expected when Fast I/O technique is

applied.

ACKNOWLEDGMENT

New Memory: This work is supported by IT R&D

program MKE/KEIT (No. 10041608, Embedded System

Software for Newmemory based Smart Device).

REFERENCES

[1] Android open source project. [Online]. Available:
http://source.android.com

[2] Tizen open source project. [Online]. Available:
http://www.tizen.org/

[3] T. C. Lam, J. J. Ding, and J.-C. Liu, “Xml document
parsing: Operational and performance characteristics.” IEEE
Computer, vol. 41, no. 9, pp. 30–37, 2008.

[4] K. Zhang, L. Wang, A. Pan, and B. B. Zhu, “Smart caching
for web browsers,” in Proceedings of the 19th international
conference on World wide web. ACM, 2010, pp. 491–500.

[5] J. Rosenberg, A. Dearle, D. Hulse, A. Lindström, and S. Nor-
ris, “Operating system support for persistent and recoverable
computations,” Communications of the ACM, vol. 39, no. 9,
pp. 62–69, 1996.

[6] A. Dearle, R. Di Bona, J. Farrow, F. Henskens, A. Lindström,
J. Rosenberg, and F. Vaughan, “Grasshopper: An orthogonally
persistent operating system,” Computing Systems, vol. 7,
no. 3, pp. 289–312, 1994.

[7] E. Shekita and M. Zwilling, Cricket: A mapped, persistent
object store. Center for Parallel Optimization, Computer
Sciences Department, University of Wisconsin, 1990.

[8] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and
J. Liedtke, “The mungi single-address-space operating sys-
tem,” Software: Practice and Experience, vol. 28, no. 9, pp.
901–928, 1998.

[9] J. Mossière and X. R. de Pina, “Single address space or
private address spaces?” in Proceedings of the 6th workshop
on ACM SIGOPS European workshop: Matching operating
systems to application needs. ACM, 1994, pp. 72–77.

[10] S. J. W. D. J. Dewitt, “A performance study of alternative
object faulting and pointer swizzling strategies,” in Proc. 18th
Int. Conf. Very Large Data Bases, Vancouver, BC, Canada,
1992.

[11] J. Guerra, L. Marmol, D. Campello, C. Crespo, R. Ran-
gaswami, and J. Wei, “Software persistent memory,” in Proc.
of the USENIX Annual Technical Conf., Boston, MA, 2012.

[12] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne:
Lightweight persistent memory,” in Proceedings of the Six-
teenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser.
ASPLOS 2011, 2011, pp. 91–104.

[13] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson, “Nv-heaps: Making persis-
tent objects fast and safe with next-generation, non-volatile
memories.”

[14] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh, “On the effectiveness of address-space ran-
domization,” in Proceedings of the 11th ACM conference on
Computer and communications security. ACM, 2004, pp.
298–307.

[15] J. Arellano-Cid and H. H. von Brand, “Network programming
internals of the dillo web browser.” in sccc, 2000, pp. 178–
182.

404

