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Design for additive manufacturing (DFAM) gives designers new freedoms to create complex
geometries and combine parts into one. However, it has its own limitations, and more
importantly, requires a shift in thinking from traditional design for subtractive
manufacturing. There is a lack of formal and structured guidelines, especially for novice
designers. To formalize knowledge of DFAM, we have developed an ontology using formal
web ontology language (OWL)/resource description framework (RDF) representations in
the Prot�eg�e tool. The description logic formalism facilitates expressing domain knowledge
as well as capturing information from benchmark studies. This is demonstrated in a case
study with three design features: revolute joint, threaded assembly (screw connection), and
slider–crank. How multiple instances (build events) are stored and retrieved in the knowl-
edge base is discussed in light of modeling requirements for the DFAM knowledge base:
knowledge capture and reuse, supporting a tutoring system, integration into CAD tools. A set
of competency questions are described to evaluate knowledge retrieval. Examples are given
with SPARQL queries. Reasoning with semantic web rule language (SWRL) is exemplified
for manufacturability analysis. Knowledge documentation is the main objective of the cur-
rent ontology. However, description logic creates multiple opportunities for future work,
including representing and reasoning about DFAM rules in a structured modular hierarchy,
discovering new rules with induction, and recognizing patterns with classification, e.g., what
leads to “successful” versus “unsuccessful” fabrications. [DOI: 10.1115/1.4035787]
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1 Introduction

Design for additive manufacturing (DFAM) has tremendous
potential in freeing designers from the limitations of conventional
manufacturing, despite its own limitations. Creating complex
geometries that are difficult to produce with subtractive manufac-
turing, and consolidating multiple parts or fabricating parts
together in an assembled state to reduce manufacturing time and
cost are two examples of the freedoms that additive manufactur-
ing (AM) offers. Seizing these benefits cannot be achieved unless
designers shift their thinking from traditional design for subtrac-
tive manufacturing. This is challenging, even for experienced
designers. Unlike traditional manufacturing techniques where pro-
cess planning is fairly established, there is a lack of formal and
structured guidelines on benefits and limitations of AM, as well as
how designs should be modified to accommodate those benefits
and limitations. Designers will need to overcome the design for
manufacturability fixation, associated with traditional manufactur-
ing which is based on removing material from larger blocks, and
decomposing a design concept into multiple parts in an assembly.

Additionally, there are a variety of AM technologies developed
by different vendors with different capabilities and constraints
(e.g., surface finish, material cost, and minimum bead size). There
is a need for a system that can guide designers through the pros
and cons of implementing each process for a specific design fea-
ture, and configuring process parameters such as part orientation
during fabrication. In some DFAM cases, designers realize that
part designs can be changed to accommodate process limitations
without compromising the intended functionality of the design. In
other cases, designers may configure process parameters to satisfy
design parameters. An example of the former case is to use

dispersed hemispheres instead of a continuous profile in the
design of a screw assembly. An example of the latter is when fab-
ricating a living hinge (revolute joint), the direction of fabrication
should be normal to the plane that is congruous to the circular fea-
tures. DFAM guidelines should encapsulate these tradeoffs.

Though there is a growing attention toward (AM) technologies,
industrial applications are still limited. The reasons mirror the
issues explained above. There is a lack of references that suit the
industry. The literature on the application of AM processes is not
structured in a way to help industries in making decisions about
whether additive or traditional manufacturing techniques are
more appropriate for a given design. In the absence of quantifiable
metrics that facilitate determining success of implementing AM,
or making comparisons among different AM processes, industries
will struggle in adopting AM technology. A design guidance sys-
tem for AM, therefore, will help industries in acquiring DFAM
techniques and developing DFAM skills.

The first step in realizing the tentative DFAM guide system is
developing a knowledge base. Such a base can emerge from iden-
tifying DFAM needs, collect design guidelines, rules, and case
studies. This information can then be synthesized into a cohesive
knowledge base. One source of information can be experimental
data from fabricating sample parts. Existing databases and cata-
logs of vendors about processes, machines, and materials are other
sources.

The knowledge will serve a few purposes. First, it will enable
documenting and storing existing knowledge about AM process
and DFAM that is rather ad hoc. Second, it forms a basis for a
coaching or tutoring system to teach DFAM to novices, or a rec-
ommendation system to support experts or industry practitioners.
Third, it can be integrated into a conventional CAD tool.

To operationalize the knowledge base, we propose a formal
DFAM ontology represented in OWL/RDF. There are a few rea-
sons to choose an OWL ontology over a relational database. One
is that ontologies are superior in modeling knowledge compared
to relational databases. The structure of relational databases is
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geared toward improving performance in data retrieval, not neces-
sarily corresponding to a natural expression of a phenomenon.
Ontologies focus on expressiveness (richer model) instead of per-
formance [1]. Another reason is that a formal ontology is more
pertinent to tutoring systems [2]. Concept maps [3] and their
node-link representation which is similar to a formal OWL
ontology have been used in many tutoring systems. Finally, the
OWL formalism facilitates integration to web technology which
raises the potential outreach of the DFAM guide system. Besides,
implementation will be easier as there are many resources devel-
oped for Semantic Web, for which the standard OWL language
was created. The ontological framework has a logical foundation
which supports various types of reasoning that lead to knowledge
discovery as well as information retrieval.

To summarize, these three purposes, i.e., repository for
AM processes and DFAM knowledge, basis for a tutoring/
recommendation system for DFAM, and basis for a CAD tool
necessitate the following requirements for the DFAM knowledge
base: (1) representing domain knowledge (e.g., what materials are
implemented on a machine; what are process parameter limits on
a machine) and experiential knowledge (similar to benchmark
studies, e.g., feature sizes that were fabricated with a specific AM
process, or surface finish as a function of overhang angle); (2)
support reasoning with common inference engines; and (3) easy
to translate to data structures used in common CAD tools. In the
rest of this paper, we first review existing knowledge on DFAM
and few relevant knowledge representations in design. The
approach toward developing the ontology and the details of the
data model are explained, followed by a discussion of some of
the modeling issues and their implications. The paper concludes
with some of the future research directions.

2 Review of Past Work

2.1 Knowledge Bases of Design for Additive Manufacturing.
AM technologies have matured over the past couple of decades
despite the more recent attention they have gained. However,
there is limited work on developing a comprehensive and coherent
AM knowledge base. Most researchers have conducted
experiments to find capabilities and limitations of specific AM
processes. Knowledge is expressed in guidelines that state quanti-
tatively what has resulted in successful fabrications. Benchmark
parts have been studied for AM processes such as powder bed
fusion (PBF) and material extrusion (MEX), e.g., see Refs. [4]
and [5]. These studies typically investigate the accuracy and
repeatability of fabricating a variety of features, e.g., overhanging
beams as well as quality characteristics such surface finish.

There have been efforts in collating information from different
studies into a more comprehensive catalog-like form than single
benchmarks. Kranz et al. [6] developed design guidelines for laser
AM for TiAl6V4, in a series of recommendations with examples
of favorable and unfavorable configurations. Although such rec-
ommendations are helpful, they are not clearly categorized, and
relations among design and process parameters are also missing.
This is a major caveat in benchmarking studies. Important issues
arising from how design and process parameters influence one
another are left out. Examples of such issues include:

� How does the resolvability of holes and thin walls vary with
orientation and the thickness of the surrounding part?

� What is the best way to fabricate a snap fit or a living hinge
in a selective laser sintering part?

� How much clearance should be provided between a shaft and
a bore when fabricated in an assembled state?

Seepersad et al. [7] conducted a preliminary study that responds
to some of these issues. They fabricated a set of benchmark parts
using polymer PBF, and set guidelines on feature resolution, i.e.,
what is allowable in a design feature, e.g., a circular hole, as a
function of other design and process parameters, e.g., plate

thickness and part orientation. Such knowledge helps designers in
dimensioning and tolerancing parts much more precisely. How-
ever, more work needs to be done on other design features, e.g.,
rotating shafts inside bores. In addition, more knowledge is
needed to be formally acquired, especially expert knowledge from
everyday practitioners and crowd-sourced efforts, considering
that some of the data, e.g., life, might be available long after
fabrication.

AM knowledge can also be described in an almost purely ana-
lytical form. Nelaturi et al. [8] used mathematical morphology to
find regions in the geometric model of a part that are prone to
build failure as they fall below minimum recommended layer
thickness values. The geometrical model is decomposed into a set
of volumes (slices) with layer thickness as height and closed poly-
gons as area. The analysis of a part forms a printability map which
is used to compute design corrections locally.

As mentioned above, an important aspect of AM knowledge is
the relations among design features, design parameters, and pro-
cess parameters. Similar to feature catalog of Kranz et al. [6] for a
specific material and process type, Adam and Zimmer [9] devel-
oped a catalog of design rules for different design features and
parameters, using PBF and MEX. The rules were derived from
tabulated experimental data for different design features such as
overhang, showing whether fabrication was successful or not (a
class attribute with values “OK” and “Destroyed”) with respect to
design parameters, e.g., overhang length. Even though the catalog
makes it possible to compare fabrication success of a design fea-
ture using different AM processes, there is a missed opportunity
in formalizing this knowledge in an easily searchable way.

AM knowledge bases so far have been mostly ad hoc, geometry-
centric, process-specific, and informal. To be more useful in guid-
ing designers, an AM knowledge base needs to accommodate
empirical data, represent relations among entities (ideally, repre-
senting parametric and/or mathematical expressions of how some
entities are related), and have a structure that is easy to query, i.e.,
easy to understand and facilitate search for different entities (pro-
cess type, design feature, design parameter, process parameter,
etc.). These requirements relate not only to the content of the
knowledge base but how it is represented which we review next.

2.2 Representations of Design Knowledge. Various
knowledge representation methods and forms have been imple-
mented in engineering design and for different purposes. Some
are used for representing product data, some for process data, and
some for both. They also are used at different abstraction levels
and different stages of the design process. Ontological frame-
works have been often implemented in describing cognitive proc-
esses and conceptual design; examples are think maps [10] and
problem maps [11] which were inspired by knowledge modeling
with concept maps [3]. Standard formalisms are rarely used.
W€olkl and Shea proposed the application of SysML [12] for con-
ceptual design, though they conceded that the process is trivial.

Embodiment design and detailed product data have long been
the main application of information and knowledge modeling in
engineering design, especially since the advent of CAD/CAM tools,
though most representations are for information modeling pur-
poses. Yet, researchers have proposed representation schemes for
purposes such as data transfer, knowledge reuse, and design auto-
mation. Summers et al. [13] created the design exemplar. The
schema uses a node-link representation in bipartite graphs to facil-
itate pattern matching and change propagation. Design exemplars
require a complete and explicit description of design data in two
distinct sets. They call one set entities and the other constraints.
However, it is difficult to make a clear distinction between the
data type of each set. For example in modeling a gear, “Circle”
and its instance “pitch_circle_1” as well as “Parameter” and its
instance “pitch_radius_1” are entities; “Radius” (an abstract
entity) and “Equation Eq_a” (an instance) are constraints. Design
rules are defined with if-then statements. Sen et al. [14] have
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extended the design exemplar in consistency checking of function
models by using the Pellet reasoners over an OWL ontology.
They define a grammar with description logic rules such as “A
material flow can carry one or more flows of subtypes energy and
signal, but not material.”

The need for a formal knowledge representation of AM to guide
designers has been addressed. Jee et al. [15] have proposed a mod-
ular representation for describing design rules for AM. The
schema consists of three categories of geometric, process, and
material primitives. Three types of modules are also defined. One
is a composition of primitives, e.g., in the relation between under-
cut angle and overhang feature dimension. The second and the
third types are compositions of primitives and modules, and mod-
ules with other modules, respectively. They present examples of
rules in this structure with a case study. The description is bottom-
up however, i.e., modules seem to emerge from the definition of
observed experimental events rather than domain knowledge.

To summarize, AM knowledge has been documented often as
results of benchmark studies. The relations among different design
and process parameters, an important component of AM knowl-
edge, are not represented in a coherent manner. Previous knowl-
edge representation schemas in engineering design serve different
objectives that cover specific steps in the design process and
rarely DFAM. They also are not easily scalable and their develop-
ment is trivial since most applications are limited to lab use, and
also because they seldom utilize the growing paradigm of the
Semantic Web, its established OWL/RDF formalism, and avail-
able tools such as Prot�eg�e.

3 Approach

Review of past work showed that there is a need for a DFAM
knowledge base that guides designers in understanding the
capabilities and limitations of various AM processes, how it is dif-
ferent from traditional manufacturing, and how the process and
design affect each other. The benefits of a formal representation
and their absence in existing DFAM knowledge bases were also
described. To formally express DFAM knowledge, an ontology
was developed using the Prot�eg�e tool.

Prot�eg�e and OWL are based on description logics (DL) [16], a
subset of first-order logic which was created to add formal logic
to knowledge representation in semantic networks [17]. DL has
distinctive features that are associated with monotonic logic
including the open-world assumption and excluding negation as
failure; in other words, lack of knowledge does not imply falsity.
It is also possible to implement inferences based on first-order
logic (sometimes considered subsuming DL), e.g., by answer set
programs [18] which in turn supports modular rule compositions.

3.1 Ontology Development Process. To create a DFAM
ontology, a scope of content and objectives of the tentative ontol-
ogy were identified. To meet the requirements outlined in the
introduction, the target ontology should capture knowledge on
different types of AM processes, how various design features can
be fabricated, and what parameters lead to success or failure in
fabrication. The knowledge base should support different levels of
abstraction, i.e., it should express domain knowledge as well as
empirical knowledge gathered from benchmark studies. To
develop the ontology the following steps were taken:

(1) Enumerate the entities (e.g., “Design_feature,”
“Part_orientation”).

(2) Define possible object properties in a triple of seminatural
language sentences with properties (e.g., “Design_feature
isComposedOf Design_feature,” “Design_parameter para-
metrizes Design_feature”).

(3) Define subclasses of entities (e.g., “Design_feature
>Assembly>Thread”).

(4) Populate with instances.
(5) Evaluate model and iterate through the previous steps.

3.2 The Prot�eg�e Tool for Authoring OWL Ontologies. The
Prot�eg�e tool [19] is a graphical user interface for creating ontolo-
gies based on the OWL/RDF language of the Semantic Web. As a
DL language, it basically deconstructs knowledge of a concept
into a collection of triple sets in the form of subject-predicate–ob-
ject. An object in one triple can be the subject of another triple
which leads to a graph of inter-related nodes with edges that
describe a property connecting the nodes. In Prot�eg�e, the predi-
cate is actually called an object property where subject of the
RDF triple is the “domain” of the object property, and object is its
“range.” Another interpretation which may be used in translating
relational database records to OWL/RDF triples is that subject is
an entity identifier or a row ID of a table, predicate is an attribute
name or column name of a table, and object is the attribute value.

Attributes of an entity are defined by “data property” with the
same triple structure: entity is the “domain”, and the “range” is a
data type such as string or float. Instances [of entities] are added
under “individuals” in Prot�eg�e. The attributes that define the entity
are added as “data property assertions.” When adding an assertion,
a “data type” can also be specified regardless of whether or not a
data type was assigned to the “data property” in defining the
attribute. This is one of the ways for checking consistency in the
ontology with a reasoner.

SPARQL is the language for querying OWL/RDF ontologies
[20]. One of its strengths is that it makes it possible to query one’s
ontology, together with other ontologies and datasets from multi-
ple online and remote sources. Combined with the ability to merge
ontologies in Prot�eg�e, knowledge reuse is an inherent feature of
this approach whether the knowledge base is domain dependent
and closed, is general and public knowledge such as what is found
in DBPedia [21], or a synthesis of both. The fundamental key of
the representation is the concept of triples which can capture vari-
ous relations, e.g., “class_A relates_to/affects class_B,” “class_A
subClassOf class_B,” or “Instance_A is_a class_A.” Therefore,
the general form of a condition statement of a SPARQL query is
written with three variables as {?x ?y ?z}. The variables can be
substituted with constants/determinants to narrow the search
results. For example, the following SPARQL query looks in an
ontology named DFAM and returns all the machines that imple-
ment the polyvinyl alcohol (PVA) material:

PREFIX DFAM: <http://address/ontology.owl#>
SELECT * FROM
{DFAM:PVA DFAM:isImplementedOn?machine}

4 The DFAM Ontology

We have followed the process that was outlined in Sec. 3.1 to
create a DFAM ontology and examine it in a real application.
This section starts with a detailed description of the knowledge
model of the proposed DFAM ontology. A case study with three
design features is described. The features are shown, and relevant
entities, attributes, and relations among them are identified and
formalized in Prot�eg�e. The knowledge that goes in the fabrication
of these design features is modeled and information about multi-
ple instances is retained.

4.1 Structure of the Ontology. The DFAM ontology was
created with a set of high-level entities which were enumerated
based on the important knowledge that should be expressed in a
general fabrication scenario. In this scenario, a fabrication event
occurs when an AM process, machine, and material are chosen,
process parameters are set, and design parameters that affect the
design feature are identified. A distinction is made between design
feature (which is about design intent regardless of method of man-
ufacturing it) and manufacturing feature. For example, an over-
hang is a manufacturing feature. A designer does not necessarily
(and should not) design a feature considering that it will be above
a critical angle with the orientation of fabrication. Therefore, the
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high level entities in the DFAM ontology are AM event, Manufac-
turing feature, Design feature, Design parameter, Process parame-
ter, Machine, and Material, as well as a Reference entity which
points to the source of the information (e.g., a benchmark study in
the literature).

Next, the object properties, i.e., the relation between any two of
the high level entities, are defined. An active or passive verb that
appropriately defines the relation is used. Similar relations use
common names, e.g., isImplementedOn relates machine and
material to an AM process. Table 1 shows the object properties
identified in the current DFAM ontology. For each pair of entities
that are related, one direction (in bold font) is defined with domain
and range in Prot�eg�e, and the other direction is linked to the
reverse with the “Inverse Of” property. The justification for the
appropriateness of the chosen names or the direction is not rele-
vant to the sufficiency of the ontology at this stage and therefore
is not discussed further.

The relation between an entity and its parent or child in OWL
does not imply a composition or aggregation. It means being a
type of a superclass. An isComposedOf object property was
defined to accommodate such relations for design features (resem-
bling a product architecture or an assembly navigator in a CAD

model), and design and process parameters (qualitatively showing
parametric relations).

The subclasses of the high level entities were defined in the
next step of developing the DFAM ontology. The high level
entities were expanded as much as possible. For the purposes of
the ontology outlined before, one major modeling decision was to
have as few data properties as possible in the ontology. For exam-
ple, in expanding design parameters, instead of being an attribute
(data property) of bore-shaft assembly, Radial clearance is the
subclass of circular entity which itself was the subclass of Geo-
metric size parameters. Figure 1 shows the hierarchical class
structure of the entities in the DFAM ontology. The list shown is
simplified and some of the entities are hidden to save space.
Attention should be paid to the class structure rather than specific
entity names.

The AM event consists of two disjoint subsets: an event either
is a build failure or success, and a cleaning failure or success. A
design feature is an assembly or a part. The isComposedOf object
property allows defining an assembly as a composition of parts
since the object property is inherited from the superclass design
feature. Design parameter has two subclasses: geometric size
parameter and orientation parameter which is about the reference
datums on the feature. Geometric size parameters are divided into
categories of similar types such as angular or spatial parameters.
Make and model of a machine is the basis for naming subclasses
of Machine. As it will be described in examples of instantiation of

Table 1 Relations (object properties) among high-level entities in the DFAM ontology (reading direction fi")

AM
event

Manuf.
feature

Design
feature

Design
param. Machine Material

Process
param.

Process
type Ref.

AM event isEmbodiedBy isLimitedBy isControlledBy isControlledBy isProvidedBy

Manuf.
feature

realizes isLimitedBy

Design
feature

embodies isRealizedBy isComposedOf isParametrizedBy isBuiltOn isCreatedFrom controls

Design
param.

limits limits parametrizes isComposedOf isLimitedBy isLimitedBy isLimitedBy

Machine controls builds Limits implements limits implements

Material creates Limits isImplementedOn limits

Process
param.

controls isControlledBy Limits isLimitedBy isComposedOf

Process
type

isImplementedOn isLimitedBy

Ref. provides

Fig. 1 The hierarchical entity structure of the DFAM ontology
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events and data population in the ontology, the machine name
as an entity rather than an instance allows storing different fabri-
cations (AM events) with the same machine even if all other
parameters remain the same. In such a case only the instance of
the event is different and the same machine instance is related to
the event. Similarly, material is decomposed based on family
(plastic or metal) and type/substance. Process parameter consists
of build parameter, Part orientation, and support structure. Build
parameter is defined by three components of the vector normal to
the feature plane of interest in fabrication. Another entity at the
same level, Part orientation, can be used for specifying whether
the feature plane is parallel, perpendicular, or at an angle to the
build orientation. While the former classification shows a numeric
parametric relation, the latter provides a qualitative understanding
of the part orientation. The purpose of the ontology is knowledge
expression and characteristics such as uniqueness are not critical;
in OWL, a commonly used descriptor of an entity is “Equivalent
to” which is used to show two entities (often merged into an exist-
ing ontology from different sources) refer to the same thing.
Finally, Process type shows a classification of AM technologies,
and Reference shows whether the knowledge is based on our
experiments or comes from other sources in the literature of prac-
tice. An exhaustive list of the entities in the DFAM ontology can-
not be given but the structure remains the same for storing
knowledge of additional features. For the case study which will be
described in Sec. 4.2, note that Assembly has a subset {Revolute
joint, Slider crank} and part has {Hole, Pin}. Common design
parameter subclasses are possible when appropriate, e.g., radial
clearance is a design parameter for both threaded assembly and
revolute joint assemblies.

4.2 Case Study Design Features. The objective of this
research at the current stage is to show how DFAM knowledge
can be modeled in the OWL/RDF formalism. Therefore, a few
design features were selected with general criteria such as being a
common feature in the design of actual parts and benefiting from
the freedoms that AM provides. For example, a revolute joint is a
common design feature that appears in the design of many
products, and can be fabricated in a single step without the need
for assembly using an AM process. Two other design features
have been chosen: a threaded assembly (screw connection) and a
slider–crank mechanism, see Fig. 2. The design features have
been characterized analytically and experimentally. Parametric
CAD models of these joint features have been developed and
several MEX samples have been fabricated. Based on the experi-
ments, limits and additional relationships are derived for the para-
metric CAD models which will also be a part of the knowledge
modeled in the ontology. It can be seen that DFAM of the
threaded assembly replaces a continuous profile on the shaft with
a set of dispersed hemispheres along the thread spiral.

4.3 Instantiation and Population of Data. To illustrate how
knowledge was captured in the DFAM ontology, assertions about
instances shown in Sec. 4.2 were added to the knowledge base.
For the first example, information about a revolute joint is par-
tially shown in Fig. 3 as a network graph highlighting the compo-
sition of part features and relation to design parameters. Entities
(shown with circles) and relations among them capture experien-
tial abstract knowledge, while individuals or instances (shown
with diamonds) store experimental knowledge about actual fabri-
cations. This graph only shows experiential knowledge of design
features compositions. Similar knowledge about design parame-
ters is captured in the DFAM ontology but is not shown here. It
can be seen that a network graph representing all the experiential

Fig. 2 Sample models and fabricated design features
Fig. 3 Network graph of the revolute joint entities and
instances
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and experimental knowledge of just one feature can be difficult to
communicate visually in a limited space. Alternative textual rep-
resentations, e.g., triple predicates, can be effective in describing
knowledge stored in the DFAM ontology.

Consider another example of the experimental features; fabri-
cating a threaded assembly (screw). The threaded assembly is an
assembly part composed of a bore and shaft. Hemisphere radius
and radial clearance are two of the design parameters. Based on
the definitions of object properties given previously, some of the
relations which should be expressed are exemplified in Table 2 in
a set of triples, the building block of an OWL/RDF formal ontol-
ogy. The structure is easily readable. The properties in bold font
are standard OWL terms.

From the names of the subjects and objects, it can be seen that
this formalism is powerful in expressing domain knowledge as
well as experimental knowledge of actual events in the same
structure. It also makes it easier to add new knowledge or modify
legacy data compared to conventional relational databases which
have a strict separation of data model and data content. Results of
actual fabrications of ongoing experiments are being added to the
knowledge base in the DFAM ontology. Figures 4 and 5 depict
snapshots of the Prot�eg�e tool which show threaded assembly

Table 2 Knowledge expressed in the ontology with triple sets in OWL/RDF formalism

Subject Object property Object

Thread assembly isCreatedFrom PLA
PLA subClassOf Plastic
Thread assembly isBuiltOn Afinia model X
Thread assembly isComposedOf Thread bore
Thread assembly isComposedOf Thread shaft
Hemisphere radius Parametrizes Thread shaft
Radial clearance Parametrizes Thread shaft
Radial clearance value 1 mm
Thread assembly isControlledBy Part orientation
Part orientation isComposedOf Feature plane normal Z vector
Feature plane normal Z vector value 1

Fig. 4 Showing usage of all entities and attributes of an instance in the Prot�eg�e tool

Fig. 5 Storing parametric data with assertions

021013-6 / Vol. 17, JUNE 2017 Transactions of the ASME

Downloaded From: https://computingengineering.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



fabrication data resulted in successful building and cleaning in
one instance and successful building but cleaning failure in
another. Once an instance is added, the object property assertions
are chosen to store the relation between the subject and object in
the triple.

Instances can be multiple builds of the exact same part, so nam-
ing of instances of all entities other than the AM event entity can
be common. The name should capture the combination of defining
design parameters. This enables capturing data for fabrications
from a crowd source and examining whether similar settings
have similar fabrication results. It also makes the ontology more
readable and easy to understand which can be useful with respect
to one of the purposes of the ontology as a basis for a tutoring
system.

5 Discussion

Three requirements were identified for the DFAM ontology. It
should represent domain and experiential and experimental
knowledge, facilitate reasoning associated with descriptive logics,
and be a basis for or be easy to integrate into a CAD tool. This sec-
tion discusses how the proposed DFAM ontology can satisfy these
requirements. As this is an ongoing work, the discussion is limited
to the case study. The choice of the OWL formalism and the
Prot�eg�e tool provides use of inference engines, and the XML struc-
ture of OWL can be the means for integration into a CAD system.
In addition, knowledge modeling in ontologies is a satisficing
problem. Ontologies are often examined for sufficiency with
respect to competency questions [22]. Therefore, in a few exam-
ples we demonstrate scenarios where the DFAM ontology can be
used to help designers with respect to the requirements for the
knowledge base.

Guiding designers occur at different levels. In a general sce-
nario, a designer might need to know what AM process is imple-
mented on a machine, or the different types of material that can be
used on that machine. In another scenario, the designer might
want to find the machines that use a particular material such as
PVA. Scenarios can be more specific about the limitations or con-
ditions of DFAM. Designers might be interested in knowing the
design parameters that limit success of a design feature in an AM
process. These scenarios can be rewritten as competency ques-
tions such as:

� Which material is used on machine X?
� What is the minimum wall thickness that can be built on the

machine X?
� What AM processes are capable of fabricating a revolute

joint with a radial clearance less than 0.8 mm?

The fundamental key of the representation is the concept of tri-
ples which can capture various relations, e.g., “class_A relates_to/
affects class_B,” “class_A subClassOf class_B,” or “Instance_A
is_a class_A.” Therefore, the general form of a condition state-
ment of a SPARQL query is written with three variables
as {?x ?y ?z}. The variables can be substituted with constants/
determinants to narrow the search results. For example, the fol-
lowing SPARQL query looks in the DFAM ontology and returns
the different types of material that are used on Machine_X, corre-
sponding to the first competency question: SELECT?material
WHERE {?material DFAM:isImplementedOn DFAM:Machine_X}.
The last competency question requires a more complex query as
shown in Fig. 6.

As mentioned, one requirement for the DFAM knowledge base
is to support reasoning in common CAD tools. Using the
slider–crank mechanism as an example, a usage scenario is pre-
sented that illustrates the importance of this type of requirement.
In the near future, it is likely that CAD software will support manu-
facturability analysis with respect to AM processes. In designing
the slider–crank, the designer needs to know the proper clearance
to use in the revolute and sliding joints. If the AM process and
material are selected, queries to the knowledge base could retrieve

the smallest clearance associated with any other instances that are
related to the same process and material. Similarly, if a small
mechanism is desired, the designer will want to determine the
minimum feature size capability of an AM machine so that the
mechanism links and bearing features are not too small; querying
a machine’s minimum feature size can be accomplished readily.
Finally, a query to find the minimum overhang angle associated
with a specific AM machine could be used to generate support
structures on all part surfaces that are below that overhang angle
for a given build orientation.

Another formalism that supports reasoning with OWL ontolo-
gies is semantic web rule language (SWRL) [23]. SWRL rules are
conjunctions of predicates in the precedent of the rule that lead to
a consequent predicate. The predicates are the subjects, object,
and data properties in the ontology with variable names substitut-
ing instances. For example, the following rule assigns wall fea-
tures whose thickness fall below a threshold of 1 mm to a class
called Thin_wall which can reflect on manufacturability issues
(process capability):

Wall(?wall) � Wall_thickness(?w_t) � parametrizes(?w_t, ?wall)
� hasValue(?w_t, ?thickness) � swrlb:lessThan(?thickness,
1.0)! Thin_wall(?wall)

The description logic (DL) formalism of OWL creates some
opportunities in knowledge modeling over conventional relational
databases. While in traditional databases events are recorded as a
collection of values on attributes, ontologies consist of relations
among all atoms, and atoms can be any of class or attribute names,
and instance names of classes or values of attributes. The all-in-
one formalism extends information retrieval suitable for feature-
based machine learning to knowledge retrieval and relational
learning [24].

Besides being more expressive with human-interpretable
explanations [24,25], first-order logic (which subsumes DL) can
also be applied to reason with modular rules, e.g., by translating
OWL into Prolog as done in Ref. [26]. Even though modular rea-
soning rules can be written in OWL (with the SWRL language),
first-order logic rule authoring languages like Prolog are more
powerful and concise especially in handling negations. For
example, to write a rule that finds all unsuccessful build events for
fabricating threaded assemblies, a DL rule should exclude a con-
junction of all other design features which is not only trivial, but
requires updating the rule every time a new design feature is
added to the ontology. The predicate logic representation also
makes it possible to clearly separate facts and rules, as well as
structuring a modular and compositional rule hierarchy. Consider
the examples given in Fig. 7. The facts, denoted with lowercase,
correspond to instances. Generalization rules compose different
conditions (variables in uppercase) to describe a more general
condition which is more likely to be a part of another rule, e.g., all

Fig. 6 SPARQL query for a competency question
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threaded assemblies are design features. Depending on what the
rule is supposed to discover, generalization rules or specific state-
ments can be used which lead to flexibly define different rules. In
the example given, rule 1 returns all unsuccessful AM events
(which uses a generalization rule) for threaded assemblies; the
Horn clause with the negation �thread(Design_feature) filters all
design features that are not threaded assemblies. Rule 2 finds the
minimum radial clearance for successful builds (regardless of
whether the cleaning process led to success or failure). For brev-
ity, many intermediate statements and rules are not included in the
example, e.g., the function for finding a minimum value. Yet, it
can be seen how the logical formalism facilitates reasoning with
modular rules.

6 Future Work

The proposed DFAM ontology is capable of storing domain
and experiential knowledge, retrievable for guiding designers in a
tutoring system and as a basis of a CAD tool. There are several
directions to improve on the existing ontology. First is expanding
the scope by adding knowledge for more design features from our
own experiments or previous benchmark studies. Some criteria
can be used for selecting design features with potential for
increased benefits from AM. They are part consolidation, weight

reduction, structural strength, geometrical complexity, service
life, and production volume. Design features can be evaluated
against these criteria in light of traditional design and manufactur-
ing practices and limitations, e.g., many traditionally designed
parts have a large portion of mass that is orders of magnitude
below ultimate strength levels since traditional manufacturing
practice does not always afford removing such idle mass. Such
knowledge should be a part of the guide system, e.g., as a set of
measures of goodness.

Implementing the DFAM ontology in a tutoring system and
evaluating its benefits is another direction. This is intimately
related to the reasoning capabilities required for presenting guide-
lines to designers. Using logical induction methods such as induc-
tive logic can lead to discovering new rules after adding more
empirical knowledge to the ontology. Other machine learning
approaches for general classification have potential to draw
patterns from larger data sets.
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