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Abstract

Consider the question whether a cyber security investment is cost-effective. The result will depend on
the expected frequency of attacks. Contrary to what is referred to as threat event frequencies or haz-
ard rates in safety risk management, frequencies of targeted attacks are not independent from system
design, due to the strategic behaviour of attackers. Although there are risk assessment methods that
deal with strategic attackers, these do not provide expected frequencies as outputs, making it impos-
sible to integrate those in existing (safety) risk management practices. To overcome this problem, we
propose to extend the FAIR (Factor Analysis of Information Risk) framework to support malicious,
targeted attacks. Our approach is based on (1) a clear separation of system vulnerability and envi-
ronmental threat event frequencies, and (2) deriving threat event frequencies from attacker resources
and attacker strategies rather than estimating them directly, drawing upon work in adversarial risk
analysis. This approach constitutes an innovative way to quantify expected attack frequencies as a
component of (information) security metrics for investment decisions.

Keywords: adversarial risk analysis, factor analysis of information risk, security metrics, threat
event frequency

1 Introduction

When it comes to critical infrastructures such as water, electricity, and transport, policy makers are
increasingly concerned about malicious disruptions of these systems. In particular, cyber attacks and
even cyber warfare are considered important threats. However, the relation between traditional safety risk
assessments for such infrastructures and the required security risk assessments often remains unclear.

Safety risk is usually estimated using a frequency-based approach. For example, storms of a certain
category are expected to occur, say, once every decade. Based on such figures in combination with the
expected impact of events, one can calculate risk as annual loss expectancy, and decide which counter-
measures would be cost-effective. Within risk assessment for malicious threats, like cyber attacks, two
approaches are prevalent. Either the safety approach is transferred, assuming externally determined event
frequencies (baseline rate of attack, e.g. [17]), or a game-theoretic analysis is performed of strategic at-
tacker and defender moves (e.g. [4]). Although the first approach may work for undirected threats such
as viruses, it does not account for the strategic nature of targeted attacks, in which attackers “tailor their
attack strategy with the aim of damaging the physical system under control” [6]. The second approach
does this, but the results of game-theoretic analyses do not provide expected frequencies as output. The
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results are therefore not compatible with a frequentist or annual loss expectancy approach to risk, and
cannot be easily integrated within the context of traditional (safety) risk assessments.

In this paper, we aim at reconciling safety and security risk, by providing frequency estimations for
malicious, targeted threats, in order to support security investment decisions. In particular, we ask the
question how can we represent the effects of attacker strategies in such an analysis, being the major
difference from the safety context.

To define our concepts, we use the risk definitions provided by The Open Group [24], based on the
Factor Analysis of Information Risk (FAIR) taxonomy. They assume the existence of “threat agents”
in the environment of a system that may cause damage to system assets. The threat agents cause threat
events, with a certain threat event frequency. These threat events may or may not lead to loss events, with
associated loss event frequency, depending on the vulnerability of the affected component. For example,
an attacker executes an attack scenario (threat event), which may or may not lead to failure of one or
more power plants (loss event). This model can be applied to both accidental and malicious threats.
However, whereas accidental threats occur randomly, the occurrence of malicious threats is based on
attacker decisions.

We extend the FAIR framework to enable integration of safety and security risk assessments. To this
end, we combine adversarial reasoning with a frequency-based output of the analysis. We have devel-
oped our model in the context of the SESAME project1, which provides decision support for security
investments in electricity networks. In the same project, models of electricity networks, their compo-
nents, associated vulnerability levels, and consequences of component failure are being developed as
well, in order to calculate the expected damage. The present paper outlines the essential insights of the
reconciliation approach, and highlights open problems.

As we are primarily interested in estimating threat event frequencies in order to support assessments
of cost-effectiveness of countermeasures (return on security investment), our primary claim is that the
proposed measures are useful in this context, assuming the current status quo. Given the many devel-
opments that may change the battlefield at any time, we cannot provide accurate predictions of future
events, although the metrics may turn out to be useful as an ingredient for this purpose as well.

In Section 2, we discuss preliminaries and related work. In Section 3, we provide the definitions of
our concepts, based on the FAIR framework [24]. In Section 4, we define the relation between threat
event frequency, threat capability, vulnerability, and loss event frequency for safety contexts. In Sec-
tion 5, we discuss how to use this model to estimate relevant variables in a security context. In Section 6,
we illustrate the framework by simulated examples. In Section 7, we evaluate the framework against de-
sirable properties for the metrics. We end with open questions in Section 8 and conclusions in Section 9.

2 Preliminaries and related work

2.1 Security investment

Both the frequency and the impact of events are essential for providing decision support on investments
in security measures for critical infrastructures [12]. In particular, to support decisions on security invest-
ments, we need to know how much reduction of risk can be achieved by implementing countermeasures.
Only if we can achieve this can we do a meaningful cost-benefit analysis. Thus, we would need mea-
sures of risk both without and with a specific countermeasure implemented. In such a context, qualitative
assessments in terms of Low, Medium, High and similar scales are ineffective, and we would need quan-
titative measures of both event frequencies and event impacts. Frequency measures are available in safety
sciences, e.g. in terms of hazard rates: storms of a certain magnitude are expected to occur once every

1www.sesame-project.eu
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century, on average. Similarly, accidental threats such as component failure can also be assessed in terms
of failure rates.

However, the security domain, dealing with malicious attacks or misuse, creates particular problems
that do not occur in safety. Contrary to what is referred to as threat event frequencies or hazard rates
in safety risk management, attack frequencies are dependent on attacker behaviour. The frequency of
storms is independent of the resilience of power grids, but (cyber) terrorists will estimate their costs
and chance of success based on what they know about the system, and then decide how to invest their
resources. The frequency of threats is thus dependent on their expected impact. On the one hand, the
effect of countermeasures on risk may therefore be more than proportional with respect to improved
security, as attackers may decide to stop their activities if the security of the systems is increased. On the
other hand, increased security may also merely lead attackers to target different components / different
attack scenarios in the system, causing the effect to be less than proportional. Both matters complicate
meaningful assessment of risk with and without a particular countermeasure. Inspiration for solutions
needs to be sought in the domain of safety analysis [15, 16], but also in social sciences, in particular
economics. In the end, we are interested in estimating the attack rates (here referred to in terms of threat
event frequency) in the two different conditions (with and without countermeasure), in order to support
investment decisions.

In the context of such assessments, data to support empirical models is often lacking. Many re-
searchers have experienced that companies and governments are reluctant to share information on se-
curity incidents, complicating empirical estimation of threat levels. Moreover, even if these data would
be available, filling in the empirical model for the situation in which a countermeasure has been imple-
mented would be next to impossible. We want to estimate the benefits of investment a priori, as at the
time of decision the countermeasure has not been implemented yet, so there is no data available about
the attack rate in that situation. This holds in particular when considering targeted attacks (in contrast to,
say, falling victim to a randomly travelling virus). Even if data would be available for the situation with-
out investment, past results might not provide a reasonable estimate for the future, unless an otherwise
similar organisation has precisely that countermeasure in place, and is willing to share its data. Finally,
empirical data on past frequencies may not be appropriate predictors for future events, as attacker strate-
gies adapt to changes in their environment. This means that we cannot estimate threat event frequencies
based on empirical data, as proposed by [22]. In such situations, recourse to theoretical models is the
only option, which is why such models are urgently needed. Our estimates are based on a model of a
(rational) attacker, and a judgement of his resources.

In terms of quantifying costs, we assume the impact of attacks and the cost of countermeasures as
given. However, it is important to note that costs of countermeasures are not only related to investment
and operation, but also to the effect on users and business processes [2, 3]. There may even be situations
in which certain attacks increase social welfare, and not taking measures could be rational for some
actors [11].

2.2 Adversarial risk analysis

There is some literature on what is called Adversarial Risk Analysis [8, 9, 21, 23], providing game-
theoretic approaches to security investment, where investment on both attacker and defender side is
abstract and expressed in terms of money. The central question is then how an equilibrium is achieved by
repeated investment by the attacker and the defender in response to each others’ actions. However, the
outputs of such analyses are not bound to time, in the sense of when or how often. We wish to estimate the
expected frequency of attacks in the current situation of a concrete system, as well as in a situation where
a specific countermeasure is implemented. Our example context concerns electricity infrastructures,
where grid operators wish to know whether a particular security investment is cost-effective.
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There are therefore two main differences between our framework and game-theoretic approaches.
Firstly, we work in a context in which the defender first chooses the defenses, and then the attacker
executes his strategy without further interference by the defender. Rather than requiring advanced game
theory, such problems can be solved by what has been called “leader-follower ‘minimax’ analysis”: a
simple game in which the defender moves first, anticipating optimisation by the attacker [7]. Secondly,
our framework will not output an equilibrium of optimal (monetary) investments, but rather calculate (1)
the expected frequency of attack given a selected set of defenses (and associated optimal investment for
the attacker, as well as risk induced by the attacks), and thereby (2) the optimal set of defenses.

2.3 Attacker models

One of the key items in security analysis is the attacker model. In the domain of security risk assessment,
the attacker model is typically expressed in economic terms. In representing the adversaries, we can
distinguish the following relevant parameters (derived from [23]): number of adversaries; adversaries’
incentives; attacker risk (of detection / punishment); and resources required. The latter three are associ-
ated with attacker utility functions [14]. Utility functions map the results of attacks (either in terms of
loot, detection/punishment, or mounting activities) to a single value scale for the attacker. As argued by
[8], the risk of detection, and therefore the attacker’s cost, can be assumed increasing and concave with
respect to the effort (resources) spent on the attack. To simplify our initial model, we assume the risk of
detection proportional to the effort. It can therefore be seen as part of the effort.

To develop a security model based on an attacker model, the relation between system properties
and attacker strategies needs to be defined. The attacker will base his strategy on the (perceived) system
properties, and the system security properties (such as risk) will in turn depend on the attacker behaviour.
Several approaches already exist for quantifying security attributes, but these generally exclude the “at-
tacker effort as a function of time”, and only focus on the “security breaches as a function of effort”
(terminology from [15]). When we want to estimate loss event frequencies, and allow the attacker to
select the attack scenario, we need to include the attacker effort as a function of time. This requires an
explicit model of attacker investment. Modelling attacker effort for each attack scenario as a random
variable [16] is not adequate for our context, as the attacker will base this effort on the expected damage
of the attack (from his perspective; cf. [7, 13]).

3 Definitions

In order to enable quantification of security properties, they first need to be defined precisely, which is
a challenge in itself. Several definitions are possible, depending on standards and references chosen,
and definitely also on the goal of the analysis. As we have outlined above, attackers will decide on
their attacks based on system properties, and a single likelihood or frequency value for the frequency of
successful attacks thus obscures fundamental dependencies. It is therefore essential to clearly separate
between internal system properties, and external threat events.

We are also not interested in the probability of failure up to a certain point in time. Rather, we wish to
know the expected number and frequency of failures. We need numbers of attacks and failures to estimate
risk in a period in which multiple attacks may occur, not probabilities of at least one event happening in
such a period. For example, if four attacks are expected to happen within the set time frame, and two of
them are expected to succeed, this provides us with the means to calculate the expected losses. If we only
know the likelihood of at least one attack having been successful (i.e. the cumulative failure probability),
this does not provide the required information directly.
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Based on these considerations, we choose the FAIR framework [24] as a basis.2 In this taxonomy,
risk-related variables are defined starting from the notions of assets and threat agents acting against these
assets, potentially causing damage. A threat event occurs when a threat agent acts against an asset, and
a loss event occurs when this causes damage. For example, a storm may occur at the location of a power
line (threat event), and this may or may not damage the power line (loss event).

Like many other approaches, The Open Group distinguishes between likelihood and impact of events.
However, they explicitly use frequencies to represent likelihood, leading to what they call Loss Event
Frequency (LEF) and Probable Loss Magnitude (PLM). The former represents the expected number of
loss events of a particular type per unit of time (often referred to as failure rate), and the latter represents
the expected damage per loss event of that type. Risk can be seen as expected damage due to a certain
type of loss event within a given time frame, and it can then be calculated as LEF · PLM.

Within LEF and PLM, The Open Group makes further distinctions. We will not discuss those of
PLM here, but focus on LEF. First of all, the Loss Event Frequency can be decomposed into Threat
Event Frequency (TEF) and Vulnerability (V). TEF denotes the expected frequency of occurrence of a
particular threat (seen as a threat agent acting against an asset; a storm at the location of a power line),
and V specifies the likelihood of the threat inflicting damage upon the asset. The value for LEF can then
be calculated as TEF · V.

The Open Group defines the Vulnerability V based on Threat Capability (TC) and Control Strength
(CS). In this definition, TC denotes some ability measure of the threat agent, and CS a resistance (or
difficulty of passing) estimate of the control. We have discussed this relation in detail in [19].

Thus, if a threat event is expected to occur 4 times in 10 years (TEF = 0.4 y−1), and one in two threat
events is expected to cause loss (V = 0.5), then 2 loss events are expected to occur in 10 years (LEF =
TEF · V = 0.4 y−1 · 0.5 = 0.2 y−1). If the expected damage per threat event is e 1000 (PLM), then the
risk run due to this threat amounts to e 200 per year (R = LEF · PLM = 0.2 y−1· e 1000 = e 200 y−1),
or e 2000 in 10 years. We summarise and formalise these definitions below.

Definition 1. The threat event number (denoted H(t) for hazard) is the expected number of threat events
within a specific time interval [0..t]. The threat event frequency (denoted h(t)) is the expected number of
threat events per unit of time, i.e. the derivative of the threat event number.

h(t) =
dH
dt

(1)

The Mean Time Between Threat Events (denoted MTBT) is the inverse of the threat event frequency
(MTBT = 1/h).

Definition 2. The vulnerability (denoted V (t)) is the probability that a threat event causes a loss event.

Definition 3. The loss event number (denoted Λ(t) for loss) is the expected number of loss events within
a specific time interval [0..t]. The loss event frequency (denoted λ (t)) is the expected number of loss
events per unit of time, i.e. the derivative of the loss event number.

λ (t) =
dΛ

dt
(2)

The Mean Time Between Failures (denoted MTBF) is the inverse of the loss event frequency (MTBF =
1/h). The loss event frequency can be calculated from the threat event frequency and the vulnerability:

λ (t) = h(t) ·V (t) (3)

2This taxonomy is also discussed in our previous work, see [19].
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Similarly, the loss event number can be calculated from the threat event frequency and the vulnerability:

Λ(t) =
∫ t

0
h(t) ·V (t)dt (4)

When threat event numbers or loss event numbers are calculated for different intervals than [0..t], we use
the following notation:

H([t0..t1]) =
∫ t1

t0
h(t)dt; (5)

Λ([t0..t1]) =
∫ t1

t0
λ (t)dt (6)

When threat and loss event frequencies are constant in time, this simplifies to:

H(∆t) = h ·∆t (7)

Λ(∆t) = λ ·∆t (8)

Definition 4. The damage or probable loss magnitude caused by a loss event (denoted D) is the expected
monetary cost of the event.

In this paper, we assume the damage levels as given, although estimating damage is a non-trivial
task itself. We mostly assume damage of the same loss event to be constant in time, although this
restriction could be lifted when the effects of an attack depend on time, as with different loads at different
times/seasons in electricity grids.

Definition 5. The risk associated with a class of threat events (denoted R(t)) is the expected damage per
unit of time.

The risk can be calculated from the other variables:

R(t) = λ (t) ·D = h(t) ·V (t) ·D (9)

Note that risk is expressed as a density function of time, i.e. it is the integral of the risk that expresses
the damage to expect within a time frame. When considering a particular time interval [t0..t1], one can
calculate the average risk as:

R̄([t0..t1]) =

∫ t1
t0 R(t)dt
t1− t0

=
Λ([t0..t1]) ·D

t1− t0
(10)

Of course, when threat event frequency, vulnerability and damage are all constant in time, the risk will
also be constant in time.

Definition 6. The countermeasure cost (denoted C(t)) is the expected cost of a countermeasure per unit
of time. The countermeasure-adjusted risk (denoted R′(t)) is the expected risk when the countermeasure
is added to the system. A security measure is said to be cost-effective if the cost of the measure per unit
of time is lower than the reduction in risk (expected damage per unit of time) that it achieves.

A security measure is cost-effective for time interval [t0..t1] if the total cost associated with the coun-
termeasure is less than the total risk prevented by the countermeasure over the time interval:∫ t1

t0
C(t)dt <

∫ t1

t0
(R(t)−R′(t))dt (11)

9
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4 Risk estimates for natural and accidental threats

The above provides a general framework for reasoning about risk in relation to threat event frequencies.
However, threat events come in different types. Events like component breakdowns just occur or don’t
occur, depending on e.g. ageing. Other threat events have a certain threat capability, such as for example
the strength of a storm in Beaufort. Generally, the frequency of natural events with high threat capability
is lower than the frequency of similar events with low threat capability (fierce storms occur less frequently
than mild storms). This can be expressed in distributions such as Poisson, Rayleigh, and Weibull.

4.1 Discrete events

Events with a discrete threat capability are specified on a discrete scale. For practical purposes, events
with discrete threat capability can be treated as separate threats. For example, one could define a separate
threat type for each hurricane class, and thereby treat them as discrete events. The threat event frequency
for a particular threat may be constant, or may vary over time. For example, we may expect the num-
ber of storms to be constant over the years (on average), or we may expect an increase due to climate
change. In case the threat event frequency does not change over time, it can simply be expressed as a
constant number of events per unit of time. The loss event number is then calculated by factoring in the
vulnerability (V ), representing the probability that a threat event causes a loss event:

Λ(∆t) =V ·H(∆t) =V ·h ·∆t (12)

In case the threat event frequency varies over time, it is expressed as a function of time by means of a
density function (h(t)), to represent the distribution of threat events over time. This is not a probability
distribution, as the concern is not the probability of failure of a component, but the expected number of
occurrences within an interval. In using the density function, the integral of h represents the expected
number of occurrences in the time interval (see Figure 1).

H([t0..t1]) =
∫ t1

t0
h(t)dt (13)

Λ([t0..t1]) =V ·H([t0..t1]) =V ·
∫ t1

t0
h(t)dt (14)

This assumes V constant over time, i.e. the probability of a threat event of a specific type causing a loss
event does not change with time. If V does change with time, the formula changes into:

Λ([t0..t1]) =
∫ t1

t0
V (t) ·h(t)dt (15)

Risk and effectiveness of countermeasures can then be calculated using equations 9 – 11.
In the following, V is always assumed to be constant in time (but, as we will see, typically dependent

on threat capability). Extensions to this model would be possible, for example when control strength
decreases over time due to ageing, thereby increasing vulnerability, or when, for example, security mea-
sures are different during the day and at night.

4.2 Discrete events with magnitude

Events with a continuous threat capability are specified on a continuous scale, for example the Richter
scale for earthquakes. As there are infinitely many capability values (at least in theory), these cannot
be treated as separate threats. When the frequency varies over time, the threat event frequency becomes

10
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Figure 1: Calculation of the threat event number from a variable threat event frequency, for events
with discrete threat capability. The coloured surface under the curve corresponds to the integral that
determines the threat event number. One can observe that within the period concerned (t0 until t1), the
threat event frequency is increasing, and therefore more threat events can be expected towards the end of
the period.

a 2-parameter event density function to calculate the expected number of threat events within a certain
magnitude range within a certain time interval (e.g. the expected number of earthquakes of magnitude
4-5 in 2014, see also [25]). With m for magnitude, this yields:

H([t0..t1]) =
∫ t1

t0

∫ m1

m0

h(m, t)dmdt (16)

As the vulnerability also depends on the magnitude, it needs to be included in the integral to calculate
the loss event number:

Λ([t0..t1]) =
∫ t1

t0

∫ m1

m0

V (m) ·h(m, t)dmdt (17)

4.3 Continuous phenomena

For continuous phenomena, such as wind, one cannot really speak of discrete threat events. Of course
a storm is considered an event, but the duration of high wind speeds is very important for the damage.
Instead of threat event frequencies, we only have threat magnitudes or levels that vary over time. There-
fore, the standard terminology in terms of threat event frequency, vulnerability, and loss event frequency,
is not adequate, as there are no separate threat events. For continuous phenomena, different semantics
are needed.

Here, we choose to keep the same notation (λ (t), V (m), h(m, t)), but the terms acquire different
meanings. In particular, h(m, t) now represents the probability density of the threat level, i.e. the proba-
bility that the threat level is within certain magnitude boundaries at time t. Stated differently, the integral
of h(m, t) with respect to m is the fraction of the time that the threat magnitude is expected to be within
a specified magnitude interval. Thus, at each time t,

∫
∞

−∞
h(m, t)dm = 1.

Conversely, V (m) denotes a frequency rather than a probability in this case, namely the expected
failure frequency given the threat magnitude level. A high vulnerability means that, given a certain threat
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level, the failure frequency is high. For example, the failure rate of a power line is high under conditions
of high wind speed. Apart from these changes in interpretation, the form of the calculation of the loss
event number is the same as for discrete threats with continuous magnitude (Equation (17)).

In summary, h now specifies the distribution of the threat magnitudes, and V represents the fail-
ure frequency for each threat magnitude. The reversal of the roles of probabilities and frequencies as
compared to the discrete case is shown in Table 1.

Table 1: The inverted relations between probability and frequency in the discrete and continuous case.
Threat h(m, t) Vulnerability V (m)

Discrete frequency density failure probability
Continuous probability density failure frequency

The two different interpretations of threat and vulnerability in the discrete and continuous case are
the first important result of the present study. We will now turn our attention to malicious threats.

5 Risk estimates for malicious threats

The above provides a risk framework for natural threats, in which a clear distinction is made between ex-
ternal threat events and the vulnerability of the system to such events. Both vulnerability and impact can
be reduced by means of countermeasures, and the prevented risk of such countermeasures can be evalu-
ated. We distinguish between discrete event models (isolated threat events) and continuous phenomenon
models (threat level fluctuating over time, like wind). Both can be used to calculate the expected fre-
quency of loss events, but the associated reasoning is somewhat different.

The frequency-based model is not immediately applicable to malicious threats. For malicious threats,
the threat events are no longer randomly occurring, but are based on the strategy of adversaries. The ad-
versaries will be more interested in attacks that are likely to success and/or cause high impact. Therefore,
the dependency of the threat events on the (perceived) vulnerability and impact needs to be taken into ac-
count, like in game-theoretic approaches. To combine frequentist and adversarial reasoning, the strategic
attacker needs to be bound to time, in the sense that there is a time-dependent limit to what he can do. In
particular, we need notions of the resources available to the attacker, which attack vectors are chosen by
the attacker, the effort or resources an attacker spends on an attack, and how many attacks he can launch
with the available resources.

5.1 Method

First, we outline our strategy for transforming the metrics for malicious attacks. To accommodate for
the specifics of security, we need to represent that attackers will aim their efforts at the most vulnerable
components, or those with the highest rewards. It is assumed here that for electricity networks, attackers
are of the terrorist type, and interested in maximising damage. This provides a contrast to, for example,
a banking context, where attackers are most likely interested in maximising their own gain.

Our attacker model consists of a fixed number of agents with full knowledge of the vulnerability of
components and the impact of failure on the system on the side of the attacker (white-box analysis). The
attackers have certain resources to spend, in the simplest case constant over time, and they incur costs
by launching attacks, and possibly by risks associated with detection and punishment. We assume the
terrorist type of attacks do not provide them with additional income / resources.

As attackers will aim for the most vulnerable targets, a more than proportional effect can be expected
upon introduction of countermeasures: there is a reduction in vulnerability / impact, plus reduction in
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the number of attacks due to changed attacker decision making [8]. However, we assume here that the
terrorist attacker is only interested in our system, and will switch to a different attack scenario upon
countermeasure implementation, not a different system. (The latter would require modelling the environ-
ment – such as vulnerability of other systems – as well, which we leave for future work.) Consequently,
there is no clear-cut point where the attacks suddenly cease (and migrate to a different system), but rather
a smaller decrease in risk as the overall increase in security forces attackers to invest their resources in
less vulnerable parts of the system. This will enable us to assess the effect of the countermeasure on the
expected damage done to the system, even when it causes the attacker to switch strategies. So we assume
the system to be analysed to be static (i.e. no actions on the part of the defender except an initial selection
of countermeasures), and try to assess how often attacks on specific components (or even specific attacks
on specific components) can be expected.

We also assume that vulnerability and impact models for the network and its components are already
known to the defender, and we focus on the frequency with which specific components are expected to be
attacked. For vulnerability, we assume the existence of vulnerability functions expressing the probability
of success of an attack in terms of threat capability or threat magnitude, which is again a function of
resources invested by the attacker. These functions will be dependent on the type of attack: a scenario
involving social engineering will have a different relation between invested resources and likelihood of
success than a denial-of-service attack. Defining these functions is not part of the present paper, and
is covered in [19] and future work.3 Impact of component failures on the electricity network can be
calculated using load flow analysis [1], which can then be translated into monetary loss by assessing the
impact of the power outages [20].

To enable a frequency-type result, we further assume that (a) the likelihood of success of an attack
depends on the resources invested by the attacker (as defined by the vulnerability function),4 and (b) the
attacker has limited resources, and acquires resources over time. The attacker, therefore, has to decide
how to invest his resources over time, which will determine the threat event frequency for the different
possible attacks. We observe a similar structure here in terms of discrete and continuous models: either
the attacker saves resources, and spends them at a single point in time (discrete event model, for example
in case of a distributed denial-of-service (DDoS) attack), or the attacker continuously puts resources
into attacking the target system (continuous phenomenon model, for example when trying to crack a
password). Thus, we can re-use the interpretations from the previous section, but we need to adapt them
to include attacker behaviour.

For the discrete event model, the vulnerability represents the likelihood of component failure as a
consequence of the attack event (discrete case, vulnerability as probability). For the continuous phe-
nomenon model, the vulnerability represents the expected frequency of failure as a function of invested
attacker resources (continuous case, vulnerability as frequency). Intuitively, the latter expresses that
components break down more frequently when under attack. Thus, similarly to the non-malicious con-
text, vulnerability has a different interpretation in the discrete and continuous models (probability and
frequency, respectively).

The utility function of our terrorist-type attacker is rather simple: maximal damage per unit of time,
within available resources. The attacker will thus launch attacks (threat events) that, given the resources
available to the attacker, have the highest loss event frequency times impact (= expected failures per unit
of time, times consequences). This requires decisions on (a) which attack scenario to execute, and, for
the discrete case only, (b) when to launch the attack. We assume that attackers are neutral with respect to

3In this paper, we assume vulnerability estimates as given, and focus only on the frequencies. This means that in the examples,
we will make use of vulnerability functions without further explanation on their origins. However, it should be noted that the
lack of data applies to vulnerability as well, and suitable theoretical models are needed there too, as we have argued in [19].
However, in the ideal case, vulnerability functions could be estimated from data obtained through penetration tests.
4Contrary to separate and fixed costs and likelihood in [14].
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time, i.e. not interested in quick gain over higher long-term reward, when the expected damage per unit
of time is equal.

Assuming that failure impacts are constant, we can combine vulnerability and impact in functions
that represent the expected damage per unit of time for each possible decision (attack/wait, and which
scenario). These can then be combined in a maximum expected damage function for all scenarios (i.e.
the maximum expected damage for the available resources, plus the scenario that gives this maximum
expected damage upon execution). We will detail these ideas in the following, first for the discrete and
then for the continuous case.

5.2 Discrete event model

In the discrete event model, attackers save resources and attack with the accumulated resources at a single
point in time. After the attack, the damage is assumed to be repaired, the attacker resources are reset to
zero, and the same process will be repeated. At a later stage, additional variables such as repair time
could be added. Attackers can, at each point in time, choose to launch an attack with the resources they
have built up until that point (I(t)). Attackers will also have a skill level s, and the threat magnitude m is
a function of the skill and the available resources:

m(t) = f (s, I(t)) (18)

Attackers will wait and save resources, if they can cause higher expected average damage (induced risk)
by launching an attack with more resources later; otherwise, they will execute the scenario with the
highest expected damage given their current resources. For example, an attacker wishing to execute a
distributed denial-of-service attack may acquire resources in terms of the size of the botnet available for
the attack, and decide on the optimal target server and optimal attack time. To simulate this strategy, we
define an expected damage D′c(m) for each threat capability level m and for each component/scenario c:

D′c(m) =Vc(m) ·Dc (19)

where Dc is the probable loss magnitude upon success of scenario c. The maximum expected damage
for a given threat capability level m is specified by

D̂(m) = max
c∈C

D′c(m) (20)

The optimal scenario to execute is then argmax
c∈C

D′c(m).

We can therefore calculate the maximum expected damage at each point in time, and also the maxi-
mum average damage (risk) over the elapsed time.

D̂(t) = D̂(m(t)) (21)

R̂(t) = D̂(m(t))/t (22)

The attacker will thus attack at the time t̂ when R̂(t) reaches its maximum. The scenario that will be
executed is

ĉ = argmax
c∈C

D′c(m(t̂)) (23)

After an attack, the attacker’s resources will be reset to zero, and the damage will be repaired. As we
are interested in the frequency given a particular system architecture, we calculate the frequency without
adding additional measures to the system after a successful attack. When all relevant variables, i.e. V ,
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D, and I are constant in time, the next cycle will yield exactly the same result, or the best possible attack
will take place at exactly the same time (now counting from the time of the first attack). In this case, the
expected threat event frequency can be determined as

h = 1/t̂ (24)

For all other scenarios, the threat event frequency is zero. The loss event frequency for scenario ĉ is

λĉ =Vĉ/t̂ (25)

From the loss event frequency, we can calculate the risk using the standard definitions outlined in Section
3. When needed in the analysis, precise points in time can be used instead of frequencies (and the
frequency will then be zero until t̂). We could also have calculated the average damage per resource
unit instead of per unit of time. However, the model presented is more flexible when other than constant
income functions would be considered. In case V , D and/or I are time-dependent, each attack cycle needs
to be calculated separately. Heuristics would be needed in this case to prevent the calculations from
becoming prohibitively complex, both in terms of computation time and in terms of understandability.

5.3 Continuous investment model

In the continuous investment model, attackers invest resources to attack components continuously. This
case points towards a feature that we have skipped until now: gradual damage. All our previous models
are memory-less, in the sense that earlier exposure to high threat levels does not lead to higher vulnerabil-
ity. Only the current attack, or the current threat level, counts. For the malicious case this is inadequate,
as partially successful (or only partially executed) attacks may definitely increase vulnerability to future
attacker activity.

To solve this issue, we would need to express vulnerability in terms of the cumulative threat since
some defined point in time. Moreover, in calculating the cumulative threat, we may wish to assign less
weight to exposure that is further away in the past. The highest weight should be assigned to the current
threat level.

For our first model, we simplify this issue by taking only the cumulative threat into account, without
assigning weights. This can intuitively be understood as a case where an attacker would invest in cutting
a tree, with previous efforts (partial success) permanently increasing the vulnerability of the tree. The
frequency of success events (vulnerability) will thus increase with the total invested attacker resources. In
other terms, the so-called mean time to (security) failure [16] will decrease with the invested resources.5

After a breakdown, the invested resources for the scenario/component will be reset to zero.
The attacker will acquire resources specified by an income density function i(t) = dI

dt . The threat
capability m(t) is again a function of invested resources and skill. At each point in time, the attacker can
choose in which scenario to invest. Scenario c has a success rate Vc(m), which depends on the invested
attacker resources (mc). The expected damage for this scenario per unit of time (risk), as a function of
invested resources, can be calculated as:

Rc(m) =Vc(m) ·Dc (26)

Note that V is a frequency in the continuous model, not a probability, and that is why this equation gives
the risk (damage per unit of time).

5We do not include diagnosis and repair times here, so mean time to failure equals mean time between failures.
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If the attacker would only look at the short term, he would judge the marginal risk to determine his
investment. At time t, the marginal risk ARc(t) for scenario c is the additional expected damage per unit
of time achieved by investing more resources.

ARc(t) =
dRc

dm
(mc(t)) =

dVc(m)

dm
(mc(t)) ·Dc (27)

At each point in time, the attacker would invest his resources in the scenario that has the highest marginal
risk, i.e. the steepest resource-risk curve.

dmc

dt
(t) =


dm
dt if c = argmax

c∈C
ARc(t),

0 otherwise.
(28)

If the attacker would adopt a long-term strategy, he would invest in the scenario which, given the invest-
ment, would have the largest damage divided by the expected time to failure. For a long-term oriented
adversary, the aim is to maximise (in the long run) the average expected damage per unit of time (risk)
for large t:

R̄(t) =

∫ t
0 ∑

c∈C
Vc(mc(t)) ·Dc dt

t
(29)

At each time, the attacker would invest such that this function is maximised for large t. Depending on
the strategy, the attacker would thus invest in the scenario for which either marginal risk or average risk
is maximal. The difference between short- and long-term strategies is especially relevant if investing in
a particular scenario would yield very little in the beginning, whereas the expected damage curve would
become steeper (and steeper than the others) after investing some initial resources (see Example 3 in the
next section).

A scenario c is expected to succeed at the time tc when the expected number of succes events equals
1. This is when ∫ t

0
Vc(mc(t))dt = 1 (30)

At that time, the damage is repaired, and the invested resources in that scenario (mc) are reset to zero.
This discontinuity may cause the attacker to switch scenarios, either to scenario c or from c to a different
scenario. The loss event frequency for scenario c is

λc = 1/tc (31)

As the attacker may execute multiple scenarios in the continuous model, the risk needs to be calculated as
the sum over all scenarios. The overall damage to the network within a specified time frame is calculated
as the sum over all scenarios of their expected number of success events times the damage upon failure.
The (average) risk is then the total damage divided by the total time.

6 Examples and simulations

In this section, we will present several examples to illustrate the approach and its theoretical properties.
For explanation purposes, the examples have been simplified to yield easily understandable results. Re-
alistic vulnerability functions may have different properties, but the essentials remain the same.6 Also,

6See also footnote 3.
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we do not indicate the units here, as the data is simulated anyway. To give some indication, units of time
could be thought of as months, risk as euros per month, and vulnerability is a likelihood in the range
[0..1].

As a theoretical rather than an empirical measure of attack rates, the examples, combined with the
theoretical considerations in the next section, are meant as a provisional validation of the theory. The
full decision support system structure, including examples of the complete analysis, will be prepared for
publication at a later stage.

6.1 Discrete event model

Example 1. Consider a system with 2 components. Both will cause damage e 1000 upon failure. Com-
ponent 1 has vulnerability function V1(m) = m3

m3+m2+1 , representing the probability of failure upon an

attack with threat capability m. Component 2 has vulnerability function V2(m) = m4

m4+m2+1 . We assume
that the skill level is irrelevant here, and we therefore assume that m(t) = I(t). The attacker has income
density function di

dt = 1, i.e. the attacker will earn 1 resource unit per unit of time, or m = t. Up to t = 1,
the attacker will thus be able to invest 1 unit.

In Figure 2, the resulting induced risk functions Rc(t) are shown. Note that in the beginning, the
attacker would attack component 1 (if he would attack), whereas component 2 is more attractive later
on. The optimal time to attack is around t = 1.52, targeting component 2, with the risk (average damage)
being around e 406. The associated vulnerability is around 0.617. We thus have a mean time between
attacks of 1.52, and a success probability of 0.617, yielding a mean time between failures of 2.46, or
a loss event frequency of 0.406. This, multiplied by the damage, yields again the risk, also from the
defender’s point of view (as the analysis is white-box).

Note that in the discrete model, it is required that V (0) = 0. Otherwise, the expected risk (damage
per unit of time) for very small t would be very high (up to infinite with t approaching 0), and the attacker
would simply launch loads of “mini-attacks” with almost zero effort. This makes logistic vulnerability
models unsuitable in combination with discrete attack rate models, as V is never zero in logistic functions.

6.2 Continuous investment model

Example 2. Consider again a system with 2 components. Both will cause damage e 1000 upon failure.
Component 1 has vulnerability function V1(m) = 1

2 m, i.e. the expected failure frequency is equal to half
the invested resources. Component 2 has vulnerability function V2(m) =

√
m. The attacker has again

constant income ( dm
dt = 1).

The attacker will decide on an optimal investment strategy. Therefore, he will choose functions m1(t)
and m2(t), such that m1(t)+m2(t) = m(t). To decide on the strategy, the attacker will calculate the
expected time to failure for each of the components, given that he invests in them. For a short-term
oriented adversary, the aim is to maximise the marginal risk. For this to work, the adversary needs to
take into account that after the mean time to failure, the component needs to be replaced and the invested
resources are reset to zero. The attacker can calculate the expected number of failures within a time
frame by calculating the integral of the vulnerability function. This also allows calculation of the mean
time to failure. If the attacker would only invest in component 1, he can calculate the mean time to failure
by solving ∫ t

0

1
2

t dt = 1 (32)

for t, yielding t = 2. For component 2, he solves∫ t

0

√
t dt = 1 (33)
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Figure 2: A simulation of attacker-induced risk as a function of attack time for a system with two com-
ponents, using the discrete event model. The lines represent the attacker-induced risk for the components
when the attacker would attack that component at that time, using his built-up resources. The optimal
time and component to attack are derived from the highest point in the curves.

yielding t = 3
√

9
4 ≈ 1.3. Thus, if the attacker would only be able to invest in one component, he would

invest in component 2, and the mean time to failure would be about 1.3. However, what if he can divide
his resources? In that case, he can optimise his strategy by investing in the component with the highest
increase in expected damage per unit of time (Figure 3). In that case, by dividing his resources between
the two components, he can cause an average of 4 failures in 4.3 time units, instead of 3 in 3.9 time units.

As the curve of component 2 has steeper slope, the attacker will start investing there. When the slope
drops below 0.5, the attacker will switch to component 1. The mean time to failure occurs when the
surface beneath the curve reaches 1. At that point, the component is expected to break down and be
replaced, with the invested resources reset to zero. From the figure, one can tell that the mean time to
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Figure 3: A simulation of attacker investment with 2 components, using the continuous investment
model. The lines represent the vulnerability levels of the components. The vulnerability of component 1
increases linearly with invested resources, whereas the vulnerability of component 2 increases with the
square root of the resources.

failure for component 1 is about 4.3, and for component 2 about 1.4. In this way, the attacker can cause
a higher failure frequency (and thereby damage) than when investing only in component 2.

With mean times to failure of 4.3 and 1.4, the associated risk would be 1
4.3 · e 1000+ 1

1.4 · e 1000 =
e 947 per unit of time.

Example 3. When we assume that V2 = m2 instead, the picture looks different (Figure 4). As the curve
of component 1 has steeper slope at m = 0, the short-term attacker will start investing there, and never
switch.

However, if the attacker would adopt a long-term strategy, he would invest in component 2 instead,
giving a higher loss event frequency (mean time to failure 2

√
2 ≈ 2.83 for component 1 vs. 3

√
6 ≈ 1.82

for component 2.)

Example 4. Assume that in the context of Example 2, a countermeasure for component 2 is proposed.
This countermeasure will reduce the vulnerability such that V2 =

1
4 m, instead of the original V2(m)=

√
m.

This means that the attacker will now invest all resources in component 1, which has higher marginal
damage upon investment ( 1

2 versus 1
4 ). As already shown in Example 2, this will yield a mean time

to failure of 2, corresponding to a risk of e 500 per unit of time, compared to e 947 for the original
situation. If the cost of the countermeasure is less than e 447 per unit of time, the investment would be
cost-effective.

6.3 The metrics in practice

As indicated above, the defined metrics are meant to support security investments, not as accurate pre-
dictors of empirical events. However, it would be interesting to study some empirical aspects, notably
the relation between rational and actual attacker behaviour. Both attacker model and vulnerability model
could benefit from data obtained from logs, forensic analysis, and experimental methods, and future re-
search is needed to define precisely how the theoretical models could be improved based on such data.
Extreme value theory may provide inspiration here [10].
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Figure 4: Another example of attacker investment with 2 components. The lines represent the vulner-
ability levels of the components. Note that the horizontal axis represents m here, not t, as the attacker
is not able to invest in both components at the same time. The vulnerability of component 1 increases
linearly with invested resources (V1(m) = m

4 ), whereas the vulnerability of component 2 now increases
with the square of the resources (V2(m) = m2

2 ).

Penetration testing is not particularly suitable as a setting, because the goal is to test various attack
scenarios, and there is no incentive for the attacker/tester to select the “best” scenario. Serious games,
such as red-team-blue-team assignments, would provide a better context. In this case, one can monitor
the resources (time) available to the attackers and the defenders, the selected attacks, the “investments”
by the defenders, etc.

In the SESAME project, the metrics can be applied in a decision-support system for security invest-
ments in electricity infrastructures. In the TRESPASS project7, which focuses on socio-technical security
models, they can be used in extensive, iterative case studies on cloud infrastructures, telecommunication
networks, and customer privacy protection. In the TRESPASS project, we are also planning interviews
with hackers of different kinds, in order to gather empirical evidence on their motivations and strategies.
These could be used as input for improving the metrics, as well as for defining different types of attacker
models.

7 Properties of the metrics

The metrics defined in this paper provide estimations of threat event frequencies and associated risk for
malicious attacks, where the attacker tries to maximise damage to the system. These metrics can then be
used in estimating the cost-effectiveness of countermeasures. We would like the metrics to have certain
theoretical properties. In this section, we discuss to what extent the metrics satisfy these properties.

Property 1: Effectiveness of attacker resources The first property states that when we assume more
resources on the part of the attacker, the attack rate should increase. This property is satisfied in both
models, as the attacker will reach the optimal resources for attack earlier if he has more resources avail-
able.

7www.trespass-project.eu
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Property 2: Effectiveness of vulnerability reduction The second property states that, for any rea-
sonable risk metric, reduced vulnerability leads to equal or reduced attack rate for the less vulnerable
component/scenario, and reduced overall risk. This means that, (1) the attacker will not invest more in
this scenario if its vulnerability is reduced (all other variables remaining equal), and (2) if the attacker
switches to a different scenario because of the reduced vulnerability, he cannot thereby increase the risk.

The risk-related part of the property only holds if the time-bias of the attacker and the time-bias of
the defender are the same, i.e., the property will hold for the marginal risk if the attacker has a short-term
strategy, and will hold for the average risk if the attacker has a long-term strategy. For example, if the
attacker has a long-term strategy, the original target scenario may not have the highest marginal risk (but
only the highest average risk in the long term), and the attacker may switch to a different component with
higher marginal risk.

Property 3: Rationality of resource spreading The third property states that investing in different
attacks provides utility to the attacker under certain constraints. A model does not seem very realistic if
it only allows for one attack as an outcome. This property does not hold in the discrete event model, as the
attacker will make the same decision on the target scenario every time, unless something changes in the
system. This could be remedied when we include repair times during which the scenario is unavailable,
but this would only change the situation if the attacker would launch another attack before the previously
attacked component has been repaired. Because of this limitation, under the above assumptions, the
continuous model would be the preferable one with respect to this property, as spread investments can
be explained.

Property 4: Ability to estimate model from data The fourth property states that it should be possible
to adjust the model based on observations of actual attacks. We have argued in the introduction that past
frequencies do not constitute appropriate predictors for future attacks, as attacker strategies adapt to the
environment. However, an adequate frequency metric would allow adjustment based on observed past
frequencies. In our model, it would be possible to estimate attacker investment based on past frequencies,
for a generalised “attacker” that covers all adversaries. That is, using data of past attacks and the vulner-
ability of the components involved, it can be estimated how much effort the attacker put into the attacks.
Assuming constant income for the attacker (which is tricky by itself, and may require another model to
enhance the predictions), we can estimate future frequencies, taking changes to the system (countermea-
sures) into account. Thus, rather than considering past frequencies as an appropriate attacker model, we
estimate past resources from past frequencies, and use the resource level as the attacker model.

8 Open questions

As the proposed approach to quantify loss event frequencies is new, there are many open problems to
be discussed in the research community. In the following we discuss some open questions within the
proposed research paradigm.

Recovery times The present models assume a negligible recovery or repair time. A question for future
research is how repair times would influence the results of the model. As we have argued above, repair
times (during which attack does not make sense) may make it more attractive to invest in different
scenarios during repair.

Learning effects When attackers execute the same type of attack multiple times, their skill may in-
crease, and consequently, they may need fewer resources for the next attack. The explicit distinction of
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skills and resources, and the simulation of associated behaviours, would be another possible addition to
the model. Similarly, attackers might obtain additional income from successful attacks, and might spend
this on new attacks.

Knowledge about attack status While executing an attack, the attacker may acquire knowledge about
the status of the attack. This may adjust his estimations on the likelihood of success as a function of
invested resources. This may influence his investment strategy.

This issue is particularly interesting in the case of multi-step attacks [18], where the attacker gets
feedback on the success of each step. Adapting the prediction strategy to multi-step attacks is a profound
research question. In particular, one would need to assess which multi-step attacks lead to which impact
if successful, and how likely each of the steps is too succeed, depending on the effort spent. Inspiration
for possible directions can be found for example in [14].

Weights of previous investments What is the best model for representing the effect of previous in-
vestments in attacks? In this paper, we assumed that investments remain fully effective forever. With a
more advanced model, we can represent degradation of previous investments over time. Assuming the
use of a time weighting function, with the highest value for present investment, one could for example
calculate the threat magnitude level for a scenario as

mc(t) =
∫ t

0
w(u, t)

dmc

dt
(u)du (34)

with dmc
dt attacker investment density. Weights can then be assigned based on the difference between

investment time u and current time t, for example

w(u, t) = eα(u−t) (35)

Multiple attackers Another extension to the model could be approaches to study multiple attackers
and joint strategies. In the case of multiple attackers, attackers A1..An at each point in time can confront
the system with their built-up resources. They can do so in isolation or in cooperation. In the first
case, the aggregate vulnerability would be based on the success probabilities of individual resources, and
would be calculated as:

V = 1−∏
Ai

(1−V (mAi)) (36)

This represents the probability that the attack scenario succeeds due to any of the attackers, assuming the
probabilities are independent. The calculation first assesses the probability that the component survives
all attacks.

When the attackers cooperate, the aggregate vulnerability would be the success probability of the
sum of the individual resources, as they now pool their resources for a single attack:

V =V (∑
Ai

mAi) (37)

As these calculations are different, attacker cooperation could influence investment strategies.

Interaction with failures caused by other threats Components do not only fail due to attacks, but
also due to natural or accidental threats. When this happens, the attacker-induced risk is lower than
estimated in the present models, as a baseline risk already exists. It could be investigated how this would
affect attacker strategies. and thereby threat event frequency estimates.
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Different attacker utility In this paper, we have discussed the case of a terrorist attacker. When con-
sidering for example financially motivated attackers, one would have to take the difference between
damage to the system and attacker gain into account. Thus, the outcome of an attack would be perceived
differently by the attacker and the defender, also creating different risk perspectives, and thereby requir-
ing more complicated models. Besides, the attacker may use financial gain from one attack as resources
for executing another.

In addition, the risk of getting caught could be added as an additional parameter, instead of including
this as part of the invested resources [5, 8]. This would allow distinguishing between risk-seeking and
risk-averse attackers. Furthermore, we may want to experiment with probabilistic rather than determin-
istic attacker models, where attackers will not always select the optimal attack.

Timed countermeasures Finally, consider what would happen if the defenders would try to find the
optimal time for countermeasure deployment. If costs of a countermeasure are distributed unevenly over
time, can we say something about the optimal time to invest? Approaches like net present value and real
options analysis could be useful here, to account for the fact that investments at different times should be
weighed differently.

9 Conclusions

This paper proposes a new approach for cyber risk analysis that combines frequentist and adversarial
approaches to risk in a single framework. Rather than estimating likelihood of threats as a single value,
the paradigm separates threat event frequency from vulnerability, in order to be able to assess the cost-
effectiveness of countermeasures. In this paper, we focused on the question how to estimate the threat
event frequencies and loss event frequencies of a system, in particular for malicious threats. We discussed
two possible models for estimation of threat event frequencies from expected attacker resources, and
identified directions for future research.

Combined with our earlier work on vulnerability [19], this research leads to a complete framework for
determining how often attack scenarios in a system are expected to succeed. We apply this method within
two projects, where the focus is on security assessment of electricity infrastructures and socio-technical
systems, respectively. In the electricity project (SESAME), the assessment of component failures can
be combined with cascading failure analysis and impact assessment to estimate the risk caused by the
different threats, as well as the risk prevented by countermeasures.

Even though the foundations of the model are theoretical, data is still required for practical appli-
cations. In particular, one would need to have estimates of the damage caused by different failures in a
system. For electricity networks, while one may simulate the network evolution after a failure, damage
caused to society by a blackout is more elusive. In any system that is subject to cyber attacks, expert
knowledge on damage caused by failures is essential to estimate risk. Also, the estimation of realistic
vulnerability functions (i.e. the function from threat capability to success probability) is not trivial, and
may require experiments such as penetration testing by professional hackers. Finally, empirical input to
the model in terms of previous attacks can improve its accuracy, but this requires the sharing of infor-
mation about such attacks. Platforms to facilitate this, as well as trust in proper handling of the sensitive
information involved, would be of great value to the overall context of countermeasure evaluation.

In future work, we will further extend the threat event frequency analysis, to accommodate the open
questions outlined above. In particular, we will focus on extending the framework to multi-step attacks.
This is another distinguishing feature of security as opposed to safety, next to the attacker adaptation to
system design, which is the key contribution of the present results.
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