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Abstract
Two new instantaneous-time models for predicting the mo-

tion and contact forces of three-dimensional, quasistatic multi-
rigid-body systems are developed; one linear and one nonlin-
ear. The nonlinear characteristic is the result of retaining the
usual quadratic friction cone in the model. Discrete-time ver-
sions of these models provide the first time-stepping methods for
such systems. As a first step to understanding their usefulness
in simulation and manipulation planning, a theorem defining the
equivalence of solutions of a time-stepping method for the non-
linear model and a global optimal solution of a related convex
optimization problem is given. In addition, a Proposition giv-
ing necessary and sufficient conditions for solution uniqueness
of the nonlinear time-stepping method is given. Finally, a simple
example is discussed to help develop intuition about quasistatic
systems and to solidify the reader’s understanding of the theorem
and proposition.

1 Introduction
Robots are primarily passive observers and simple electronic

companions in the unstructured environments that exist outside
factories. This is true despite the fact that, as a society, enormous
productivity gains could be accrued by expanding the skills of
∗AN EARLY VERSION OF THIS PAPER WILL BE PUBLISHED IN THE
ERNATIONAL SYMPOSIUM ON ASSEMBLY AND TASK PLANNING,
NTREAL, JULY 2005. THIS WORK WAS SUPPORTED BY THE NA-
NAL SCIENCE FOUNDATION UNDER GRANTS 0139701 (DMS-FRG),
3227 (IIS-RCV), AND 0420703 (MRI) AND BY RENSSELAER POLY-
HNIC INSTITUTE.
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robots to include manipulation tasks; tasks that cannot be ac-
complished without making and breaking contact between the
robot and physical objects in a controlled fashion. Nearly one
million house-hold robots are in use world wide today, but these
robots cannot perform manipulation tasks autonomously. Even
the highly capable Sony QRIO robot cannot do such tasks, al-
though it can walk and dance on sloping terrain. Currently, ro-
botic dexterous manipulation can only be performed in unstruc-
tured environments by tele-operation, and it is well-known that
this approach is exceedingly slow and places great demand on
the operator. As a result, autonomous grasping controllers are
being developed, but are still of limited capability [11].

Manipulation tasks can be partitioned into two classes: dy-
namic and quasistatic. The former class is by far the broadest and
includes high-speed assembly, juggling, and running. However,
despite being narrower, the latter class includes a large number
of important tasks, such as low-speed assembly, static grasping,
walking using tripods of support. The ability to perform tasks in
this class motivate the study presented below.

1.1 Background
The field of multibody dynamics has been of interest since

DaVinci’s work in the 1490’s. His interest stemmed from a de-
sire to build better machines. About 250 years later, some ba-
sic “laws” of mechanics had been developed by Newton and
Coulomb, which allowed one to formulate an instantaneous-time
mathematical model of dynamic multi-rigid-body systems. This
model is composed of the Newton-Euler equation, Coulomb’s
friction law, and nonpenetration constraints with unknown con-
Copyright © 2005 by ASME
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tact forces and body accelerations. In 1895, Painleve was the first
to discover that this model does not always admit a solution (this
is sometimes referred to as Painleve’s paradox) [13]. Existence
and uniqueness questions were studied for more general systems
after the advent of complementarity theory in the 1960’s [5].
In particular, Lötstedt found that when friction is absent, the
model can be cast as a linear complementarity problem (LCP)
that possesses a property known as “w-uniqueness.” The physi-
cal interpretation of this property is that the body accelerations
are unique, but the contact forces are not [9,10]. Since Lötstedt’s
work, existence and uniqueness properties have been extended to
include limited results for systems with friction [14,20]. Specifi-
cally, solution existence can only be guaranteed if the friction co-
efficients at the contacts are below some threshold value, which
unfortunately, is exceedingly difficult to compute and is sensitive
to the contact geometry.

Because of the weakness of the existence and uniqueness
results, it is not advisable to apply standard time-stepping meth-
ods directly to the instantaneous model [7, 8]. A superior ap-
proach is to derive a discrete-time model written in terms of
the unknown contact impulses and body velocities [1, 17]. The
Stewart-Trinkle formulation results in an LCP that incorporates
constraint stabilization and is nearly always solvable [17]. More-
over, when a solution exists, it can be found using Lemke’s al-
gorithm [5]. If a solution to the Stewart-Trinkle LCP does not
exist, one simply drops the constraint stabilization term, yielding
the Anitescu-Potra mixed LCP for which a solution always exists
and can be found by Lemke’s algorithm [1]. One might wonder
why a solution always exists for the discrete-time model when
the same is not true for the instantaneous-time model. An intu-
itive explanation is that since the discrete-time model is written
in terms of impulses (applied over the current time-step), it im-
plicitly expands the space of possible contact force functions to
include infinite impulses. This is consistent with the resolution
to Painleve’s paradox offered by Mason and Wang [12].

Since time-stepping methods are now reasonably well de-
veloped for dynamic rigid body systems [1–3, 16, 17], one might
wonder why the focus of this paper is on quasistatic models. The
reasons spurs from an interest in the development of planning
algorithms. Dynamic systems “live” in state space, which has
twice the dimension of configuration space, in which quasistatic
systems “live.” Secondly, quasistatic systems move slowly, so in-
ertial, Coriolis, and impulsive forces are absent. Finally, in some
cases, a quasistatic manipulation plan can serve as a good initial
guess for a dynamic plan.

In previous work, Pang et al. [15] formulated an
instantaneous-time planar quasistatic model as an uncoupled
complementarity problem (UCP) and developed a bilinear pro-
gramming algorithm to solve it. In this paper, the work is ex-
tended to three dimensions, a simple time-stepping scheme is
derived, and a new uniqueness result is given.
2
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2 Instantaneous-time models
Let q ∈ <nq be the configuration of a system of rigid bodies,

ν ∈ <nν be the generalized velocity, and f(q, t) ∈ <nν repre-
sent the applied external generalized force, with t being time.
Further, let {λin ≥ 0}nc

i=1 be the nonnegative normal force at
the ith contact point, and λit and λio be the corresponding or-
thogonal friction force components. Since a quasistatic system
must satisfy equilibrium at all times, the equilibrium equation is
needed. It can be written as:

0 = Wn(q)λn + Wt(q)λt + Wo(q)λo + f(q, t) (1)

where λn, λt, λo ∈ <nc are the vectors of normal and friction
force components of the contacts (also called wrench intensities),
Wn, Wt, Wo ∈ <(nc×nν), are matrices whose columns are unit
wrenches of the contact normals, and orthogonal tangent plane
directions.

The system must also obey a nonpenetration constraint at
each contact and a complementarity relationship between the
normal component of contact force and the distance function
ψin(q, t) between the contacting bodies. The complementarity
constraint is:

0 ≤ λn ⊥ ψn(q, t) ≥ 0 (2)

where ψn(q, t) ∈ <nν is the vector of distance functions with ith

element given by ψin(q, t), the symbol ⊥ implies perpendicular-
ity (i.e., λn ·ψn = 0). The physical interpretation of equation (2)
is that a force may act at contact i only if the distance between
the bodies is zero.

The force at each contact is assumed to obey Coulomb’s fric-
tion law, which states that the contact force must lie within a cone
during rolling contact and must lie on the boundary of the cone in
the direction that dissipates the most energy during sliding. Since
sliding is a function of body velocities, the following kinematic
relationship will be needed:

q̇ = G(q)ν (3)

where G depends on the specific orientation parameterization
used for three-dimensional systems and is the identity matrix for
planar systems. Equation (3) provides a connection between the
distance functions and the matrix Wn as follows: WT

n = ∂ψn
∂q G.

Note that one can define analogous (local) tangential displace-
ment functions ψt and ψo with elements ψit and ψio for which
the following hold: WT

t = ∂ψt
∂q G and WT

o = ∂ψo
∂q G.

As noted above, when the contact is sliding, the contact
force must be one from among all those in the cone that max-
imizes energy dissipation. For λin ≥ 0, let Fi(µi, λin) denote
Copyright c© 2005 by ASME
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Do
the friction cone at contact i:

Fi(µi, λin) = {(λit, λio) : µ2
i λ

2
in − λ2

it − λ2
io ≥ 0} (4)

where µi is the coefficient of friction acting at contact i.
Next, define orthogonal sliding velocity components vit and

vio. The vectors of sliding velocities for all the contacts are:
vt = WT

t ν + ∂ψt
∂t and vo = WT

o ν + ∂ψo
∂t with ith elements

vit = WT
it ν + ∂ψit

∂t and vio = WT
ioν + ∂ψio

∂t , respectively. Then
Coulomb’s law at contact i may be written as follows:

(λit, λio) ∈ arg max
(λit,λio)∈Fi

(−λitvit − λiovio) , (5)

which has a useful equivalent formulation [20]:

0 = µiλin(WT
it ν +

∂ψit

∂t
) + λitσi (6)

0 = µiλin(WT
ioν +

∂ψio

∂t
) + λioσi (7)

0 ≤ σi ⊥ µ2
i λ

2
in − λ2

it − λ2
io ≥ 0 (8)

where σi is a Lagrange multiplier arising from the conversion
of the maximum dissipation condition from its “argmax” form
into the inequality form given above. Note that at a solution of
these conditions, σi =

√
v2

it + v2
io, which is the magnitude of

the slip rate at contact i. One should also observe that for all
slip velocities such that at least one of vit and vio is nonzero,
then equations (6) and (7) uniquely determine the direction of
the tangential force vector (λit, λio) and equation (8) uniquely
determines its length.

Compactly, Coulomb’s law for all contacts is:

0 = (Uλn) ◦ (WT
t ν +

∂ψt

∂t
) + λt ◦ σ (9)

0 = (Uλn) ◦ (WT
o ν +

∂ψo

∂t
) + λo ◦ σ (10)

0 ≤ σ ⊥ (Uλn) ◦ (Uλn)− λt ◦ λt − λo ◦ λo ≥ 0 (11)

where U is the diagonal matrix with ith diagonal element equal
to µi and ◦ connotes the Hadamard product.

Some of the above equations are nonlinear in the unknowns
(forces, configuration, and velocity), so their direct use in a time-
stepping scheme would require the solution of mixed nonlinear
complementarity problems (mixed NCPs). In order to obtain
a scheme based on LCPs, a piecewise linear approximation of
the quadratic friction cone with nonnegative force variables is
3

3
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needed (see Figure 1). Let nd friction force direction vectors dj

be chosen such that they positively span the space of possible
friction forces, and let {(λif)j}nd

j=1 be the friction force compo-
nents in those directions. Also, let {(ψif(q, t))j}nd

j=1 be the cor-
responding (local) tangential displacement function. Then the
equilibrium equation can be approximated as:

0 = Wn(q)λn + Wf(q)λf + f(q, t) (12)

where λf ∈ <ncnd has nc elements λif ∈ <nd with elements
(λif)j , the vector ψf ∈ <ncnd is defined analogously, and WT

f =
∂ψf
∂q G.

d3

c t

polyhedral approximation
to friction cone

friction cone

n

d

d

dd

d1

2 4

5

d
6

7d8

Figure 1. Friction cone approximated by an eight-sided pyramid defined
by friction direction vectors dj .

The approximate friction cone can be represented as:

F i(µi, λin) = {λif | µiλin − eT λif ≥ 0, λif ≥ 0} (13)

where e ∈ <nd is a column vector of ones. Let vif =
[(vif)1 ... (vif)nd ]

T = ∂ψif
∂q Gν = WT

if ν be the vector of compo-
nents of the sliding velocity at contact i in the friction directions.
The approximate version of the dissipation condition becomes:

λif ∈ arg max
λif∈Fi

(−λT
ifW

T
if ν

)
. (14)

Reusing the slack variable σi (with slightly different mean-
ing now), a useful equivalent mixed LCP formulation of the max-
Copyright c© 2005 by ASME
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imum dissipation condition for the approximate friction cone is:

0 ≤ λif ⊥ WT
if ν + eσi +

∂ψif

∂t
≥ 0 (15)

0 ≤ σi ⊥ µiλin − eT λif ≥ 0, (16)

where now σi approximates the sliding speed at contact i. Notice
that for all generic cases in which the sliding speed is nonzero,
the friction force will lie along one of the direction vectors with
magnitude equal to µiλin, so in generic cases the “arg max” func-
tion has a unique solution, but the friction force does not directly
oppose the sliding direction. However, nongeneric cases occur
when the two minimum values of the product WT

if ν + ∂ψif
∂t are

equal. In this case, there exist sets of sliding velocities over a
range of directions which all yield the same energy dissipation
rate. Thus, while linearization of the friction cone has clear ben-
efits, it also opens the potential for solution nonuniqueness.

Maximum dissipation for all contacts can be written com-
pactly as:

0 ≤ λf ⊥ WT
f ν + Eσ +

∂ψf

∂t
≥ 0 (17)

0 ≤ σ ⊥ Uλn − ET λf ≥ 0 (18)

where E is the block diagonal matrix with ith block on the main
diagonal given by e.

To summarize, there are two models of interest which differ
only in their descriptions of the friction cone.

Model-IQC (quadratic cones): equations (1-3,9-11).
Model-ILC (linear cones): equations (2,3,12,17,18).

3 Discrete-time models
A desirable outcome for any time-stepping scheme is that its

solution at the end of each time step of the discrete-time model
equals the (continuous) solution of the instantaneous-time model
at the same time. Typically however, computational efficiency
and/or convergence issues force one to design a scheme that
does not exactly meet this desire. To prepare for the design of
a time-stepper that solves a linear problem for each time step,
the quadratic friction cone was approximated by a piecewise lin-
ear cone. In the following, two time-stepping schemes will be
presented. The unknowns for both are the configuration vector,
contact forces, and sliding speeds at the end of the time step.

Let t` and denote the time at which one has a solution and
let t`+1 = t` + h denote the time at which one would like an
estimate of the solution (the term h is the called the step size).
To eliminate ν, q̇ can be approximated using a backward Euler
4

4
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formula as follows:

∆q = q`+1 − q` = G(q)ν`+1h (19)

where q` = q(t`). Note that since ∆q is in the range of G
(see equation (3)), the following useful identity holds: ∆q =
GGT ∆q.

3.1 A mildly nonlinear model: Model-DQC
After substituting equation (19) into Model-

IQC, and replacing all occurrences of the variables
(q, λn, λt, λo, σ) with their values at the end of the time
step, (q`+1, λ`+1

n , λ`+1
t , λ`+1

o , σ`+1), all model equations are
nonlinear in the unknowns.

To remove some of the nonlinearities from the time-stepper,
let Wn, Wt, Wo, G, and f be evaluated at (t`, q`). In addition, let
the distance function vector be approximated by the linear terms
in its Taylor series expansion:

0 ≤ λ`+1
n ⊥ WT

n GT q`+1 + bn ≥ 0 (20)

where bn = ψ`
n + ∂ψ`

n
∂t h − WT

n GT q`. Now the only remaining
nonlinearities are the quadratic terms in Coulomb’s law. The re-
sult is a mildly nonlinear discrete-time model, Model-DQC. For
each time step, the NCP composed of equations (1,20-23) must
be solved:

0 = (Uλn) ◦ (WT
t GT q + bt) + λt ◦ σh (21)

0 = (Uλn) ◦ (WT
o GT q + bo) + λo ◦ σh (22)

0 ≤ σ ⊥ (Uλn) ◦ (Uλn)− λt ◦ λt − λo ◦ λo ≥ 0 (23)

where the variables q, λn, λt, λo, and σ appearing in equa-
tions (21-23) are to be evaluated at time t`+1, bt = ∂ψ`

t
∂t h −

WT
t GT q` and bo = ∂ψ`

o
∂t h−WT

o GT q`.

Summary of Model-DQC:
For each time step, solve the mixed NCP of size nq+4nc defined
by equations (1,20-23).

3.2 A linear model: Model-DLC
The other discrete-time model of interest, Model-DLC can

be derived from Model-ILC by the same procedure. The result
is a mixed LCP defined as follows:




0

ρ`+1
n

ρ`+1
f

s`+1




= B




q`+1

λ`+1
n

λ`+1
f

σ`+1




+ b (24)
Copyright c© 2005 by ASME
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0 ≤




ρ`+1
n

ρ`+1
f

s`+1


 ⊥




λ`+1
n

λ`+1
f

σ`+1


 ≥ 0 (25)

where

B=




0 Wn Wf 0

WT
n GT 0 0 0

WT
f GT 0 0 E

0 U −ET 0




, b=




f

bn

bf

0




, (26)

bn is defined as above, and bf = ∂ψ`
f

∂t h−WT
f GT q`.

Summary of Model-DLC:
For each time step, solve the mixed LCP of size nq +(2+nd)nc

defined by equations (24,25).

4 Solution Uniqueness
The theorem presented here is the first known solution

uniqueness result for general quasistatic multibody systems with
dry friction. It applies only to the discrete-time models, Model-
DQC and Model-DLC.1 Because of space limitations, the re-
sults are presented without proof, but these will be available
in [4].

Before stating the result, the friction force components can
be written as the following functions of the normal force compo-
nent and the relative tangential displacement components ∆it =
WT

it GT q`+1 + bit and ∆io = WT
ioGT q`+1 + bio:

λit = −µi λin
∆it√

∆2
it + ∆2

io

(27)

λio = −µi λin
∆io√

∆2
it + ∆2

io

(28)

where when ∆it = ∆io = 0, the fractions appearing in equa-
tions (27) and (28) are both equal to 0/0, and are taken to be a
suitable pair of scalars (α, β) such that α2 + β2 ≤ 1.
1A result for continuous-time frictionless quasistatic systems was given in
[18]
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For given {µiλin}nc
i=1, consider the following convex, non-

differentiable optimization problem in the variable q`+1:

min −fT GT q`+1 +
nc∑

i=1

µi λin

√
∆2

it + ∆2
io

s.t: WT
n GT q`+1 + bn ≥ 0





(29)

where recall that ∆it and ∆io are functions of q`+1. The physi-
cal interpretation of this problem is that the displacement of the
system is one that avoids penetration while minimizing the work
done against external and frictional forces. In other words, the
system is “lazy” and so moves no more than it absolutely must.

The following result describes the precise connection be-
tween the above optimization problem (29) and the discrete-time
model Model-DQC.

Theorem 1. If (q`+1, λn, λt, λo) solves Model-DQC then
q`+1 is a globally optimal solution to (29) corresponding to
λn. Conversely, if q`+1 is a globally optimal solution to (29)
for a given λn and if λn is equal to an optimal Karush-Kuhn-
Tucker (KKT) multiplier of the constraint in (29), then defin-
ing (λt, λo) by (27) and (28), the tuple (q`+1, λn, λt, λo) solves
Model-DQC.

A question relevant to the design of fixed-point time step-
ping schemes is whether or not the convex optimization prob-
lem (29) has a unique solution, for fixed {µiλin}nc

i=1. Let
(q`+1, λn, λt, λo), solve Model-DQC. Denote by dq a small
change in q`+1, and define the index sets:

I ≡ { i : ψin = 0 < λin } (30)
J ≡ { i : ψin = 0 = λin }. (31)

Proposition 1. Corresponding to the solution
(q`+1, λn, λt, λo) of Model-DQC, q`+1 is the unique solu-
tion of (29) if and only if the following implication holds:

WT
inGT dq ≥ 0, i ∈ I ∪ J

WT
it GT dq = 0, i ∈ I

WT
ioGT dq = 0, i ∈ I

fT GT dq ≥ 0





⇒ dq = 0. (32)

Next, consider an alternative model where the quadratic fric-
tion cone at each contact i is replaced by a four-sided linearized
cone (as suggested in [20]):

F i(µi, λin) = { ( λit, λio ) : max(|λit|, |λio|) ≤ µi λin }.
(33)
Copyright c© 2005 by ASME
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In this case, instead of (27) and (28), we have

λit = −µiλin
∆it

|∆it| (34)

λio = −µiλin
∆io

|∆io| . (35)

Moreover, a result similar to Theorem 1 holds with the optimiza-
tion problem (29) replaced by the following linear program:

min −fT GT q`+1 +
nc∑

i=1

µi λin ( |∆it |+ |∆io |)

s.t: WT
n GT q`+1 + bn ≥ 0





(36)

where again recall that ∆it and ∆io are functions of q`+1.

5 Example: fence-particle problem
Consider the problem of manipulating a particle (shown as

a finite disc) of mass m initially at rest on a horizontal plane
(the (x, y)-plane in Figure 2). The configuration of this system
is q = [xp yp zp]T , where zp is the height of the particle above
the plane (of the page). The wall on the right is parallel to the
(y, z)-plane (perpendicular to the plane of the page) and of infi-
nite extent. The fence is parallel to the wall, of infinite extent,
and can translate in the x- and y-directions, but cannot translate
in the z-direction or rotate.2 The vector of noncontact and non-
inertial forces f = [0 0 −mg]T is the gravitational force which
acts in the negative z-direction.

The three nonpenetration constraints, ψn(q, t) =
[ψ1n(q) ψ2n(q, t) ψ3n(q)]T are written as:

ψ1n = 1− xp ≥ 0 (37)
ψ2n = xp − xfence(t) ≥ 0 (38)

ψ3n = zp ≥ 0. (39)

The corresponding lagrange multipliers are the normal compo-
nents of the contact forces, λn(q, t) = [λ1n λ2n λ3n]T . Even
though as shown, the particle is not in contact with the fence or
wall on the right, the components of the corresponding contact
forces are shown.3 The possible contact force components be-
tween the particle and the (x, y)-plane are not shown.
2The latter constraint is to simplify the problem by making the particle remain
within the (x, y)-plane.

3Since translation in the z-direction is not possible in this problem, friction
forces can act only in the plane of motion of the particle. This is why there are
only two friction force directions for contacts 1 and 2.
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Figure 2. Schematic of fence-particle system.

In this example, solution uniqueness will be explored using
the friction laws discussed above acting at the contact between
the particle and the (y, z)-plane. An interesting observation, is
that for dynamic systems, the absence of friction guarantees so-
lution existence and uniqueness of the predicted motion (not nec-
essarily uniqueness of the contact forces) and the inclusion of
friction leads to motion nonuniqueness. In the quasistatic sys-
tem studied here, the reverse is true. For the case of linearized
friction, the quadratic cone will be approximated by a four-sided
friction pyramid (see Figure 3). The various friction direction
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Figure 3. Friction direction vectors between the particle and the (x, y)-
plane.
vectors at the three potential contacts imply the following defin-
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itions of the local tangential displacement functions:

(ψ1f)1 = −yp (40)
(ψ1f)2 = yp (41)
(ψ2f)1 = yp − yfence(t) (42)
(ψ2f)2 = −yp + yfence(t) (43)

ψ3t = (ψ3f)1 = xp (44)
ψ3o = (ψ3f)2 = yp (45)

(ψ3f)3 = −xp (46)
(ψ3f)4 = −yp. (47)

where yfence(t) is the vertical position of the fence.
The various submatrices appearing in the matrix B are:

Wn =



−1 1 0

0 0 0
0 0 1


 U =




µ1 0 0
0 µ2 0
0 0 µ3


 (48)

Wf =




0 0 0 0 1 0 −1 0
−1 1 1 −1 0 1 0 −1

0 0 0 0 0 0 0 0


 (49)

E =




1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 1 1


 G =




1 0 0
0 1 0
0 0 1


 . (50)

Other matrices for the nonlinear problem are

Wt =




0 0 1
−1 1 0

0 0 0


 Wo =




0 0 0
0 0 1
1 1 0


 (51)

The time-dependent functions needed to define the vectors
bn, bt, bo, bf were chosen as:

xfence(t) = 0.5 + 0.4sin(t) (52)
yfence(t) = t (53)

With these choices, the fence translates in the y-direction while
oscillating in the x-direction without ever hitting the wall.
7
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5.1 Results
Various values of the problem data were chosen to illustrate

the theorem and proposition given in section 4. One common
aspect of these problems is that the only forces that can act in the
z-direction are the gravitational force and the normal component
of the contact force between the particle and the (x, y)-plane.
This implies that λ3n = mg > 0 and ψ3n = 0.

5.1.1 Results: no friction With no friction, Model-
DQC becomes a mixed LCP and is equivalent to Model-DLC. A
detailed analysis of the example without friction emphasizes why
friction may be needed in some cases for solution uniqueness
in quasistatic systems. Looking back at Proposition 1, the 2nd

and 3rd rows of implication (32) are vacuous in the absence of
friction. The removal of these equalities from the implication
is what allows the construction of dq 6= 0 still satisfying the
two remaining inequalities of the implication. The Proposition
requires us to look at a solution and then consider variations, dq
from q`+1. Assume a solution of the mixed LCP with contact
between the particle and the (x, y)-plane, but not with the wall
or fence. In this case, Wn is given below and, as above, f =
[0, 0,−mg]T :

Wn =




0
0
1


 . (54)

Let dq = [dx dy dz]T . Then the inequalities of the impli-
cation yield dz = 0, but dx and dy are unconstrained. Therefore,
there exist dq 6= 0 satisfying the inequalities, and the implication
fails. Thus the solution of q`+1 is not unique. In this particu-
lar case, the set of q`+1 solving the frictionless quasistatic model
are all those for which the particle remains in contact with the
(x, y)-plane, and between the wall and fence. This conclusion
was observed in practice. Specifically, the solution obtained was
dependent on the initial guess used in the PATH solver [6].

5.1.2 Results: Model-DQC with friction Consider
a solution for the system when the particle is not touching the
fence or wall and the quadratic friction law is in effect at the
contact with the (x, y)-plane. In this case, the matrices Wt and
Wo are given as follows:

Wt =




1
0
0


 Wo =




0
1
0


 , (55)

and Wn and f are as in the frictionless case.
From the frictionless case, it is known that the first and last

rows of the implication constrain the z-component of dq to 0.
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Do
Since the “t” and “o” directions span the contact tangent plane,
the equations in the second and third rows of the implication
imply that the x- and y-components of dq are also zero. Thus
the implication always holds, so all q`+1 obtained during time-
stepping will be unique.

When the particle is in contact with the fence, the matrices
Wt and Wo gain rows, but the conclusion does not change - the
motion of the particle is unique.

6 Summary
Two instantaneous-time models of three-dimensional quasi-

static multibody systems with Coulomb friction have been pre-
sented along with two corresponding discrete-time models. The
discrete-time models take the form of complementarity prob-
lems for which led to the first known uniqueness results for such
systems. A simple example was used to highlight a somewhat
unexpected finding. In particular, dynamic multibody systems
have unique accelerations when the friction coefficients are small
enough. Whereas, for some quasistatic systems, the absence of
friction can lead to nonunique system motions.
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