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This paper presents a design method of Chebyshev-type and inverse-Chebyshev-type infinite impulse response (IIR) filters
with an approximately linear phase response. In the design of Chebyshev-type filters, the flatness condition in the stopband is
preincorporated into a transfer function, and an equiripple characteristic in the passband is achieved by iteratively solving the QP
problem using the transfer function. In the design of inverse-Chebyshev-type filters, the flatness condition in the passband is added
to the constraint of the QP problem as the linear matrix equality, and an equiripple characteristic in the stopband is realized by
iteratively solving the QP problem. To guarantee the stability of the obtained filters, we apply the extended positive realness to the
QP problem. As a result, the proposed method can design the filters with more high precision than the conventional methods. The
effectiveness of the proposed design method is illustrated with some examples.

1. Introduction

Digital filters are needed in many applications in signal pro-
cessing. Infinite impulse response (IIR) filters are useful for
high-speed processing, and IIR filters with lower order can
be realized that are comparable to the magnitude responses
of finite impulse response (FIR) filters. However, its design
is more difficult than FIR filters because IIR filters have a
rational transfer function and are not always stable. For that
reason, the study on IIR filter design is still a hot topic
in the area of digital signal processing and many design
methods on the IIR filters have been presented [1–8]. In
this paper, we will treat two types of filters: Chebyshev
type which is equiripple in the passband and flat in the
stopband, Inverse Chebyshev type which is equiripple in the
stopband and flat in the stopband. These filters are needed
in many image processing applications to suppress ringing
and chessboard distortion and are used in each situation
appropriately. Moreover, in many signal processing applica-
tions, such as wavelet transform and channel equalization,
the complex coefficient digital filters are required to meet
some specifications that cannot be achieved by real coefficient
filters, such as asymmetric spectral response [9–11].

In [12, 13], the design methods based on the Remez algo-
rithm were proposed for the Chebyshev-type and inverse-
Chebyshev-type IIRfilterswith an approximately linear phase
response. These methods can design the filters with small
computational complexity. However, the filters that can be
designed using these methods are restricted greatly because
of a condition imposed on setting the initial value. Moreover,
these methods cannot guarantee the stability of the filter
obtained. By using the linear semi-infinite programming and
the extended positive realness, the design method of stable
inverse Chebyshev-type IIR filters with an approximately
linear phase response has been proposed [14]. This method
needs to set an initial value appropriately and the perfor-
mance of the filter obtained is dependent on the initial value.

In this paper, a design method based on quadratic
programming (QP) is presented for stable IIR filters and
for FIR filters with prescribed flatness in the passband or
stopband and an approximately linear phase response in the
passband. To guarantee the stability of the filter obtained,
we apply the extended positive realness to the QP problem.
As a result, the proposed method can design the filters that
cannot be designed by the conventional methods. This paper
is organized as follows: in Section 2, the flatness conditions
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in the passband and stopband are described. In Section 3,
the design algorithm for inverse-Chebyshev-type filters is
described. In Section 4, the design algorithm for Chebyshev-
type filters is described. To verify the effectiveness of the
proposed method, several design examples are given in
Section 5. Section 6 is the conclusions of this work.

2. IIR Digital Filters and Flatness Conditions

The frequency response 𝐻(𝑒𝑗𝜔) of an IIR digital filter is
defined as

𝐻(𝑒
𝑗𝜔
) =

𝐴 (𝑒
𝑗𝜔
)

𝐵 (𝑒𝑗𝜔)
=
∑
𝑁
𝑛=0 𝑎𝑛𝑒

−𝑗𝑛𝜔

∑
𝑀
𝑚=0 𝑏𝑚𝑒

−𝑗𝑚𝜔
, (1)

where𝑁 and𝑀 are the orders of the numerator and denom-
inator, respectively. 𝑎𝑛 = 𝑎𝑟𝑛+𝑗𝑎𝑖𝑛 and 𝑏𝑚 = 𝑏𝑟𝑚+𝑗𝑏𝑖𝑚 are the
filter coefficients and 𝑏0 = 1 in general.The desired frequency
response𝐻𝑑(𝑒

𝑗𝜔
) can be expressed as

𝐻𝑑 (𝑒
𝑗𝜔
) =

{

{

{

𝑒
−𝑗𝜏𝑑𝜔, (passband) ,

0, (stopband) ,
(2)

where 𝜏𝑑 is a desired group delay.
Then, the flatness conditions of the magnitude and group

delay at 𝜔 = 𝜔𝑢 in the passband are given as follows:

𝜕
𝑖 󵄨󵄨󵄨󵄨󵄨
𝐻 (𝑒
𝑗𝜔
)
󵄨󵄨󵄨󵄨󵄨

𝜕𝜔𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

= {

1, (𝑖 = 0) ,

0, (𝑖 = 1, 2, . . . , 𝐾𝑝 − 1) ,

𝜕
𝑖
𝜏(𝜔)

𝜕𝜔𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

= {

𝜏𝑑, (𝑖 = 0) ,

0, (𝑖 = 1, 2, . . . , 𝐾𝑝 − 2) ,

(3)

where 𝐾𝑝 is a parameter expressing the flatness in the pass-
band. The magnitude flatness condition at 𝜔 = 𝜔𝑡 in the
stopband is

𝜕
𝑖 󵄨󵄨󵄨󵄨󵄨
𝐻 (𝑒
𝑗𝜔
)
󵄨󵄨󵄨󵄨󵄨

𝜕𝜔𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑡

= 0, (𝑖 = 0, 1, . . . , 𝐾𝑠 − 1) , (4)

where 𝐾𝑠 is a parameter expressing the flatness in the
stopband.
3. Design of Inverse-Chebyshev-Type Filters

3.1. Problem Formulation. Let 𝐻̃(𝑒𝑗𝜔) be a noncausal shifted
version of𝐻(𝑒𝑗𝜔);

𝐻̃ (𝑒
𝑗𝜔
) = 𝐻(𝑒

𝑗𝜔
) 𝑒
𝑗𝜏𝑑𝜔

=
∑
𝑁
𝑛=0 𝑎𝑛𝑒

−𝑗(𝑛−𝜏𝑑)𝜔

∑
𝑀
𝑚=0 𝑏𝑚𝑒

−𝑗𝑚𝜔
=

𝐴 (𝑒
𝑗𝜔
)

𝐵 (𝑒𝑗𝜔)
.

(5)

With (5), the flatness conditions in (3) become

𝜕
𝑖
𝐻̃ (𝑒
𝑗𝜔
)

𝜕𝜔𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

= {
1, (𝑖 = 0) ,

0, (𝑖 = 1, 2, . . . , 𝐾𝑝 − 1) .
(6)

It is shown in Appendix that (6) is equivalent to (3). Equation
(6) is the same as follows [15]:

𝜕
𝑖
𝐴(𝑒
𝑗𝜔
)

𝜕𝜔𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

=

𝜕
𝑖
𝐵 (𝑒
𝑗𝜔
)

𝜕𝜔𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

, (𝑖 = 0, 1, . . . , 𝐾𝑝 − 1) .

(7)

Consequently, we can get the linear equation in matrix form:

Uh = V, (8)

where U = [U1 U2], V = [1, 0, . . . , 0]
𝑇, and h = [𝑎𝑟0, . . . ,

𝑎𝑟𝑁, 𝑎𝑖0, . . . , 𝑎𝑖𝑁, 𝑏𝑟1, . . . , 𝑏𝑟𝑀, 𝑏𝑖1, . . . , 𝑏𝑖𝑀]
𝑇 and (⋅)

𝑇 denotes
the transpose of (⋅).U1 andU2 are in (9) and (10), respectively:

U1 =

[
[
[
[
[
[
[
[
[
[

[

(0 − 𝜏𝑑)
0 cos ((0 − 𝜏𝑑) 𝜔𝑢) ⋅ ⋅ ⋅ (𝑁 − 𝜏𝑑)

0 cos ((𝑁 − 𝜏𝑑) 𝜔𝑢) (0 − 𝜏𝑑)
0 sin ((0 − 𝜏𝑑) 𝜔𝑢) ⋅ ⋅ ⋅ (𝑁 − 𝜏𝑑)

0 sin ((𝑁 − 𝜏𝑑) 𝜔𝑢)
... d

...
... d

...

(0 − 𝜏𝑑)
𝐾𝑝−1 cos ((0 − 𝜏𝑑) 𝜔𝑢) ⋅ ⋅ ⋅ (𝑁 − 𝜏𝑑)

𝐾𝑝−1 cos ((𝑁 − 𝜏𝑑) 𝜔𝑢) (0 − 𝜏𝑑)
𝐾𝑝−1 sin ((0 − 𝜏𝑑) 𝜔𝑢) ⋅ ⋅ ⋅ (𝑁 − 𝜏𝑑)

𝐾𝑝−1 sin ((𝑁 − 𝜏𝑑) 𝜔𝑢)

− (0 − 𝜏𝑑)
0 sin ((0 − 𝜏𝑑) 𝜔𝑢) ⋅ ⋅ ⋅ − (𝑁− 𝜏𝑑)

0 sin ((𝑁 − 𝜏𝑑) 𝜔𝑢) (0 − 𝜏𝑑)
0 cos ((0 − 𝜏𝑑) 𝜔𝑢) ⋅ ⋅ ⋅ (𝑁 − 𝜏𝑑)

0 cos ((𝑁 − 𝜏𝑑) 𝜔𝑢)
... d

...
... d

...

− (0 − 𝜏𝑑)
𝐾𝑝−1 sin ((0 − 𝜏𝑑) 𝜔𝑢) ⋅ ⋅ ⋅ − (𝑁− 𝜏𝑑)

𝐾𝑝−1 sin ((𝑁 − 𝜏𝑑) 𝜔𝑢) (0 − 𝜏𝑑)
𝐾𝑝−1 cos ((0 − 𝜏𝑑) 𝜔𝑢) ⋅ ⋅ ⋅ (𝑁 − 𝜏𝑑)

𝐾𝑝−1 cos ((𝑁 − 𝜏𝑑) 𝜔𝑢)

]
]
]
]
]
]
]
]
]
]

]

,

(9)

U2 =

[
[
[
[
[
[
[
[
[
[
[

[

−1
0 cos (1𝜔𝑢) ⋅ ⋅ ⋅ −𝑀

0 cos (𝑀𝜔𝑢) −1
0 sin (1𝜔𝑢) ⋅ ⋅ ⋅ −𝑀

0 sin (𝑀𝜔𝑢)
.
.
. d

.

.

.
.
.
. d

.

.

.

−1
𝐾𝑝−1 cos (1𝜔𝑢) ⋅ ⋅ ⋅ −𝑀

𝐾𝑝−1 cos (𝑀𝜔𝑢) −1
𝐾𝑝−1 sin (1𝜔𝑢) ⋅ ⋅ ⋅ −𝑀

𝐾𝑝−1 sin (𝑀𝜔𝑢)

1
0 sin (1𝜔𝑢) ⋅ ⋅ ⋅ 𝑀

0 sin (𝑀𝜔𝑢) −1
0 cos (1𝜔𝑢) ⋅ ⋅ ⋅ −𝑀

0 cos (𝑀𝜔𝑢)
.
.
. d

.

.

.
.
.
. d

.

.

.

1
𝐾𝑝−1 sin (1𝜔𝑢) ⋅ ⋅ ⋅ 𝑀

𝐾𝑝−1 sin (𝑀𝜔𝑢) −1
𝐾𝑝−1 cos (1𝜔𝑢) ⋅ ⋅ ⋅ −𝑀

𝐾𝑝−1 cos (𝑀𝜔𝑢)

]
]
]
]
]
]
]
]
]
]
]

]

. (10)
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Let 𝐻̃𝑑(𝑒
𝑗𝜔
) be the desired magnitude response; that is,

𝐻̃𝑑 (𝑒
𝑗𝜔
) =

{

{

{

1, (passband) ,

0, (stopband) .
(11)

Using (5) and (11), the weighted least squares design problem
is

min
h
𝐽 =

𝐿

∑

𝑙=1

𝑊(𝜔𝑙)
󵄨󵄨󵄨󵄨󵄨
𝐻̃ (𝑒
𝑗𝜔𝑙) − 𝐻̃𝑑 (𝑒

𝑗𝜔𝑙)
󵄨󵄨󵄨󵄨󵄨

2
, (12)

where 𝐿 is the total number of grid points in the passband
and stopband,𝑊(𝜔𝑙) is the weighting function, and 𝜔𝑙 (𝑙 =
1, . . . , 𝐿) are the discrete frequency points used in the calcu-
lation. However, it is difficult to solve (12) directly because
𝐻̃(𝑒
𝑗𝜔𝑙) is a rational function. Thus, we use the following

iterative design formula:

min
h
𝐽 =

𝐿

∑

𝑙=1

𝑊(𝜔𝑙)
󵄨󵄨󵄨󵄨󵄨
𝐴 (𝑒
𝑗𝜔𝑙) − 𝐻̃𝑑 (𝑒

𝑗𝜔𝑙) 𝐵 (𝑒
𝑗𝜔𝑙)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝐵𝑘−1 (𝑒
𝑗𝜔𝑙)
󵄨󵄨󵄨󵄨

2
, (13)

where 𝑘 is the number of the iterations.
After some manipulation, (13) can be formulated as the

following QP problem:

min
h

h𝑇 (P𝑇𝑅WP𝑅 + P𝑇𝐼WP𝐼) h − 2 (d
𝑇
𝑅WP𝑅 − d𝑇𝐼WP𝐼) h,

(14)

where P𝑅 = [(e𝑁𝑅 + e𝑁𝐼), −(D𝑅e𝑀𝑅 + D𝐼e𝑀𝐼)], P𝐼 = [(e𝑁𝐼−
e𝑁𝑅), (D𝐼e𝑀𝑅−D𝑅e𝑀𝐼)], e𝑁𝑅 = [1, . . . , cos(𝜔𝑙(𝑁−𝜏𝑑)), 0, . . . ,
sin(𝜔𝑙(𝑁 − 𝜏𝑑))], e𝑁𝐼 = [0, . . . , − sin(𝜔𝑙(𝑁 − 𝜏𝑑)), 1, . . . ,

cos(𝜔𝑙(𝑁 − 𝜏𝑑))], e𝑀𝑅 = [cos(𝜔𝑙), . . . , cos(𝜔𝑙𝑀), sin(𝜔𝑙),
. . . , sin(𝜔𝑙𝑀)], e𝑀𝐼 = [− sin(𝜔𝑙), . . . , − sin(𝜔𝑙𝑀), cos(𝜔𝑙), . . . ,
cos(𝜔𝑙𝑀)], D = diag(d) = D𝑅 − 𝑗D𝐼, d = [𝐻̃𝑑(𝑒

𝑗𝜔1), . . . ,

𝐻̃𝑑(𝑒
𝑗𝜔𝐿)] = d𝑅 −𝑗d𝐼, andW = diag([𝑊(𝜔1)/|𝐵𝑘−1(𝜔0)|

2
, . . . ,

𝑊(𝜔𝐿)/|𝐵𝑘−1(𝜔𝐿)|
2
]).

3.2. Update of the Weighting Function 𝑊(𝜔). It has been
well known that the filters obtained under weighted least
square criterion have a large ripple near the band edges. So in
order to realize the equiripple characteristics in the passband
or stopband or both, the weighting function used at every
iteration is adjusted using the modified Lawson’s method [16]
and the QP problem is solved to obtain the coefficients. In
this paper, the weighting function𝑊(𝜔) in 𝑘th iteration step
is updated as follows:

𝑊𝑘+1 (𝜔) =
𝑊𝑘 (𝜔) 𝛽𝑘 (𝜔)

(1/𝐿)∑
𝐿
𝑙=1𝑊𝑘 (𝜔𝑙) 𝛽𝑘 (𝜔𝑙)

, (15)

where the envelope function 𝛽𝑘(𝜔) is given as the function
of straight line formed by joining together all the extremal
points of the same frequency band of interest on the error
function which is expressed as

𝐸𝑘 (𝜔) =
󵄨󵄨󵄨󵄨󵄨
𝐻̃ (𝑒
𝑗𝜔
) − 𝐻̃𝑑 (𝑒

𝑗𝜔
)
󵄨󵄨󵄨󵄨󵄨
. (16)

Using the extremal points 𝜔̂𝑖 of𝐸𝑘(𝜔),𝛽𝑘(𝜔) can be calculated
by

𝛽𝑘 (𝜔) =
𝜔 − 𝜔̂𝑖

𝜔̂𝑖+1 − 𝜔̂𝑖

𝐸𝑘 (𝜔̂𝑖+1) +
𝜔̂𝑖+1 − 𝜔

𝜔̂𝑖+1 − 𝜔̂𝑖

𝐸𝑘 (𝜔̂𝑖) ,

for 𝜔̂𝑖 < 𝜔 < 𝜔̂𝑖+1,
(17)

where 𝜔̂𝑖 denotes the 𝑖th extremal frequency of the error
function 𝐸𝑘(𝜔).

3.3. Stability Constraint. To obtain the stable IIR filters,
the stability condition based on a positive realness has
been applied to many design methods. However, the use of
this condition may exclude the candidate for the transfer
function with excellent performance because this condition
is a sufficient condition to assure the stability and is often
too restrictive. In [17], an iterative method for the stability
guarantee based on the positive realness was proposed in
order to get a better transfer function. In this method, a
stability condition is given by

Re {𝐵 (𝑒𝑗𝜔)} ≥ 𝛿, −𝜋 ≤ 𝜔 < 𝜋, (18)

where 𝛿 < 1. If the maximum pole radius 𝑃max of the filter
obtained using a given 𝛿 is greater than prescribedmaximum
allowable pole radius 𝑟𝑚, 𝛿 is updated and redesign is carried
out using the updated 𝛿. The update of 𝛿 and the redesign
are repeated until satisfying |𝑃max − 𝑟𝑚| ≤ 𝜖𝑅, where 𝜖𝑅 is a
positive small value. The update procedure of 𝛿 is described
in Section 4.2.

Using the discrete angular frequency 𝜔𝑖 (𝑖 = 1, . . . , 𝑅),
(18) can be expressed as the linear matrix inequality

Γh ≥ 𝜆, (19)

where

Γ =

[
[
[
[

[

0 ⋅ ⋅ ⋅ 0 cos (𝜔1) ⋅ ⋅ ⋅ cos (𝑀𝜔1)
.
.
. d

.

.

.
.
.
. d

.

.

.

0 ⋅ ⋅ ⋅ 0 cos (𝜔𝑅) ⋅ ⋅ ⋅ cos (𝑀𝜔𝑅)

]
]
]
]

]

,

𝜆 = [𝛿 − 1, . . . , 𝛿 − 1]
𝑇
.

(20)

Thus, the design problem in which the stability constraint
and the update of the weighting function were considered
becomes a standard QP problem as below:

min
h𝑘

h𝑇𝑘 (P
𝑇
𝑅W𝑘P𝑅 + P𝑇𝐼W𝑘P𝐼) h𝑘

− 2 (d𝑇𝑅W𝑘P𝑅 − d𝑇𝐼W𝑘P𝐼) h𝑘,

sub. to Γh𝑘 ≥ 𝜆,

Uh𝑘 = V,

(21)

where W𝑘 = diag([𝑊𝑘(𝜔1)/|𝐵𝑘−1(𝜔0)|
2
, . . . ,𝑊𝑘(𝜔𝐿)/

|𝐵𝑘−1(𝜔𝐿)|
2
]).

This problem can be solved using a powerful QP tool,
such as 𝑞𝑢𝑎𝑑𝑝𝑟𝑜𝑔 in MATLAB.
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4. Design of Chebyshev-Type Filters

4.1. Problem Formulation. In this section, we consider the
filters with a flatness in the stopband. With a noncausal
shifted version 𝐻̃(𝑒𝑗𝜔) in (5), the flatness condition in (4)
becomes

𝜕
𝑖 󵄨󵄨󵄨󵄨󵄨
𝐻̃ (𝑒
𝑗𝜔
)
󵄨󵄨󵄨󵄨󵄨

𝜕𝜔𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑡

= 0, (𝑖 = 0, 1, . . . , 𝐾𝑠 − 1) . (22)

In order to meet the flatness condition of (22), it is necessary
to place 𝐾𝑠 multiple zeros at 𝜔 = 𝜔𝑡. Hence, the frequency
response 𝐻̂(𝑒𝑗𝜔) can be expressed as

𝐻̂ (𝑒
𝑗𝜔
) =

𝐴 (𝑒
𝑗𝜔
)

𝐵 (𝑒𝑗𝜔)
=

(1 + 𝑒
−𝑗𝜔
)
𝐾𝑠
∑
𝑁−𝐾𝑠
𝑛=0 𝑐𝑛𝑒

−𝑗(𝑛−𝜏𝑑)𝜔

1 + ∑
𝑀
𝑚=1 𝑏𝑚𝑒

−𝑗𝑚𝜔
, (23)

where 𝑐𝑛 = 𝑐𝑟𝑛+𝑗𝑐𝑖𝑛. To obtain the equiripple responses in the
passband, we consider the following iterative design formula:

min
c,b

𝐽 =

𝐿

∑

𝑙=1

𝑊(𝜔𝑙)

󵄨󵄨󵄨󵄨𝐵𝑘−1 (𝑒
𝑗𝜔𝑙)
󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨󵄨
𝐴 (𝑒
𝑗𝜔𝑙) − 𝐻𝑑 (𝑒

𝑗𝜔𝑙) 𝐵 (𝑒
𝑗𝜔𝑙)

󵄨󵄨󵄨󵄨󵄨

2
.

(24)

Thus, the design problem in which the stability constraint
and the update of the weighting function were considered
becomes a standard QP problem as below:

min
ĥk

ĥ𝑇k (P̂
𝑇
𝑅W𝑘P̂𝑅 + P̂𝑇𝐼W𝑘P̂𝐼) ĥk

− 2 (d𝑇𝑅W𝑘P̂𝑅 − d𝑇𝐼W𝑘P̂𝐼) ĥk,

sub. to Γĥk ≥ 𝜆,

(25)

where ĥ = [𝑐𝑟0, . . . , 𝑐𝑟(𝑁−𝐾𝑠)
, 𝑐𝑖0, . . . , 𝑐𝑖(𝑁−𝐾𝑠)

, 𝑏𝑟1, . . . , 𝑏𝑟𝑀, 𝑏𝑖1,

. . . , 𝑏𝑖𝑀]
𝑇, P̂𝑅 = [(G𝑅ê𝑁𝑅 +G𝐼ê𝑁𝐼), −(D𝑅e𝑀𝑅 +D𝐼e𝑀𝐼)], P̂𝐼 =

[(G𝑅ê𝑁𝐼 − G𝐼ê𝑁𝑅), (D𝐼e𝑀𝑅 − D𝑅e𝑀𝐼)], G = diag((1−
𝑒
−𝑗(𝜔𝑙−𝜔𝑡))

𝐾𝑠) = G𝑅 − 𝑗G𝐼, ê𝑁𝑅 = [1, . . . , cos(𝜔𝑙(𝑁 − 𝐾𝑠)), 0,

. . . , sin(𝜔𝑙(𝑁 − 𝐾𝑠))], ê𝑁𝐼 = [0, . . . , − sin(𝜔𝑙(𝑁 − 𝐾𝑠)), 1, . . . ,

cos(𝜔𝑙(𝑁 − 𝐾𝑠))], e𝑀𝑅 = [cos(𝜔𝑙), . . . , cos(𝜔𝑙𝑀), sin(𝜔𝑙), . . . ,
sin(𝜔𝑙𝑀)], e𝑀𝐼 = [− sin(𝜔𝑙), . . . , − sin(𝜔𝑙𝑀), cos(𝜔𝑙), . . . ,
cos(𝜔𝑙𝑀)], D = diag(d) = D𝑅 − 𝑗D𝐼, d = [𝐻𝑑(𝑒

𝑗𝜔1), . . . ,

𝐻𝑑(𝑒
𝑗𝜔𝐿)] = d𝑅 − 𝑗d𝐼, and W𝑘 = diag([𝑊𝑘(𝜔1)/|𝐵𝑘−1(𝜔1)|

2
,

. . . ,𝑊𝑘(𝜔𝐿)/|𝐵𝑘−1(𝜔𝐿)|
2
]).

4.2. Design Procedure. The design procedure of the proposed
method is summarized as follows.

Step 0. Set the design specifications.

Step 1. Solve the QP problem to obtain the filter coefficient h𝑘.

Step 2. If sum(|h𝑘 −h𝑘−1|)/sum(|h𝑘|) ≤ 𝜖 and 𝑃max < 𝑟𝑚, stop;
if sum(|h𝑘 − h𝑘−1|)/sum(|h𝑘|) ≤ 𝜖 and 𝑃max > 𝑟𝑚, go to Step
4; otherwise, go to Step 3.

Step 3. Update the weighting function𝑊(𝜔) using (15)–(17)
and go back to Step 1.

Step 4. Calculate 𝛿󸀠 = minall 𝜔 Re{𝐵(𝜔)} from the obtained
filter and then set to 𝛿𝑙 = 𝛿

󸀠 and 𝛿𝑢 = 1.

Step 5. Calculate 𝛿 = (𝛿𝑙 + 𝛿𝑢)/2.

Step 6. Solve the QP problem using the updated 𝛿.

Step 7. If sum(|h𝑘 −h𝑘−1|)/sum(|h𝑘|) ≤ 𝜖 and |𝑃max −𝑟𝑚| ≤ 𝜖𝑅,
stop; if sum(|h𝑘 − h𝑘−1|)/sum(|h𝑘|) ≤ 𝜖 and |𝑃max − 𝑟𝑚| > 𝜖𝑅,
go to Step 9; otherwise then go to Step 8.

Step 8. Update the weighting function𝑊(𝜔) using (15)–(17)
and go back to Step 6.

Step 9. If 𝑃max < 𝑟𝑚, set to 𝛿𝑢 = 𝛿; if 𝑃max > 𝑟𝑚, set to 𝛿𝑙 = 𝛿,
and then go back to Step 5.

5. Design Examples

In this section, some design examples are given to illustrate
the effectiveness of the proposed method. In all the following
examples, 𝜖 = 10

−7, 𝜖𝑅 = 10
−5, and the initial value of 𝛿

is −102. The program of the proposed design algorithm was
coded by MATLAB and was run on the PC which has Core
i5-M520 processor and 2GB memory.

5.1. Example 1. To compare with the conventional method
[12], we design the Chebyshev-type IIR filters which have an
equiripple characteristic in passband and a flat characteristic
in stopband. The filter specifications are as follows:

𝑁 = 15, 𝑀 = 6, 𝐾𝑠 = 11,

𝐻𝑑 (𝑒
𝑗𝜔
) =

{

{

{

𝑒
−𝑗𝜏𝑑𝜔, 0 ≤ |𝜔| ≤ 0.3𝜋,

0, 𝜔 = 𝜋,

𝜏𝑑 = {9, 10, 11, 12, 13} .

(26)

In the proposed method, we set the maximum allowable pole
radius 𝑟𝑚 to 0.98, and the number of grid points is 𝐿 = 500
and𝑅 = 1000. Note that the conventionalmethod [12] cannot
guarantee the stability of the obtained filter.

The performance of the obtained filters is shown in
Table 1 which are obtained by the conventional method [12]
based on Remez algorithm. In Table 1, 𝑅𝑝 is the maximum
magnitude error in passband, 𝐺err is the maximum group
delay error in passband, and 𝑃max is the maximum pole
radius of the obtained filter. From Table 1, it is confirmed that
the proposed method needs more computational cost (CPU
time and iteration number) than the conventional method,
but the characteristic of the obtained filters by the proposed
method is about the same as or better than them by the
conventional method. Particularly, the filter obtained by the
conventional method is unstable when 𝜏𝑑 = 9. The stability
of the filters obtained by the method which cannot guarantee
the stability depends on a given group delay specification.
In fact, when the group delay 𝜏𝑑 is less than 9.5, all filters
obtained by conventional method were unstable. In contrast,
the proposed method can always obtain the stable filters
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Table 1: Comparison with [12] in Example 1.

𝜏𝑑 𝑅𝑝 𝐺err 𝑃max CPU time (s) Iteration number

Proposed

9 5.622 × 10−5 3.618 × 10−3 0.980 1.334 16
10 1.248 × 10−5 7.741 × 10−4 0.952 0.587 10
11 4.416 × 10−5 6.501 × 10−3 0.890 0.537 10
12 1.098 × 10−4 3.224 × 10−2 0.858 0.510 8
13 2.060 × 10−4 1.146 × 10−1 0.847 0.525 9

Reference [12]

9 2.281 × 10−6 2.657 × 10−5 1.051 0.121 6
10 1.269 × 10−5 7.257 × 10−4 0.953 0.134 6
11 4.608 × 10−5 6.499 × 10−3 0.891 0.124 6
12 1.168 × 10−4 3.238 × 10−2 0.858 0.124 6
13 3.129 × 10−4 1.122 × 10−1 0.846 0.130 6

Table 2: Comparison with [13] in Example 2.

𝜏𝑑 𝑅𝑠 (dB) 𝑃max
CPU time

(s)
Iteration
number

Proposed

7 27.85 0.980 1.812 45
8 35.02 0.928 0.512 16
9 41.38 0.850 0.372 14
10 46.61 0.784 0.385 12
11 50.89 0.746 0.351 11

Reference
[13]

7 25.78 1.002 0.212 7
8 34.07 0.924 0.205 7
9 40.46 0.850 0.202 7
10 45.76 0.784 0.207 7
11 50.10 0.746 0.198 6

because themaximumpole radius of the filter obtained can be
prespecified. Therefore, the proposed method can design the
filters that cannot be designed by the conventional method.

5.2. Example 2. Next we design the inverse Chebyshev-type
IIR filters with the real coefficients in order to compare with
the conventional method [13]. The filter specifications are as
follows:

𝑁 = 12, 𝑀 = 5, 𝐾𝑝 = 10,

𝐻𝑑 (𝑒
𝑗𝜔
) =

{

{

{

𝑒
−𝑗𝜏𝑑𝜔, 𝜔 = 0,

0, 0.5𝜋 ≤ |𝜔| ≤ 𝜋,

𝜏𝑑 = {7, 8, 9, 10, 11} .

(27)

In the proposed method, we set the maximum allowable pole
radius 𝑟𝑚 to 0.98, and the number of grid points is 𝐿 = 500
and𝑅 = 1000. Note that the conventionalmethod [13] cannot
guarantee the stability of the obtained filter.

The numerical performance of the obtained filters is
shown in Table 2 which are obtained by the conventional
method [13] based on Remez algorithm. In Table 2, 𝑅𝑠 is the
minimum stopband attenuation in dB. From Table 2, it is
confirmed that the proposed method needs more computa-
tional cost than the conventional method but gives slightly

better characteristics. Moreover, when the group delay 𝜏𝑑 is
less than 7.2, the filters obtained by conventional method
were unstable. In contrast, the proposed method can always
obtain the stable filters. Therefore, the proposed method can
design the filters that cannot be designed by the conventional
method.

Next, we designed the filter with 𝜏𝑑 = 9 for comparison
with [14]. The minimum stopband attenuation of the filter
obtained was 41.38 dB in the proposed method and 40.04 dB
in [14]. It is thought that this difference is because the per-
formance of the filter obtained by the conventional method is
dependent on the given initial value.

5.3. Example 3. Next, as the example of the filter with the
complex coefficients, we design the inverse Chebyshev-type
IIR filter with the following specifications:

𝑁 = 12, 𝑀 = 5,

𝐻𝑑 (𝑒
𝑗𝜔
) =

{

{

{

𝑒
−𝑗9𝜔

, 𝜔 = 0.1𝜋,

0, −𝜋 ≤ 𝜔 ≤ −0.6𝜋, 0.7𝜋 ≤ 𝜔 < 𝜋,

𝐾𝑝 = {9, 10, 11} .

(28)

In this example, we use 𝑟𝑚 = 1.0, 𝐿 = 500, and 𝑅 = 1000.
The proposed method took an average of 0.78 seconds

for convergence. The magnitude response and group delay
response of the obtained filter are shown in Figures 1, 2, and
3. From these figures, it is confirmed that the magnitude and
group delay responses have a flat characteristic at 𝜔 = 0.1𝜋

and themagnitude response in stopband is equiripple. Table 3
is the numerical performance of the obtained filter.

5.4. Example 4. Finally, we show the design examples of
inverse-Chebyshev-type FIR filters. The filter specifications
are as follows:

𝑁 = 1999, 𝑀 = 0,

𝐻𝑑 (𝑒
𝑗𝜔
) = {

𝑒
−𝑗900𝜔

, 𝜔 = 0,

0, 0.0080𝜋 ≤ |𝜔| ≤ 𝜋,

𝐾𝑝 = {10, 12, 14} .

(29)
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Figure 1: Overall magnitude response of the proposed IIR filters in
Example 3.
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Figure 2: Passband magnitude response of the proposed IIR filters
in Example 3.

In this example, we set the number of the grit points 𝐿 to
10,000.

The proposed method took an average of 2,794 seconds
for convergence. The magnitude response and group delay
response of the obtained filter are shown in Figures 4, 5, and
6. From these figures, it is confirmed that the magnitude and
group delay responses have a flat characteristic at 𝜔 = 0

and the magnitude response in stopband is equiripple. The
minimum stopband attenuation of the obtained filters was
72.98 (dB) for 𝐾𝑝 = 10, 59.11 (dB) for 𝐾𝑝 = 12, and
47.19 (dB) for 𝐾𝑝 = 14. We confirmed that these filters
cannot be designed by the conventional method [13]. Hence,
the proposed method can also design the high-order filters
that cannot be designed by the conventional method.
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Figure 3: Group delay response of the proposed IIR filters in
Example 3.
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Figure 4: Overall magnitude response of the proposed FIR filters in
Example 4.

Table 3: The performance of the filters in Example 3.

𝐾𝑝 𝑅𝑠 (dB) 𝑃max

9 94.43 0.902
10 69.92 0.865
11 48.03 0.856

6. Conclusion

In this paper, a design method based on quadratic program-
ming has been proposed for approximately linear phase IIR
filters and FIR filters with prescribed flatness in passband or
stopband. To guarantee the stability of the filter obtained, we
applied the extended positive realness to the QP problem.
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Figure 5: Passband magnitude response of the proposed FIR filters
in Example 4.
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Figure 6: Group delay response of the proposed FIR filters in
Example 4.

With this method, stable IIR filters and FIR filters that
are Chebyshev type and inverse Chebyshev type can be
easily designed. In the design examples, we showed that the
performance of the filter obtained by the proposed method
is about the same as or better than the conventional method,
and the filters which cannot be designed by the conventional
method can also be designed.

Appendix

In this appendix it is shown that (6) is equivalent to (3).
Equation (1) is expressed with the magnitude response

|𝐻(𝑒
𝑗𝜔
)| and group delay response 𝜏(𝜔) as follows:

𝐻(𝑒
𝑗𝜔
) =

󵄨󵄨󵄨󵄨󵄨
𝐻 (𝑒
𝑗𝜔
)
󵄨󵄨󵄨󵄨󵄨
𝑒
−𝑗𝜏(𝜔)𝜔

. (A.1)

With (A.1), (5) is expressed as

𝐻̃ (𝑒
𝑗𝜔
) =

󵄨󵄨󵄨󵄨󵄨
𝐻 (𝑒
𝑗𝜔
)
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗{𝜏𝑑𝜔−𝜏(𝜔)𝜔} =

󵄨󵄨󵄨󵄨󵄨
𝐻 (𝑒
𝑗𝜔
)
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗𝜃(𝜔)

. (A.2)

Thus, 𝐻̃(𝑒𝑗𝜔𝑢) = 1 is equivalent to |𝐻(𝑒𝑗𝜔𝑢)| = 1, 𝜏(𝜔𝑢) = 𝜏𝑑
and 𝜃(𝜔𝑢) = 0.

The first-order derivative of (A.2) is expressed as follows:

𝜕𝐻̃ (𝑒
𝑗𝜔
)

𝜕𝜔
=

𝜕
󵄨󵄨󵄨󵄨󵄨
𝐻 (𝑒
𝑗𝜔
)
󵄨󵄨󵄨󵄨󵄨

𝜕𝜔
𝑒
𝑗𝜃(𝜔)

+ 𝑗
󵄨󵄨󵄨󵄨󵄨
𝐻 (𝑒
𝑗𝜔
)
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗𝜃(𝜔) 𝜕𝜃 (𝜔)

𝜕𝜔
.

(A.3)

Because |𝐻(𝑒𝑗𝜔𝑢)| = 1 and 𝜃(𝜔𝑢) = 0, (A.3) is

𝜕𝐻̃ (𝑒
𝑗𝜔
)

𝜕𝜔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

=

𝜕
󵄨󵄨󵄨󵄨󵄨
𝐻 (𝑒
𝑗𝜔
)
󵄨󵄨󵄨󵄨󵄨

𝜕𝜔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

+ 𝑗
𝜕𝜃 (𝜔)

𝜕𝜔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

. (A.4)

Thus, (𝜕𝐻̃(𝑒𝑗𝜔)/𝜕𝜔)|𝜔=𝜔𝑢 = 0 is equivalent to (𝜕|𝐻(𝑒𝑗𝜔)|/
𝜕𝜔)|𝜔=𝜔𝑢

= 0 and (𝜕𝜃(𝜔)/𝜕𝜔)|𝜔=𝜔𝑢 = 0.
Next, we assume that (A.5) is equivalent to (A.6) and

(A.7):

𝜕
𝑖
𝐻̃ (𝑒
𝑗𝜔
)

𝜕𝜔𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

=

{

{

{

1, (𝑖 = 0) ,

0, (𝑖 = 1, 2, . . . , 𝐾𝑝 − 1) ,

(A.5)

𝜕
𝑖 󵄨󵄨󵄨󵄨󵄨
𝐻 (𝑒
𝑗𝜔
)
󵄨󵄨󵄨󵄨󵄨

𝜕𝜔𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

=

{

{

{

1, (𝑖 = 0) ,

0, (𝑖 = 1, 2, . . . , 𝐾𝑝 − 1) ,

(A.6)

𝜕
𝑖
𝜏 (𝜔)

𝜕𝜔𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

=

{

{

{

𝜏𝑑, (𝑖 = 0) ,

0, (𝑖 = 1, 2, . . . , 𝐾𝑝 − 2) .

(A.7)

The 𝑘th-order derivative of 𝐻̃(𝑒𝑗𝜔) is

𝜕
𝑘
𝐻̃ (𝑒
𝑗𝜔
)

𝜕𝜔𝑘
=

𝑘

∑

𝑖=0
𝑘𝐶𝑖

𝜕
𝑘−𝑖 󵄨󵄨󵄨󵄨󵄨

𝐻 (𝑒
𝑗𝜔
)
󵄨󵄨󵄨󵄨󵄨

𝜕𝜔𝑘−𝑖

𝜕
𝑖
𝑒
𝑗𝜃(𝜔)

𝜕𝜔𝑖
. (A.8)

Using (A.6) and (A.7), (A.8) is

𝜕
𝑘
𝐻̃ (𝑒
𝑗𝜔
)

𝜕𝜔𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

=

𝜕
𝑘 󵄨󵄨󵄨󵄨󵄨
𝐻 (𝑒
𝑗𝜔
)
󵄨󵄨󵄨󵄨󵄨

𝜕𝜔𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

+
𝜕
𝑘
𝑒
𝑗𝜃(𝜔)

𝜕𝜔𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

=

𝜕
𝑘 󵄨󵄨󵄨󵄨󵄨
𝐻 (𝑒
𝑗𝜔
)
󵄨󵄨󵄨󵄨󵄨

𝜕𝜔𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

+ 𝑗
𝜕
𝑘
𝜃 (𝜔)

𝜕𝜔𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

.

(A.9)

Thus, (𝜕𝑘𝐻̃(𝑒𝑗𝜔)/𝜕𝜔𝑘)|𝜔=𝜔𝑢 = 0 is equivalent to (𝜕
𝑘
|𝐻(𝑒
𝑗𝜔
)|/

𝜕𝜔
𝑘
)|𝜔=𝜔𝑢

= 0 and (𝜕𝑘𝜃(𝜔)/𝜕𝜔𝑘)|𝜔=𝜔𝑢 = 0.
Because 𝜃(𝜔) = 𝜏𝑑𝜔 − 𝜏(𝜔)𝜔 and 𝜏(𝜔𝑢) = 𝜏𝑑, (𝜕

𝑘
𝜃(𝜔)/

𝜕𝜔
𝑘
)|𝜔=𝜔𝑢

= 0 is equivalent to

𝜕
𝑘
{𝜏 (𝜔)}

𝜕𝜔𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔𝑢

=
𝜕
𝑘
{𝜏𝑑}

𝜕𝜔𝑘
. (A.10)

Thus (6) is equivalent to (3).
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