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Abstract. Theory of ideals in the semiring Z+
0 was given by P. J. Allen

and L. Dale [2] and they proved that Z+
0 is a Noetherian semiring. Further,

characterization of subtractive ideals and prime ideals in the semiring Z+
0 has

been given by V. Gupta and J. N. Chaudhari ([3], [7]). In this paper, we study
ideal theory in the semiring (Z+

0 , gcd, lcm) and obtain characterizations of
Q-ideals, prime ideals, maximal ideals and primary ideals. Also it is proved
that, if R is a strongly Euclidean IS-semiring, then R and Rn×n are principal
ideal semirings.
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1. Introduction

A non-empty set R together with two associative binary operations addition
and multiplication is called a semiring if i) addition is a commutative operation
ii) there exists 0 ∈ R such that x+0 = x = 0+x, x·0 = 0 = 0·x for each x ∈ R
and iii) multiplication distributes over addition both from left and right. The
concept of ideal, finitely generated ideal, principal ideal, prime ideal, maximal
ideal, semiprime ideal, primary ideal in a commutative semiring with identity
1 can be defined on the similar lines as in commutative rings with identity 1.
All semirings are assumed to be semirings with identity element. Z+

0 (N) will
denote the set of all non-negative (positive) integers. An ideal I of a semiring
R is called (1) subtractive ideal (= k-ideal) if a, a + b ∈ I, b ∈ R, then b ∈ I.
(2) Q-ideal (= partitioning ideal) if there exists a subset Q of R such that

1. R = ∪{q + I : q ∈ Q}.
2. if q1, q2 ∈ Q, then (q1 + I) ∩ (q2 + I) �= ∅ ⇔ q1 = q2.

Lemma 1.1. ([1], Lemma 7) Let I be a Q-ideal of a semiring R. If x ∈ R,
then there exists a unique q ∈ Q such that x + I ⊆ q + I.
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Theorem 1.2. ([6], Theorem 1.4) An ideal I of a strongly Euclidean semir-
ing R is Q-ideal if and only if I is principal ideal.

Lemma 1.3. ([3], Page 648) A is an ideal of the matrix semiring Rn×n if
and only if there exists an ideal I of R such that A = In×n.

2. Ideals in the Semiring (Z+
0 , gcd, lcm)

For a, b ∈ Z+
0 , we define,

1) a ⊕ b = gcd {a, b} if a, b ∈ N ;
2) a 
 b = lcm {a, b} if a, b ∈ N;
3) a ⊕ 0 = a and a 
 0 = 0 for all a ∈ Z+

0 ;
4) ab = usual product of a and b;
5) an = aaa...a(n-times).

Clearly (Z+
0 , ⊕, 
) is a commutative semiring with identty element 1. For

a ∈ (Z+
0 , ⊕, 
), we denote, < a > = {n 
 a : n ∈ Z+

0 }, the principal ideal
generated by a.

Lemma 2.1. If a ∈ (Z+
0 , ⊕, 
), then < a > = {na : n ∈ Z+

0 }.
Proof. We have na = na 
 a ∈ < a >. Thus {na : n ∈ Z+

0 } ⊆ < a >. On the
other hand, if x ∈ < a >, then there exists n ∈ Z+

0 such that x = n 
 a = ka
for some k ∈ Z+

0 . So < a > ⊆ {na : n ∈ Z+
0 }.

Lemma 2.2. Every ideal of (Z+
0 , ⊕, 
) is a principal ideal.

Proof. Let I be a non-zero ideal in (Z+
0 , ⊕, 
) and choose least non-zero

element d ∈ I. Claim: I = < d >. If a ∈ I, then a⊕ d ∈ I and a⊕ d = d as d
is the least non-zero element of I. Now a = kd for some k ∈ Z+

0 . By Lemma
2.1, a ∈ < d >. Hence I ⊆ < d >. On the other hand, for any n ∈ Z+

0 , nd =
nd 
 d ∈ I. By Lemma 2.1, < d > ⊆ I.

Theorem 2.3. (Z+
0 , ⊕, 
) is a Noetherian semiring.

Lemma 2.4. Every ideal of (Z+
0 , ⊕, 
) is subtractive.

Proof. Let I be an ideal of (Z+
0 , ⊕, 
). By Lemma 2.2, I = < d > for some

d ∈ I. If a, a ⊕ b ∈ I = < d >, then a, a ⊕ b = gcd{a, b} are multiples of d
and hence b is a multiple of d. By Lemma 2.1, b ∈ < d > = I.

Lemma 2.5. If I is a non-zero proper ideal of (Z+
0 , ⊕, 
), then I is not a

Q-ideal.

Proof. Let I be a non-zero proper ideal of (Z+
0 , ⊕, 
). By Lemma 2.2, I =

< d > for some d ∈ Z+
0 − {0, 1}. Take d = pr1

1 pr2
2 ...prk

k where p1, p2,..., pk are
pairwise distinct primes and k, ri ∈ N. Suppose that I is a Q-ideal. We claim
that there exists a unique q ∈ Q such that p ∈ q⊕I for all primes p other than
p
′s
i . Let p′, p′′ be any distinct primes other than p

′s
i . By Lemma 1.1, there are

unique q1, q2 ∈ Q such that p′ ∈ p′⊕I ⊆ q1⊕I and p′′ ∈ p′′⊕I ⊆ q2⊕I. Since
p′, p′′ are primes other than p

′s
i , 1 = p′ ⊕ d ∈ q1 ⊕ I and 1 = p′′ ⊕ d ∈ q2 ⊕ I.
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Hence (q1 ⊕ I) ∩(q2 ⊕ I) �= ∅. Since I is a Q-ideal, q1 = q2 = q say. Now we
have a unique q ∈ Q such that p ∈ q⊕I for all primes p other than p

′s
i . Clearly

q ≥ 1. By above claim choose a prime f > q such that f ∈ q ⊕ I. By Lemma
2.1, f = q ⊕ nd for some n ∈ Z+

0 . So f | q, a contradiction. Therefore I is not
a Q-ideal.

Theorem 2.6. {0} and Z+
0 are the only Q-ideals in the semiring (Z+

0 , ⊕, 
).

Proof. Let I be an ideal of (Z+
0 , ⊕, 
). If I = {0}, then clearly I is a Q-ideal

of (Z+
0 , ⊕, 
) with Q = Z+

0 . If I = Z+
0 , then I is a Q-ideal of (Z+

0 , ⊕, 
) with
Q = {0}.
Theorem 2.7. I is a non-zero prime ideal in (Z+

0 , ⊕, 
) if and only if I =
< pr > for some prime p and r ≥ 1.

Proof. Let I be a non-zero prime ideal in (Z+
0 , ⊕, 
). By Lemma 2.2, I =

< d > where d = pr1
1 pr2

2 ...prk
k where p1, p2,..., pk are pairwise distinct primes

and ri ∈ N. If k ≥ 2, then pr1
1 
 (pr2

2 ...prk
k ) = pr1

1 pr2
2 ...prk

k ∈ I but pr1
1 /∈ I and

pr2
2 ...prk

k /∈ I, a contradiction to I is a prime ideal. Hence k = 1. Now d =
pr1

1 . Conversely, let I = < pr > for some prime p and r ≥ 1 and let a 
 b ∈ I
= < pr >. By Lemma 2.1, pr | lcm{a, b} implies pr | a or pr | b. Again by
Lemma 2.1, a ∈ I or b ∈ I and hence I is a prime ideal of (Z+

0 , ⊕, 
).

Theorem 2.8. I is a non-zero maximal ideal in (Z+
0 , ⊕, 
) if and only if I

= < p > for some prime p.

Proof. Let I be a non-zero maximal ideal in (Z+
0 , ⊕, 
). By Lemma 2.2, I =

< d > for some d ∈ Z+
0 . If d is not prime, then d = pq for some 1 < p < d

and 1 < q < d. But then I = < d > � < p > � Z+
0 , a contradiction to I is

a maximal ideal. Hence d is a prime number. Conversely, suppose that I =
< p > for some prime p. Let J be any ideal of Z+

0 such that I ⊆ J � Z+
0 . By

Lemma 2.2, J = < d > for some d > 1. Since < p > = I ⊆ J = < d >, d =
p. Hence I is a maximal ideal.

Theorem 2.9. Every ideal of the semiring (Z+
0 , ⊕, 
) is semiprime.

Proof. Let I be a non-zero ideal in (Z+
0 , ⊕, 
) and a 
 a ∈ I. But then a ∈

I.

Theorem 2.10. A non-zero ideal I of the semiring (Z+
0 , ⊕, 
) is primary if

and only if it is a prime ideal.

Proof. Let I be a primary ideal of (Z+
0 , ⊕, 
) and a 
 b ∈ I. Therefore a ∈ I

or b
 b
 b
 ...
 b ∈ I i.e. a ∈ I or b ∈ I. Hence I is a prime ideal. Converse
is trivial.

3. Strongly Euclidean Semirings

Definition 3.1. A semiring R is called IS-semiring if every ideal of R is
subtractive.
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Example 3.2. By Lemma 2.4, the semiring (Z+
0 , ⊕, 
) is a IS-semiring.

By Proposition ([3], Proposition 2.19), the semiring (Z+
0 , + , ·) is not IS-

semiring.

Definition 3.3. A semiring R is called principal ideal semiring (PIS) if every
ideal of R is principal ideal.

Definition 3.4. A commutative semiring R is called strongly Euclidean if
there exists a function d : R − {0} → Z+

0 such that (1) d(ab) ≥ d(a) for
all a, b ∈ R − {0} and (2) if a, b ∈ R with b �= 0, then there exist unique
q, r ∈ R such that a = bq + r where either r = 0 or d(r) < d(b).

Theorem 3.5. Every strongly Euclidean IS-semiring is a principal ideal semir-
ing.

Proof. Let R be a strongly Euclidean IS-semiring with function d and I an
ideal of R, I �= 0. Let A = {d(a) ∈ Z+

0 : a ∈ I − {0}}. Then A has the least
element say d(a). We claim that I = < a >. Let x ∈ I. Then there exist
unique q, r ∈ R such that x = aq + r where r = 0 or d(r) < d(a). If r �= 0,
then r ∈ I, since I is a subtractive ideal. As d(a) is the least element of A,
d(a) ≤ d(r), a contradiction. Hence r = 0. Now x = aq ∈ < a >. Thus
I ⊆ < a >. But < a > ⊆ I. So I = < a >. Hence R is a principal ideal
semiring.

Converse of the Theorem 3.5 is not true.

Example 3.6. By Lemma 2.2, R = (Z+
0 , ⊕, 
) is a PIS. If R is strongly Eu-

clidean semiring, then by Theorem 1.2, every principal ideal of R is a Q-ideal, a
contradiction to Lemma 2.5. Hence R is not strongly Euclidean semiring.

Example 3.7. The semiring (Z+
0 , + , ·) is a strongly Euclidean semiring but

not PIS.

Example 3.8. The semiring R = (Z+
0 ∪ {∞}, max,min) is IS-semiring. By

Theorem ([5], Theorem 5), I = Z+
0 is not a principal ideal and hence R is not

a PIS. So by Theorem 3.5, R is not a strongly Euclidean semiring.

Theorem 3.9. If R is a strongly Euclidean IS-semiring, then Rn×n is a PIS.

Proof. Let R be a strongly Euclidean IS-semiring and A be any ideal of Rn×n.
By Lemma 1.3, A = In×n for some ideal I of R. By Theorem 3.5, R is PIS.
So I is a principal ideal say I = < a >. We claim that A = < B > where B =⎡
⎢⎢⎣

a 0 ... 0
0 a ... 0
.. .. ... ..
0 0 ... a

⎤
⎥⎥⎦. Let X =

⎡
⎢⎢⎣

x11 x12 ... x1n

x21 x22 ... x2n

.. .. ... ..
xn1 xn2 ... xnn

⎤
⎥⎥⎦ ∈ A = In×n. Therefore xij ∈ I

= < a >. So xij = tija where tij ∈ R for all i, j. Take T =

⎡
⎢⎢⎣

t11 t12 ... t1n

t21 t22 ... t2n

.. .. ... ..
tn1 tn2 ... tnn

⎤
⎥⎥⎦
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∈ Rn×n. Then X = TB ∈ < B >. Thus A ⊆ < B >. Other inclusion is
trivial. Hence A = < B >. Thus Rn×n is a PIS.
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