International Journal of Algebra, Vol. 6, 2012, no. 6, 271 - 275

A Note on Strongly Euclidean Semirings

Jayprakash Ninu Chaudhari and K. J. Ingale

Department of Mathematics M. J. College, Jalgaon-425 002, India jnchaudhari@rediffmail.com

Abstract. Theory of ideals in the semiring \mathbb{Z}_0^+ was given by P. J. Allen and L. Dale [2] and they proved that \mathbb{Z}_0^+ is a Noetherian semiring. Further, characterization of subtractive ideals and prime ideals in the semiring \mathbb{Z}_0^+ has been given by V. Gupta and J. N. Chaudhari ([3], [7]). In this paper, we study ideal theory in the semiring (\mathbb{Z}_0^+ , gcd, lcm) and obtain characterizations of Q-ideals, prime ideals, maximal ideals and primary ideals. Also it is proved that, if R is a strongly Euclidean IS-semiring, then R and $R_{n\times n}$ are principal ideal semirings.

Mathematics Subject Classification: 16Y60, 11A05, 11A41

Keywords: Semiring, subtractive ideal, *Q*-ideal, prime ideal, semiprime ideal, primary ideal, Noetherian semiring, strongly Euclidean semiring

1. INTRODUCTION

A non-empty set R together with two associative binary operations addition and multiplication is called a semiring if i) addition is a commutative operation ii) there exists $0 \in R$ such that x+0 = x = 0+x, $x \cdot 0 = 0 = 0 \cdot x$ for each $x \in R$ and iii) multiplication distributes over addition both from left and right. The concept of ideal, finitely generated ideal, principal ideal, prime ideal, maximal ideal, semiprime ideal, primary ideal in a commutative semiring with identity 1 can be defined on the similar lines as in commutative rings with identity 1. All semirings are assumed to be semirings with identity element. \mathbb{Z}_0^+ (N) will denote the set of all non-negative (positive) integers. An ideal I of a semiring R is called (1) subtractive ideal (= k-ideal) if $a, a + b \in I, b \in R$, then $b \in I$. (2) Q-ideal (= partitioning ideal) if there exists a subset Q of R such that

- 1. $R = \bigcup \{q + I : q \in Q\}.$
- 2. if $q_1, q_2 \in Q$, then $(q_1 + I) \cap (q_2 + I) \neq \emptyset \Leftrightarrow q_1 = q_2$.

Lemma 1.1. ([1], Lemma 7) Let I be a Q-ideal of a semiring R. If $x \in R$, then there exists a unique $q \in Q$ such that $x + I \subseteq q + I$.

Theorem 1.2. ([6], Theorem 1.4) An ideal I of a strongly Euclidean semiring R is Q-ideal if and only if I is principal ideal.

Lemma 1.3. ([3], Page 648) A is an ideal of the matrix semiring $R_{n \times n}$ if and only if there exists an ideal I of R such that $A = I_{n \times n}$.

2. Ideals in the Semiring $(\mathbb{Z}_0^+, gcd, lcm)$

For $a, b \in \mathbb{Z}_0^+$, we define,

1) $a \oplus b = \gcd \{a, b\}$ if $a, b \in \mathbb{N}$;

2) $a \odot b = \operatorname{lcm} \{a, b\}$ if $a, b \in \mathbb{N}$;

- 3) $a \oplus 0 = a$ and $a \odot 0 = 0$ for all $a \in \mathbb{Z}_0^+$;
- 4) ab = usual product of a and b;
- 5) $a^n = aaa...a$ (n-times).

Clearly $(\mathbb{Z}_0^+, \oplus, \odot)$ is a commutative semiring with identity element 1. For $a \in (\mathbb{Z}_0^+, \oplus, \odot)$, we denote, $\langle a \rangle = \{n \odot a : n \in \mathbb{Z}_0^+\}$, the principal ideal generated by a.

Lemma 2.1. If $a \in (\mathbb{Z}_0^+, \oplus, \odot)$, then $\langle a \rangle = \{na : n \in \mathbb{Z}_0^+\}$.

Proof. We have $na = na \odot a \in \langle a \rangle$. Thus $\{na : n \in \mathbb{Z}_0^+\} \subseteq \langle a \rangle$. On the other hand, if $x \in \langle a \rangle$, then there exists $n \in \mathbb{Z}_0^+$ such that $x = n \odot a = ka$ for some $k \in \mathbb{Z}_0^+$. So $\langle a \rangle \subseteq \{na : n \in \mathbb{Z}_0^+\}$.

Lemma 2.2. Every ideal of $(\mathbb{Z}_0^+, \oplus, \odot)$ is a principal ideal.

Proof. Let I be a non-zero ideal in $(\mathbb{Z}_0^+, \oplus, \odot)$ and choose least non-zero element $d \in I$. Claim: $I = \langle d \rangle$. If $a \in I$, then $a \oplus d \in I$ and $a \oplus d = d$ as d is the least non-zero element of I. Now a = kd for some $k \in \mathbb{Z}_0^+$. By Lemma 2.1, $a \in \langle d \rangle$. Hence $I \subseteq \langle d \rangle$. On the other hand, for any $n \in \mathbb{Z}_0^+$, $nd = nd \odot d \in I$. By Lemma 2.1, $\langle d \rangle \subseteq I$.

Theorem 2.3. $(\mathbb{Z}_0^+, \oplus, \odot)$ is a Noetherian semiring.

Lemma 2.4. Every ideal of $(\mathbb{Z}_0^+, \oplus, \odot)$ is subtractive.

Proof. Let I be an ideal of $(\mathbb{Z}_0^+, \oplus, \odot)$. By Lemma 2.2, $I = \langle d \rangle$ for some $d \in I$. If $a, a \oplus b \in I = \langle d \rangle$, then $a, a \oplus b = \gcd\{a, b\}$ are multiples of d and hence b is a multiple of d. By Lemma 2.1, $b \in \langle d \rangle = I$.

Lemma 2.5. If I is a non-zero proper ideal of $(\mathbb{Z}_0^+, \oplus, \odot)$, then I is not a Q-ideal.

Proof. Let I be a non-zero proper ideal of $(\mathbb{Z}_0^+, \oplus, \odot)$. By Lemma 2.2, $I = \langle d \rangle$ for some $d \in \mathbb{Z}_0^+ - \{0, 1\}$. Take $d = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ where p_1, p_2, \dots, p_k are pairwise distinct primes and $k, r_i \in \mathbb{N}$. Suppose that I is a Q-ideal. We claim that there exists a unique $q \in Q$ such that $p \in q \oplus I$ for all primes p other than $p_i'^s$. Let p', p'' be any distinct primes other than $p_i'^s$. By Lemma 1.1, there are unique $q_1, q_2 \in Q$ such that $p' \in p' \oplus I \subseteq q_1 \oplus I$ and $p'' \in p'' \oplus I \subseteq q_2 \oplus I$. Since p', p'' are primes other than $p_i'^s, 1 = p' \oplus d \in q_1 \oplus I$ and $1 = p'' \oplus d \in q_2 \oplus I$.

Hence $(q_1 \oplus I) \cap (q_2 \oplus I) \neq \emptyset$. Since *I* is a *Q*-ideal, $q_1 = q_2 = q$ say. Now we have a unique $q \in Q$ such that $p \in q \oplus I$ for all primes *p* other than $p_i^{'s}$. Clearly $q \ge 1$. By above claim choose a prime f > q such that $f \in q \oplus I$. By Lemma 2.1, $f = q \oplus nd$ for some $n \in \mathbb{Z}_0^+$. So $f \mid q$, a contradiction. Therefore *I* is not a *Q*-ideal.

Theorem 2.6. $\{0\}$ and \mathbb{Z}_0^+ are the only *Q*-ideals in the semiring $(\mathbb{Z}_0^+, \oplus, \odot)$.

Proof. Let I be an ideal of $(\mathbb{Z}_0^+, \oplus, \odot)$. If $I = \{0\}$, then clearly I is a Q-ideal of $(\mathbb{Z}_0^+, \oplus, \odot)$ with $Q = \mathbb{Z}_0^+$. If $I = \mathbb{Z}_0^+$, then I is a Q-ideal of $(\mathbb{Z}_0^+, \oplus, \odot)$ with $Q = \{0\}$.

Theorem 2.7. I is a non-zero prime ideal in $(\mathbb{Z}_0^+, \oplus, \odot)$ if and only if $I = \langle p^r \rangle$ for some prime p and $r \geq 1$.

Proof. Let I be a non-zero prime ideal in $(\mathbb{Z}_0^+, \oplus, \odot)$. By Lemma 2.2, $I = \langle d \rangle$ where $d = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ where p_1, p_2, \dots, p_k are pairwise distinct primes and $r_i \in \mathbb{N}$. If $k \geq 2$, then $p_1^{r_1} \odot (p_2^{r_2} \dots p_k^{r_k}) = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k} \in I$ but $p_1^{r_1} \notin I$ and $p_2^{r_2} \dots p_k^{r_k} \notin I$, a contradiction to I is a prime ideal. Hence k = 1. Now $d = p_1^{r_1}$. Conversely, let $I = \langle p^r \rangle$ for some prime p and $r \geq 1$ and let $a \odot b \in I$ $= \langle p^r \rangle$. By Lemma 2.1, $p^r \mid lcm\{a,b\}$ implies $p^r \mid a \text{ or } p^r \mid b$. Again by Lemma 2.1, $a \in I$ or $b \in I$ and hence I is a prime ideal of $(\mathbb{Z}_0^+, \oplus, \odot)$.

Theorem 2.8. I is a non-zero maximal ideal in $(\mathbb{Z}_0^+, \oplus, \odot)$ if and only if $I = \langle p \rangle$ for some prime p.

Proof. Let I be a non-zero maximal ideal in $(\mathbb{Z}_0^+, \oplus, \odot)$. By Lemma 2.2, $I = \langle d \rangle$ for some $d \in \mathbb{Z}_0^+$. If d is not prime, then d = pq for some 1 and <math>1 < q < d. But then $I = \langle d \rangle \subsetneq \langle p \rangle \subsetneq \mathbb{Z}_0^+$, a contradiction to I is a maximal ideal. Hence d is a prime number. Conversely, suppose that $I = \langle p \rangle$ for some prime p. Let J be any ideal of \mathbb{Z}_0^+ such that $I \subseteq J \subsetneq \mathbb{Z}_0^+$. By Lemma 2.2, $J = \langle d \rangle$ for some d > 1. Since $\langle p \rangle = I \subseteq J = \langle d \rangle$, d = p. Hence I is a maximal ideal.

Theorem 2.9. Every ideal of the semiring $(\mathbb{Z}_0^+, \oplus, \odot)$ is semiprime.

Proof. Let I be a non-zero ideal in $(\mathbb{Z}_0^+, \oplus, \odot)$ and $a \odot a \in I$. But then $a \in I$.

Theorem 2.10. A non-zero ideal I of the semiring $(\mathbb{Z}_0^+, \oplus, \odot)$ is primary if and only if it is a prime ideal.

Proof. Let I be a primary ideal of $(\mathbb{Z}_0^+, \oplus, \odot)$ and $a \odot b \in I$. Therefore $a \in I$ or $b \odot b \odot b \odot \ldots \odot b \in I$ i.e. $a \in I$ or $b \in I$. Hence I is a prime ideal. Converse is trivial.

3. Strongly Euclidean Semirings

Definition 3.1. A semiring R is called IS-semiring if every ideal of R is subtractive.

Example 3.2. By Lemma 2.4, the semiring $(\mathbb{Z}_0^+, \oplus, \odot)$ is a *IS*-semiring. By Proposition ([3], Proposition 2.19), the semiring $(\mathbb{Z}_0^+, +, \cdot)$ is not *IS*-semiring.

Definition 3.3. A semiring R is called principal ideal semiring (PIS) if every ideal of R is principal ideal.

Definition 3.4. A commutative semiring R is called strongly Euclidean if there exists a function $d : R - \{0\} \to \mathbb{Z}_0^+$ such that (1) $d(ab) \ge d(a)$ for all $a, b \in R - \{0\}$ and (2) if $a, b \in R$ with $b \ne 0$, then there exist unique $q, r \in R$ such that a = bq + r where either r = 0 or d(r) < d(b).

Theorem 3.5. Every strongly Euclidean IS-semiring is a principal ideal semiring.

Proof. Let R be a strongly Euclidean IS-semiring with function d and I an ideal of R, $I \neq 0$. Let $A = \{d(a) \in \mathbb{Z}_0^+ : a \in I - \{0\}\}$. Then A has the least element say d(a). We claim that $I = \langle a \rangle$. Let $x \in I$. Then there exist unique $q, r \in R$ such that x = aq + r where r = 0 or $d(r) \langle d(a)$. If $r \neq 0$, then $r \in I$, since I is a subtractive ideal. As d(a) is the least element of A, $d(a) \leq d(r)$, a contradiction. Hence r = 0. Now $x = aq \in \langle a \rangle$. Thus $I \subseteq \langle a \rangle$. But $\langle a \rangle \subseteq I$. So $I = \langle a \rangle$. Hence R is a principal ideal semiring.

Converse of the Theorem 3.5 is not true.

Example 3.6. By Lemma 2.2, $R = (\mathbb{Z}_0^+, \oplus, \odot)$ is a *PIS*. If *R* is strongly Euclidean semiring, then by Theorem 1.2, every principal ideal of *R* is a *Q*-ideal, a contradiction to Lemma 2.5. Hence *R* is not strongly Euclidean semiring.

Example 3.7. The semiring $(\mathbb{Z}_0^+, +, \cdot)$ is a strongly Euclidean semiring but not *PIS*.

Example 3.8. The semiring $R = (\mathbb{Z}_0^+ \cup \{\infty\}, max, min)$ is *IS*-semiring. By Theorem ([5], Theorem 5), $I = \mathbb{Z}_0^+$ is not a principal ideal and hence R is not a *PIS*. So by Theorem 3.5, R is not a strongly Euclidean semiring.

Theorem 3.9. If R is a strongly Euclidean IS-semiring, then $R_{n \times n}$ is a PIS.

Proof. Let R be a strongly Euclidean IS-semiring and A be any ideal of $R_{n \times n}$. By Lemma 1.3, $A = I_{n \times n}$ for some ideal I of R. By Theorem 3.5, R is PIS. So I is a principal ideal say $I = \langle a \rangle$. We claim that $A = \langle B \rangle$ where $B = \begin{bmatrix} a & 0 & \dots & 0 \end{bmatrix}$ $\begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \end{bmatrix}$

 $\begin{bmatrix} a & 0 & \dots & 0 \\ 0 & a & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a \end{bmatrix}$. Let $X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots & \dots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{bmatrix} \in A = I_{n \times n}.$ Therefore $x_{ij} \in I$

$$= \langle a \rangle. \text{ So } x_{ij} = t_{ij}a \text{ where } t_{ij} \in R \text{ for all } i, j. \text{ Take } T = \begin{bmatrix} t_{11} & t_{12} & \dots & t_{1n} \\ t_{21} & t_{22} & \dots & t_{2n} \\ \dots & \dots & \dots & \dots \\ t_{n1} & t_{n2} & \dots & t_{nn} \end{bmatrix}$$

 $\in R_{n \times n}$. Then $X = TB \in \langle B \rangle$. Thus $A \subseteq \langle B \rangle$. Other inclusion is trivial. Hence $A = \langle B \rangle$. Thus $R_{n \times n}$ is a *PIS*.

References

- P. J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc. 21 (1969), 412-416.
- [2] Paul J. Allen and L. Dale, Ideal theory in the semiring Z⁺₀, Publ. Math. Debrecen 22(1975), no. 3-4, 219-224.
- [3] J. N. Chaudhari and V. Gupta, Weak primary decomposition theorem for right Noetherian semirings, Indian J. Pure and Appl. Math, 25(6)1994, 647-654.
- [4] J. S. Golan, Semiring and their applications, Kluwer Academic publisher Dordrecht, 1999.
- [5] V. Gupta and J. N. Chaudhari, Some remarks on semirings, Radovi Matematicki, Volume 12(2003) 13-18.
- [6] Vishnu Gupta and J. N. Chaudhari, On partitioning ideals of semirings, Kyungpook Math. Journal, 46(2006), 181-184.
- [7] V. Gupta and J. N. Chaudhari, Prime ideals in semirings, Bull. Malays. Math. Sci. Soc.(2)34(2)(2011), 417 - 421.

Received: November, 2011