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Abstract. In this paper, the main objective is to examine the effects of transverse cracks on the dynamic instability regions of an
axially loaded rotating blade. The blade is modeled as an Euler-Bernoulli beam. To reduce the governing equations to a set of
ordinary differential equations in matrix form, Hamilton’s principle is used in conjunction with the assumed-mode method. The
crack is accounted for by considering the energy release rate and the parametric instability regions are obtained using Bolotin’s
first approximation. Benchmark results are presented for cracked rotating blades at different rotating speeds, crack lengths and
crack positions.
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1. Introduction

The dynamic behaviour of a beam may change due
to the presence of cracks. The changes in the dynamic
characteristics due to the changes in the crack lengths
are important with respect to the science of crack detec-
tion and design of structures. Adams et al. [1] showed
that for the axial vibration of a uniform bar, the re-
duction in stiffness of the bar due to the presence of a
crack could be modelled by the introduction of a linear
spring. However, the relationship between the magni-
tude of the spring constant and the crack length was
not determined. Ju et al. [2] theoretically related the
magnitude of the equivalent linear spring constant to
the length of the crack in the beam based on fracture
mechanics. Several researchers, Moshrefi et al. [3], Ju
and Mimovich [4] and Rizos et al. [5], have experimen-
tally diagnosed the changes in natural frequency due
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to existing cracks and have concluded the feasibility
of modelling a crack by an appropriate combination of
linear and torsional springs.

Using perturbation and transfer matrix methods, the
changes in the natural frequencies due to the presence
of cracks were computed by Gudmundson [6,7]. Pa-
padopoulos and Dimarogonas [8] modelled a crack us-
ing a 2 × 2 compliance matrix to describe the local
flexibility in the analysis of the coupled longitudinal
and bending vibrations of a cracked shaft. In analysing
the coupled vibration of a cracked rotor, Papadopoulos
and Dimarogonas [9] represented the local flexibility
by a6×6 compliance matrix. A finite element method
for the analysis of cracked beams was developed by
Haisty and Springer [10] and the crack in this case was
modelled as a linear spring for axial vibrations and a
torsional spring for flexural vibrations. Qian et al. [11]
also presented an element stiffness matrix for a cracked
beam based on the principles of fracture mechanics.
The Rayleigh quotient was used by Chondros and Di-
marogonas [12] for estimating the change in the nat-
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ural frequencies and modes for the torsional vibration
of a cracked rotor and also for the in-plane vibration
of frames. The small change in the local stiffness at
the crack was introduced into the Rayleigh quotient
from which the variation in the eigenvalue was com-
puted. Shen and Pierre [13], using both an approximate
Galerkin formulation and finite element method ob-
tained the natural frequencies and modes for the trans-
verse vibrations of simply supported Bernoulli-Euler
beams with a pair of symmetric double-sided cracks at
the mid-span position. Dimarogonas and Paipetis [14]
constructed a crack related 5× 5 local flexibility matrix
for a rectangular beam from principles of fracture me-
chanics and analyzed the coupling effects between the
axial loading and lateral bending. Subsequently, Di-
marogonas and Papadopoulos [15] expanded the work
to a circular shaft with a transverse crack and calcu-
lated the flexibility coefficients due to bending in two
perpendicular directions.

Examples of radially rotating beams and blades in-
clude rotor blades, propellers, turbines, robotic arms
and numerous other parts that are commonly found in
rotating machineries. This field has been studied in
the last few decades in relation to the behaviour of ro-
tating blades in turbomachineries. As such, an exten-
sive literature on radially rotating uniform, pretwisted
and tapered beams are readily available. Prior doc-
umented works include Sutherland [16], Renard and
Rabowski [17], Likins et al. [18], Anderson [19],
Swaminathan and Rao [20], Hodges and Ruthoski [21]
and Subrahnanvam et al. [22]. These studies compose
both uniform and pretwisted beams rotating at constant
angular velocities. Other studies of similar configu-
rations include Kane et al. [23] who modeled a Tim-
oshenko beam built into a rigid base and undergoing
general three-dimensional motions. Rotating beams
subjected to base excitations have commonly been used
to model propellers, helicopter rotor blades and mo-
bile linkages of robots. Hammond [24] treated a non-
isotropic hub and four-bladed rotor with the incorpora-
tion of the base movements.

In the present study, the effects of transverse cracks
on the parametric resonance of an axially loaded rotat-
ing blade modeled as an Euler-Bernoulli beam is in-
vestigated. Hamilton’s energy principle is used in con-
junction with the assumed-mode method to obtain a set
of ordinary differential equations in matrix form the
stability of which is analyzed using Bolotin’s [25] first
approximation. The crack is accounted for by consid-
ering the energy release rate. The analysis is carried
out for various rotating speeds, crack lengths and crack
positions.

P

X 

Y

Fig. 1. Coordinate system of the rotating blade.

2. Theory and formulation

Consider a uniform slender beam system as shown
in Fig. 1 with one end clamped to a rotating hub of
radiusr and rotating with constant angular velocityΩ.
An axial harmonic loading in the longitudinal direction
of the beam is considered

P = Po + Ps cosωt (1)

wherePo is the stationary component andPs is the
amplitude of the harmonic component of the loading.
The beam is considered as an Euler-Bernoulli beam of
constant cross-sectional area and thus only the trans-
verse deflectionv is considered. The potential energy
arising from the above loading is

Up = P
∫ r+L

r

(v,x )2dx (2)

where the subscripts after the commas indicate the par-
tial differentiation with respect to, and the kinetic en-
ergy of the beam is given as

T =
ρA

2
(3)

∫ r+L

r

{(v,t )2 + 2xΩv,t +(x2 + v2)Ω2}dx

whereρ denotes the mass density,E the elastic mod-
ulus,A the cross-sectional area,I the area moment of
inertia, andL the length. The potential energy due to
bending is

Uv =
EI

2

∫ r+L

r

(v,xx )2dx (4)

and that due to the initial stress is

UΩ =
ρA

4
Ω2

∫ r+L

r

((r + L)2 − x2)(v,x )2dx (5)

From Dimarogonas and Paipetis [15], the energy re-
lease of the crack is
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Fig. 2. First two instability regions for a rotating beam with a single crack at mid-span,Ω = 1 anda/h = 0.5. ‘-.-.-’ L = 0.8 m, ‘–’ L = 1.0m,
‘- - -’ L = 1.2 m.

Uc = b
∫ a

0

J(a)da (6)

whereb is the width of the beam and

J(a) =
K2

c (1 − ν2)
E

(7)

whereν is the Poisson’s ratio,a is the crack depth and

Kc =
6Pc

bh2
(πa)1/2Fc

(a
h

)
(8)

Fc

(a
h

)
=

0.92 + 0.2(1 − sin(πa/2h))4

cos(πa/2h)
(9)

×
(

2h
πa

tan(πa/2h)
)1/2

Pc = EI(v,xx )2|x=xc (10)

whereh is the beam height. The released energy of the
crack can be simplified to the form

Uc = 3EIb(1 − ν2)C55
(11)∫ r+L

r

δ(x− xc)(v,xx )2dx

C55 =
∫ a/h

0

π
(a
h

)
F 2

c

(a
h

)
d

(a
h

)
(12)

Using the assumed-mode method, see Wu and
Huang [26], the beam deformation can be approximated
in the following form

v(x, t) =
N∑

i=1

Vi(x)qi(t) (13)

whereqi(t) is a generalized coordinate andVi(x) is the
ith normalized mode of a non-rotating clamped-free
beam. The equations of motion in matrix form can then
be written in matrix form as

[M]{q̈} + [[K] + cosωt[Q]]{q} = 0 (14)

Mij = ρA
∫ r+L

r

Vi(x)Vj(x)dx (15)

[K] = [Kv + KΩ + Kc + KP ] (16)

Kv
ij = EI

∫ r+L

r

Vi(x),xx Vj(x),xx dx (17)

KΩ
ij = ρAΩ2

∫ r+L

r

Vi(x)
(18){

xVj(x),x −Vj(x) − Vj(x),xx

× 1
2 ((r + L)2 − x2)

}
dx

Kc
ij = 6EIb(1 − ν2)C55Vi(x),xx |x=xc

(19)
Vj(x),xx |x=xc

KP
ij = Po

∫ r+L

r

Vi(x),x Vj(x),x dx (20)
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Fig. 3. First two instability regions for a rotating beam with a single crack at mid-span,L = 1.0 m anda/h = 0.5. ‘-.-.-’ Ω = 0.5, ‘–’ Ω = 1,
‘- - -’ Ω = 2.
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Fig. 4. First two instability regions for a rotating beam with a single crack at mid-span,Ω = 1 andL = 1.0 m. ‘-.-.-’ a/h = 0.25, ‘– ’
a/h = 0.50, ‘- - -’ a/h = 0.75.

Qij = Ps

∫ r+L

r

Vi(x),x Vj(x),x dx (21)

To obtain the principal instability regions, Bolot-
in’s [25] method is applied to the Mathieu-Hill form of
Eq. (14). In this method, we seek the periodic solution
with period 2T in the form

q =
∞∑

k=1,3,5,...

fk sin
kωt

2
+ gk cos

kωt

2
(22)

For principal instability, Bolotin’s [25] first approx-
imation, associated with the2ω harmonic, is given by
the substitution of the following simplified expression

q = f sin
ωt

2
+ g cos

ωt

2
(23)

wheref andg are arbitrary vectors. It is well known
that the secondary instability regions associated with
theω harmonic are significantly smaller than the prin-
cipal instability regions associated with the 2ω har-
monic. In most practical applications, these already
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Fig. 5. First two instability regions for a rotating beam with a single crack,L = 1.0 m, Ω = 1 anda/h = 0.5. ‘-.-.-’ xc = 0.25, ‘–’ xc = 0.5,
‘- - -’ xc = 0.75.
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Fig. 6. First two instability regions for a rotating beam with double cracks atxcmean = 0.5L, Ω = 1 anda/h = 0.5. ‘-.-.-’ L = 0.8 m, ‘–’
L = 1.0 m, ‘- - -’ L = 1.2 m.

very narrow secondary regions are very often damped
away. Substitution into governing equation and equat-
ing coefficients ofsin(ωt/2) andcos(ωt/2) terms, we
obtain a set of linear homogeneous algebraic equations
in terms off andg, and for non-trivial solutions∣∣∣∣∣

(− 1
4ω

2MIJ + KIJ − 1
2QIJ

)
0

0
(− 1

4ω
2MIJ + KIJ + 1

2QIJ

)
∣∣∣∣∣ = 0 (24)

Rearrangement leads to a generalized eigenvalue

problem∣∣∣∣∣∣∣∣∣∣

[
KIJ − 1

2QIJ 0
0 KIJ + 1

2QIJ

]

−ω2

[
1
4MIJ 0

0 1
4MIJ

]
∣∣∣∣∣∣∣∣∣∣
= 0 (25)

The eigenvalues define the boundaries between the
stable and unstable regions.
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Fig. 7. First two instability regions for a rotating beam with double cracks atxcmean = 0.5L, L = 1.0 m anda/h = 0.5. ‘-.-.-’ Ω = 0.5, ‘–’
Ω = 1, ‘- - -’ Ω = 2.
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Fig. 8. First two instability regions for a rotating beam with double cracks atxcmean = 0.5L, Ω = 1 andL = 1.0 m. ‘-.-.-’ a/h = 0.25, ‘– ’
a/h = 0.50, ‘- - -’ a/h = 0.75.

3. Results and discussions

In the following discussion, the normalized crack
position is

xc =
xc − r
L

(26)

and the loading frequency, rotational speed and natural
frequency are nondimensionalized as

ω = ω
1
r2

√
EI

ρA
(27)

Ω = Ω
1
L2

√
EI

ρA
(28)

ωn = ωn
1
L2

√
EI

ρA
(29)

Dynamic stability results for a rotating beam with
a single crack are presented in Figs 2 to 5. These
figures show the unstable regions for the first two modes
as various parameters are varied. Each set of lines
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Fig. 9. First two instability regions for a rotating beam with double cracks,L = 1.0 m, Ω = 1 anda/h = 0.5. ‘-.-.-’ xcmean = 0.25, ‘–’
xcmean = 0.5, ‘- - -’ xcmean = 0.75.

originating from the abscissa represents the boundary
between the stable and unstable regions. The region
between each set of lines constitutes the unstable region
while that outside the lines constitutes the stable region.
The loading is overall tensile withP o = 1 where

P o =
PoL

2

EI
(30)

and the cross section of the beam is taken to be square
with the length to beam height ratio beingL/h = 50
with hub radiusr = 0.2 m and lengthL = 1 m unless
otherwise stated.

In Fig. 2, the length of the beam is varied, hub radius
being kept constant. It is observed that modest changes
in the length can cause substantial changes in the po-
sition as well as size of the unstable regions with the
changes more pronounced in the second mode. Shorter
length beams are observed to have unstable regions at
higher values on the excitation frequency axis. This is
intuitively expected due to their higher stiffnesses. It
is also noted that the shorter beams are associated with
substantially larger regions of instability where the un-
stable regions for a beam of lengthL = 0.8 are almost
three times that for a beam of lengthL = 1.2. In Fig. 3,
the rotating speed is varied. As expected, the higher the
speed, the higher along the excitation frequency axis
will be the position of the unstable region. Further, the
region sizes are observed to increase with decreasing
speeds.

In Fig. 4, the crack depth is varied for a beam with
a single crack at the mid-point. It is observed that the

variation of the results is minimal if the crack is shal-
low, i.e. a/h < 0.5. However, when the crack becomes
deeper, i.e.a/h > 0.5, there is appreciable change
in the position of the unstable regions. It is observed
that the increases in the crack depths shift the unstable
regions to the left on the frequency axis, which can be
attributed to the overall reducing stiffness due to the
increasing severity of the crack. Also, it is interesting
to note that the sizes of the unstable regions increase
moderately with the crack severity, especially for the
second mode. In Fig. 5, the position of the crack is var-
ied. There is no clear trend that can be drawn from the
results with regards to the unstable region characteris-
tics. However, it is observed that the unstable region
sizes are not sensitive to variation in the crack position.
The results also show that effects of increasing crack
depth are slightly more influential on the higher modes
with minimal effects on the fundamental mode.

Figures 6 to 9 are the corresponding results to Figs 2
to 5 for a beam with double cracks in relatively close
proximity. The cracks are a distance0.1L apart from
each other and their position are defined by a mean
position parameter

xcmean =
xc1 + xc2

2
(31)

wherexc1 andxc2 are the distances of the two cracks
from the centre of the hub. The results for the beam
with double cracks show similar trends to that of the
single crack beam except that the unstable regions are
generally lower on the excitation frequency axis with
larger sizes attributable to the lower stiffnesses.
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4. Conclusions

The dynamic stability of a rotating blade containing
transverse cracks has been modeled based upon crack
release energy approach in conjunction with Hamil-
ton’s principle and the assumed-mode method. Bolot-
in’s first approximation was used to obtain the principal
instability regions. Further, it was observed that there
were no qualitative changes in the instability regions
due to the cracks. The quantitative changes due to vari-
ations in blade length, rotational speed, crack depth and
crack location have been discussed in detail.

References

[1] R.D. Adams, P. Cawley, C.J. Pye and B.J. Stone, A vibration
technique for non-destructively assessing the integrity of struc-
tures,Journal of Mechanical Engineering Science 20 (1978),
93–100.

[2] F.D. Ju, M. Akjun, T.L. Paez and E.T. Wong, Diagnosis of
fracture damage in simple structures,Bureau of Engineering
Research Report No. CE-62(82)AFOSR-993-1, University of
New Mexico, Albuquerque, NM, 1982.

[3] N. Moshrefi, H.A. Sreshta and W.T. Springer, The transverse
vibration characteristics of an externally damaged pipe, in:
Vibration Analysis to Improve Reliability and Reduce Failure,
P.M. Niskode and P.E. Doepker, eds, ASME, New York, 1985,
pp. 23–29.

[4] F.D. Ju and M.E. Mimovich, Experimental diagnosis of frac-
ture damage in structures by the modal frequency method,
Journal of Vibration, Acoustics, Stress and Reliability in De-
sign 110 (1988), 456–463.

[5] P.F. Rizos, N. Aspragathos and A.D. Dimarogonas, Identifi-
cation of crack location and magnitude in a cantilever beam
from the vibration modes,Journal of Sound and Vibration 138
(1990), 381–388.

[6] P. Gudmundson, Eigenfrequency changes of structures due to
cracks, notches or other geometrical changes,Journal of the
Mechanics and Physics of Solids 30 (1982), 339–353.

[7] P. Gudmundson, The dynamic behavior of slender struc-
tures with cross-section cracks,Journal of the Mechanics and
Physics of Solids 31 (1983), 228–345.

[8] C.A. Papadopoulos and A.D. Dimarogonas, Coupled longi-
tudinal and bending vibrations of a cracked shaft,Journal
of Vibration, Acoustics, Stress and Reliability in Design 110
(1988), 1–8.

[9] C.A. Papadopoulos and A.D. Dimarogonas, Stability of
cracked rotors in coupled mode vibration,Journal of Vibra-
tion, Acoustics, Stress and Reliability in Design 110 (1988),
356–359.

[10] B.S. Haisty and W.T. Springer, A general beam element for use
in damage assessment of complex structures,Journal of Vibra-
tion, Acoustics, Stress and Reliability in Design 110 (1988),
389–394.

[11] G.L. Qian, S.N. Gu and J.S. Jiang, The dynamic behavior and
crack detection of a beam with a crack,Journal of Sound and
Vibration 138 (1990), 233–243.

[12] T.G. Chondros and A.D. Dimarogonas, Dynamic sensitivity
of structures to cracks,Journal of Vibration, Acoustics, Stress
and Reliability in Design 111 (1989), 251–256.

[13] M.H.H. Shen and C. Pierre, Natural modes of Bernoulli-Euler
beams with symmetric cracks,Journal of Sound and Vibration
138 (1990), 115–134.

[14] A.D. Dimarogonas and S.A. Paipetis,Analytical Methods in
Rotor Dynamics, Applied Science, London, 1983.

[15] A.D. Dimarogonas and C.A. Papadopoulos, Vibration of a
cracked shaft in bending,Journal of Mechanical Design 102
(1983), 140–146.

[16] R.L. Sutherland, Bending vibration of a rotating blade vibrat-
ing in the plane of rotation,Journal of Applied Mechanics 16
(1949), 389–394.

[17] M.L. Renard and J.E. Rabowski, Equatorial vibrations of a
long flexible boom on a spin stabilized satellite of non-zero
radius,Proceedings of the 21st Congress of the International
Astronautical Federation, Mar Del Plata, Argentina, 1970,
pp. 35–53.

[18] P.W. Likins, F.J. Barbera and V. Baddeley, Mathematical mod-
eling of spinning elastic bodies for modal analysis,AIAA Jour-
nal 11 (1973), 1251–1258.

[19] G.L. Anderson, On the extensional and flexural vibrations of
rotating bars,International Journal of Non-Linear Mechanics
10 (1975), 223–236.

[20] M. Swaminathan and J.S. Rao, Vibrations of rotating
pretwisted and tapered blades,Mechanism and Machine The-
ory 12 (1977), 331–337.

[21] D.H. Hodges and J. Ruthoski, Free vibration analysis of ro-
tating beams by variable-order finite element method,AIAA
Journal 19 (1981), 1459–1466.

[22] K.B. Subrahnanvam, S.V. Kulkarni and J.S. Rao, Applica-
tion of the Reissner method to derive the coupled bending-
torsion equations of dynamic motion of rotating pretwisted
cantilever blading with allowance of shear deflection, rotary
inertia, warping and thermal effects,Journal of Sound and
Vibration 84 (1982), 223–240.

[23] T.R. Kane, R.R. Ryan and A.K. Banerjee, Dynamics of a can-
tilever beam attached to a moving base,Journal of Guidance,
Control and Dynamics 10 (1987), 139–151.

[24] C.E. Hammond, An application of Floquet theory to prediction
of mechanical instability,Journal of the American Helicopter
Society 19 (1974), 14–23.

[25] V.V. Bolotin, The Dynamic Stability of Elastic Systems,
Holden-Day, San Francisco, 1983.

[26] M.C. Wu and S.C. Huang, On the vibration of a cracked rotat-
ing blade,Shock and Vibration 5 (1998), 317–323.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


