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An alternative closed-form estimator for blind source separation based on fourth-order

statistics is presented. In contrast to other estimators, the new estimator works well

when the source kurtosis sum is zero. Arbitrary source PDFs are successfully treated

through a combined estimation scheme based on a heuristic decision rule for choosing

between the new estimator and an existing estimator.

Indexing terms: array signal processing, blind source separation, closed-form estima-

tion, higher-order statistics, signal reconstruction.

Introduction: Recovering a set of unknown mutually independent source signals from their

observed mixtures is a problem arising in a wide variety of signal processing applications, such

as multi-user communications, seismic exploration and biomedical engineering [1, 2, 3, 4, 5]. In

cases where the mixtures can be assumed noiseless, linear, instantaneous and real valued, the

so-called blind source separation (BSS) problem consists of the estimation of the source vector

x ∈ Rq and the mixing matrix M ∈ Rp×q (p > q) from the observed sensor-output vector y ∈ Rp

fulfilling the linear model

y = Mx. (1)

Second-order decorrelation and normalization of the observed processes yield a set of whitened

signals, related to the sources via an orthogonal transformation Q ∈ Rq×q [4]:

z = Qx. (2)

In the fundamental two-signal scenario, matrix Q becomes an elementary givens transformation,

Q =

 cos θ − sin θ

sin θ cos θ

 . (3)

The source separation thus reduces to the estimation of parameter θ.
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A closed-form estimator of this parameter was developed in [4], based on a complex linear

combination of the whitened-output fourth-order cumulants:

θ̂EML =
1
4

arg(ξ · sign(γ)), (4)

where

ξ = (κz40 − 6κz22 + κz04) + j4(κz31 − κz13) = (κx04 + κx04) ej4θ (5)

γ = κz40 + 2κz22 + κz04 = κx40 + κx04. (6)

Notation κzmn , Cummn[z1, z2] denotes the (m + n)th-order cumulant of the components of

z = [z1, z2]T (using Kendall’s convention for the bivariate case [6]), and similarly for κxmn. Both

ξ and γ can be compactly expressed as a function of the whitened-signal scatter-plot points:

ξ = E[r4ej4φ]

γ = E[r4]− 8.

 r ejφ = z1 + jz2, j =
√
−1. (7)

Eqn. (4) — referred to as the extended maximum-likelihood (EML) estimator — is applicable

provided the source kurtosis sum (sks), γ, is not null. Among other properties [4, 5], eqn. (4) is

the ML estimator of θ for symmetric sources with the same kurtosis, under the Gram-Charlier

(GC) expansion of the source probability density function (PDF) truncated at fourth-order. In

this sense, the EML is a generalization of the approximate ML (AML) estimator of [3].

The performance of estimator (4) degrades as the sks tends to zero [4,5]. In this Letter this

deficiency is surmounted by deriving a hybrid estimation scheme which combines the EML and

another closed-form fourth-order estimator [5].

Alternative fourth-order estimator: In the spirit of the EML centroid ξ, we seek another complex

linear combination of the data fourth-order statistics that provides an explicit expression for the

parameter of interest. Consider

ξ′ , (κz40 − κz04) + 2j(κz31 + κz13). (8)

The relationships given in eqns. (2)–(3) together with the multilinearity property of cumulants

and the source mutual independence assumption lead to ξ′ = η ej2θ, where η , (κx40 − κx04)

represents the source kurtosis difference (skd). Hence, if the skd is not null, θ may be estimated

through

θ̂AEML =
1
2

arg
(
ξ′
)
, (9)
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that we call alternative EML (AEML) estimator. The source extraction is not affected by the

value of η, as it can only mean an irrelevant ±π/2 radian bias. Centroid ξ′ also accepts the

scatter-plot based form:

ξ′ = E
[
(z2

1 + z2
2)
(
(z2

1 − z2
2) + j2z1z2

)]
= E[r4ej2φ]. (10)

The AEML is the asymptotic ML estimator of θ for symmetric sources with opposite kurtosis

(γ = 0) under the source PDF fourth-order GC expansion [5], and hence its name. Other

properties of this estimator are studied in detail in [5]. We only remark here that the AEML

shows a performance deterioration when η → 0, analogous to that of the EML with γ. To take

advantage of the ML-optimality features displayed by these estimators while ameliorating their

performance variations with their respective source statistics, a suitable scheme for combining

both expressions is devised as follows.

Combined estimation: The lack of prior knowledge on the source statistics in a blind problem

renders any optimal combination strategy — based, for instance, on a minimum mean squared

error (MMSE) criterion — useless [5]. Instead, we look for a practical suboptimal decision rule

to select between the EML and the AEML given a block of whitened-vector samples. To obtain

such a decision rule, an empirical approach is adopted. The estimators’ performance is evaluated

over a range of sks γ and skd η by resorting to the ideas of [7], whereby a pseudorandom binary

sequence (PRBS) of suitable probability can model any normalized kurtosis value. Relying on

this result, we fix κx40 = −2, whereas the second source kurtosis is swept at small intervals

between κx04 = −2 and κx04 = 14, providing sks values in γ ∈ [−4, 12] and skd in η ∈ [−16, 0].

At each kurtosis value, separations are performed by the two methods from the same orthogonal

mixtures of θ = 30o composed of T = 5×103 samples, over 100 independent Monte Carlo runs.1

After each separation, the interference-to-signal ratio (ISR) performance index [5]

ISR , E
i6=j

{
E[x̂2

i ]
E[x̂2

j ]

}
, (11)

where x̂i denotes the ith extracted source, is computed for each method and then averaged over

the MC realizations. The ISR is an approximation of the MSE E[(θ̂ − θ)2] when θ̂ ≈ θ + kπ/2,

k ∈ Z, i.e., when valid separation solutions are obtained.
1The actual value of θ is not important, due to the estimators’ orthogonal invariance property [5].
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Fig. 1 shows the obtained ISR mean squared value. As expected from the theoretical analyses,

the EML worsens around γ = 0 and reaches its best performance at η = 0, and conversely for

the AEML. The EML outperforms the AEML when the source kurtosis have the same sign,

whereas the latter improves the former for source kurtosis with opposite signs. This observation

suggests the decision rule:

κx40 κ
x
04

EML
>
<

AEML

0, (12)

which, from simple algebraic manipulations along with |ξ| = |γ| and |ξ′| = |η|, transforms into

|ξ|
EML
>
<

AEML

|ξ′|. (13)

This empirical rule advocates the selection of the estimator with the largest centroid modulus.

We refer to the associated hybrid estimation strategy as combined EML (combEML) estimator,

whose results for the same signal realizations also appear in Fig. 1. Observe that the combEML

overcomes the performance degradation of EML and AEML, consistently maintaining the best

performance over all range of sks and skd. Criterion (13) is shown to be very close to the

optimal MMSE principle for PRBS sources [5]. The validity of rule (13) is additionally endorsed

by further experiments on continuous-distribution sources as well as by theoretical considerations

on the approximate ML criterion [5].

In Fig. 2 the combEML is compared to the JADE [1] and ICA-HOEVD [2] algorithms, under

the same conditions for all three methods, with κx40 = 1 and κx04 ∈ [−2, 12]. The three curves

exhibit a similar trend, but combEML outperforms the two other procedures by∼4 dB. Although

it is not always the case, this improved outcome is corroborated in many other simulations on

discrete as well as continuous source distributions [5].

Conclusions: Along the lines of the EML, an alternative fourth-order estimator for BSS — so-

called AEML — has been proposed, which is applicable when the source kurtosis are different.

A simple, heuristically-derived decision rule is used to overcome the estimators’ shortcomings

with respect to the source fourth-order statistics, while retaining the advantages of both. The

resulting hybrid estimation scheme is shown to achieve significant improvement over well-known

contrast-based BSS methods.
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Camino de Vera s/n, 46022 Valencia, Spain)

References

1 CARDOSO, J.-F., and SOULOUMIAC, A.: ‘Blind beamforming for non-Gaussian signals’,

IEE Proceedings-F, 1993, 140, (6), pp. 362–370.

2 COMON, P.: ‘Independent component analysis, a new concept?’, Signal Processing, 1994,

36, (3), pp. 287–314.

3 HARROY, F., and LACOUME, J.-L.: ‘Maximum likelihood estimators and Cramer-Rao

bounds in source separation’, Signal Processing, 1996, 55, (2), pp. 167–177.

4 ZARZOSO, V., and NANDI, A.K.: ‘Blind separation of independent sources for virtually

any source probability density function’, IEEE Transactions on Signal Processing, 1999, 47,

(9), pp. 2419–2432.

5 ZARZOSO, V.: ‘Closed-form higher-order estimators for blind separation of independent

source signals in instantaneous linear mixtures’, PhD Thesis, The University of Liverpool,

1999.

6 STUART, A., and ORD, J.K.: ‘Kendall’s advanced theory of statistics, Vol. 1’, (Edward

Arnold, London, 1994), 6th edn.

7 ZARZOSO, V., and NANDI, A.K.: ‘Modelling signals of arbitrary kurtosis for testing BSS

methods’, IEE Electronics Letters, 1998, 34, (1), pp. 29–30. (Errata: (7), p. 703)

5

http://www.liv.ac.uk/~vicente
http://www.liv.ac.uk/~aknandi
http://www.liv.ac.uk/~fherrm
http://www.liv.ac.uk/EEE
http://www.liv.ac.uk/EEE
http://www.liv.ac.uk
http://bet.upv.es
http://www.die.upv.es
http://www.upv.es


−4 −2 0 2 4 6 8 10 12
−80

−70

−60

−50

−40

−30

−20

−10

0

source kurtosis sum, γ

IS
R

2  (
dB

)

0 −2 −4 −6 −8 −10 −12 −14 −16

−80

−70

−60

−50

−40

−30

−20

−10

0

source kurtosis difference, η 

Figure 1: Performance of EML, AEML and combEML estimators against source kurtosis.

PRBS sources, κx40 = −2, T = 5× 103 samples/signal, 100 Monte Carlo runs.
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Figure 2: Performance of combEML, JADE and ICA-HOEVD against source kurtosis.

PRBS sources, κx40 = 1, T = 5× 103 samples/signal, 200 Monte Carlo runs.

——– combEML -x-x-x- JADE -o-o-o- ICA-HOEVD
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