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Tissue P systems are a class of computing models inspired by intercellular communication, where the rules are used in the
nondeterministic maximally parallel manner. As we know, the execution time of each rule is the same in the system. However,
the execution time of biochemical reactions is hard to control from a biochemical point of view. In this work, we construct a
uniform and efficient solution to the SAT problem with tissue P systems in a time-free way for the first time. With the P systems
constructed from the sizes of instances, the execution time of the rules has no influence on the computation results. As a result, we
prove that such system is shown to be highly effective for NP-complete problem even in a time-free manner with communication
rules of length at most 3.

1. Introduction

As a well-known NP-complete problem, SAT problem has
been widely used in artificial intelligence and electronic
design automation. Many applications can be considered as
a decision procedure to determine if a specific instance is
SAT or UNSAT. As we know, some traditional SAT algorithms,
such as DP [1] andWu’smethod [2], have an exponential time
complexity. Comparedwith these algorithms, solving the SAT
problem in a distributed and parallel manner may be an
efficientmethod.Hence, we naturally consider the computing
models in the framework of membrane computing, which
can solve computationally hard problems efficiently.

Membrane computing is a new area of computer science
in recent years. It is introduced by Păun in [3]. Since then,
this research area has been widely concerned by researchers.
The computingmodels are inspired by biological phenomena
and biological characteristics like other methods of natural
computing, such as particle swarm optimization algorithms,
ant colony algorithms, and genetic algorithms. The models
abstract computing ideas from the structure and function of
individual cells and from complexes of cells, such as tissues
and organs (including the brain). Based on these biological
facts, there are mainly three types of P systems which have

been introduced: cell-like P systems, tissue P systems, and
neural-like P systems. In traditional tissue P systems, rules are
used in a synchronous, parallel, and nondeterministic way.
Note that evolution rules in each cell follow the principle of
maximal parallelism. Therefore, NP-hard problems can be
solved efficiently. Until now, many kinds of P systems can
solve some NP-complete problems, such as SAT [4–10], 3-
coloring problem [11], and Hamiltonian cycle problem [12].
In addition, many new variants of P systems have equivalent
computing power with Turing machine and to be Turing
universal as language generators [13–15]. Inspired by some
biological facts, several methods were proposed to produce
new membranes in living cells: membrane division [5, 16],
membrane creation [4], and membrane separation [7]. In
this paper, we pay close attention to tissue P systems with
cell division. In [16], tissue P systems with cell division were
proposed.This computingmodel is inspired by the biological
fact that cells are duplicated via mitosis. By this method, an
exponential amount of cells can be generated. It has been
proved that tissue P systems can solve some computational
hard problems in polynomial time (even linear time).Thefirst
attempt in this topic was done in [16], where SAT problemwas
solved by tissue P systems with cell division in polynomial
time.
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SAT problem has been widely investigated by cell-like
P systems [4–8]. However, it is rarely investigated by tissue
P systems. In [9, 16], SAT problem was solved by tissue P
systems in polynomial time. However, in these works, each
rule is assumed to be completed in one accurate unit time.
Hence, every rule in these systems has the same execution
time. However, the execution time of biochemical reactions
is uncontrollable. Therefore, it is necessary to construct a
system that works independently of the execution time of
rules. The concept of time-free was first introduced in [17],
and the open problems with solutions for NP-complete prob-
lems were formulated in [18]. Recently, some NP-complete
problems have been solved in a time-free manner [19–23].
However, the model of these P systems is based on cell-like
P systems. In this work, we solve SAT problem with timed
tissue P systems by cell division in a uniform way. As far as
we know, there are no other relevant papers on solving SAT
problem with tissue P systems in a time-free manner.

The paper is structured as follows: firstly, we give brief
descriptions of the basic model of tissue P systems with cell
division. Then, timed P systems with tissue P systems to
decision problems will be proposed. In Section 3, we prove
that SAT problem can be solved by tissue P systems in a time-
free way. Finally, some formal details and conclusions are
presented.

2. Tissue P Systems with Cell Division

2.1. Tissue P Systems with Cell Division. Themembrane struc-
tures of tissue P systems are described by general graphs,
where cells correspond to nodes of a graph, and communi-
cation channels correspond to edges between two nodes. If
there exists a communication channel, objects can commu-
nicate between two cells (or a cell and the environment) with
communication rules.

Definition 1. Formally, a tissue P system (of degree 𝑚 ≥ 1)
with cell division can be defined as the form

Π = (𝑂, 𝐸, 𝑤1, . . . , 𝑤𝑚, 𝑅, 𝑖out) , (1)

where

(i) 𝑂 is the finite nonempty alphabet of objects,
(ii) 𝐸 ⊆ 𝑂 is the set of objects, which are initially placed

in the environment with arbitrary number of copies,
(iii) 𝑤𝑖 (1 ≤ 𝑖 ≤ 𝑚) are finite multisets over 𝑂,
(iv) 𝑖out is output region of membrane structure, and it

saves the results,
(v) 𝑅 is a finite set of rules.There aremainly the following

two forms:

(a) communication rules: (𝑖, 𝑢/V, 𝑗), where 𝑖, 𝑗 ∈
{0, 1, 2, . . . , 𝑚}, 𝑖 ̸= 𝑗, 𝑢, V ∈ 𝑂∗, |𝑢V| > 0,
and 𝑖 and 𝑗 correspond to the cell 𝑖 and cell 𝑗,
respectively. When 𝑖 = 0 or 𝑗 = 0, it corre-
sponds to the environment. If 𝑢 ̸= 𝜆 and V ̸=
𝜆, a communication rule is called an antiport
rule; otherwise it is a symport rule. When there

are objects represented by multiset 𝑢 in cell 𝑖
and objects represented by multiset V in cell
𝑗, a communication rule can be applied. With
applying this rule, the objects denoted by 𝑢
are sent into region 𝑗; at the same time, the
objects denoted by V are sent into region 𝑖 in
the opposite direction. These objects can evolve
by given rules in a synchronous, parallel, and
nondeterministic way,

(b) division rules: [𝑎]𝑖 → [𝑏]𝑖[𝑐]𝑖, where 𝑖 ∈ {0, 1, 2,
. . . , 𝑚}; 𝑎, 𝑏, 𝑐 ∈ 𝑂; 𝑖 ̸= 𝑖out. Under the influence
of the object present in a cell, this rule can be
applied to divide the cell into two copies of cells
(with the same label with 𝑖); object 𝑏 and object
𝑐 in the two cells can be generated, respectively.
The remaining objects in the original cell enter
the newly generated cells, respectively. When a
cell is being divided, the division rule is the only
one which is applied for that cell at that step.

Before the system begins to run, the initial configuration
is represented by (𝑤1, . . . , 𝑤𝑚); that is, objects denoted by
𝑤1, . . . , 𝑤𝑚 are placed in the corresponding cells. We can get
transitions between the configurations by applying rules of
the system as described above. The current configuration is
described by multisets of objects. Finally, the system will stop
running. At that moment, there is no rule which is being
applied, and no rule can be applied. In each cell, it must be
stressed that the system works with the following principles:

(i) Nondeterminism: for each computation step, rules
and objects are nondeterministically chosen; that is,
any possible execution of rules can start randomly.

(ii) Maximal parallelism: at one computation step, if no
other rules can be added to be applied, all rules which
can be applied have to be applied to all possible
objects.

2.2. Recognizer TimedTissue P SystemswithCell Division. AP
system that generates (or accepts) the same family of vectors
of natural numbers, independently of the value assigned to
the execution time of each rule 𝑟, is called time-free [18].

Definition 2. A recognizer timed tissue P system can be
defined as the form

Π = (𝑂, Σ, 𝐸, 𝑤1, . . . , 𝑤𝑚, 𝑅, 𝑒, 𝑖in, 𝑖out) , (2)

where

(i) 𝑂 is the finite nonempty alphabet of objects;
(ii) Σ is an (input) alphabet strictly contained in 𝑂, and

Σ ∩ 𝐸 = 0;
(iii) 𝐸 ⊆ 𝑂 is the set of objects, which are initially placed

in the environment with arbitrary number of copies;
(iv) 𝑤𝑖 (1 ≤ 𝑖 ≤ 𝑚) are finite multisets over 𝑂;
(v) 𝑅 is a finite set of rules;
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(vi) we can specify the execution time of each rule by a
mapping 𝑒: 𝑅 → N, where N is the set of nonpositive
integers;

(vii) 𝑖in ∈ {1, 2, . . . , 𝑚} is the input cell;
(viii) 𝑖out is the environment, which saves the results;
(ix) the working alphabet contains two distinguished

elements yes and no;
(x) all the computations halt;
(xi) when the system halts, either object yes or no (but

not both) must appear in the environment.

The input multiset has been added to the contents of the
input cell 𝑖in.Thus, we have an initial configuration associated
with each input multiset. For the multiset 𝑤 over the input
alphabet Σ, the computation of the systemwith input𝑤 starts
as the form

(𝑤1, . . . , (𝑤𝑖in + 𝑤) , . . . , 𝑤𝑚) . (3)

At one step, if no rules can be applied to the current
configuration and no rules are being applying, the system
will stop running. In this case, the object of output cell is
computing result in the stopping configuration. If the object
yes appears in the environment when the system stops, it is
an accepting computation; on the contrary, if the object no
appears, it is a rejecting computation.

Definition 3. A timed tissue P system with cell division is a
pair (Π, 𝑒), whereΠ is a tissue P systemwith cell division and 𝑒
represent the execution times of the rules. We denote byΠ(𝑒)
the timed tissue P system with cell division.

Π(𝑒) works in the following way: an external clock is
supposed to mark time units of equal length, starting from
time 0. If a rule 𝑟 from 𝑅 is selected to be executed, we denote
𝑒(𝑟) as the time which the rule 𝑟 lasts. If the application of a
rule 𝑟 starts at time 𝑗, the execution of this rule terminates at
time 𝑗+𝑒(𝑟). It means that the rule lasts 𝑒(𝑟) steps.The objects
and the cells produced by the rule are not available until the
beginning of step 𝑗 + 𝑒(𝑟) + 1.
2.3. Polynomial Complexity Classes of Recognizer TimedTissue

P Systems with Cell Division

Definition 4. Let 𝑋 = (𝐼𝑋, 𝜃𝑋) be a decision problem (with
yes/no answer), where 𝐼𝑋 is a set of instances and 𝜃𝑋 is a
predicate over 𝐼𝑋, and let Π = {Π(𝑛) | 𝑛 ∈ N} be a family
of recognizer P systems. We use rule starting step (RS-step,
for short) to define the computation step in timed P systems
[18].

Because the system works in a time-free manner, the
execution time of each rule is no longer one accurate
unit time. Π computes a solution of an instance, and
the system works independently of any time mapping e.
Hence, the systems Π can solve problem X in a time-free
manner.

Definition 5. A decision problem 𝑋 = (𝐼𝑋, 𝜃𝑋) is solvable in
polynomial time and in uniform way by a familyΠ = {Π(𝑛) |
𝑛 ∈ N} of recognizer timed tissue P systems, if the following
holds:

(1) The familyΠ is polynomially uniform with respect to
Turing machines; namely, there exists a deterministic
Turing machine which constructs the system Π(𝑛)
with knowledge involving only the size of the problem
𝑋 for every instance of𝑋working in polynomial time.

(2) There exists a pair (cod, 𝑠) of polynomial time com-
putable functions over 𝐼𝑋 such that

(i) for each instance 𝑢 ∈ 𝐼𝑋, 𝑠(𝑢) is a natural
number and cod(𝑢) is an input multiset of the
system Π(𝑠(𝑢)),

(ii) the family Π is time-free sound with regard
to (𝑋, cod, 𝑠). For each instance 𝑢 ∈ 𝐼𝑋 such
that there exists an accepting computation if
Π(𝑠(𝑢), 𝑒)with input cod(𝑢), we have 𝜃𝑋(𝑢) = 1,

(iii) the familyΠ is time-free completewith regard to
(𝑋, cod, 𝑠). For each instance 𝑢 ∈ 𝐼𝑋, if 𝜃𝑋(𝑢) =1, then every computation of Π(𝑠(𝑢), 𝑒) with
input cod(𝑢) is an accepting one for any time
mapping e,

(iv) the familyΠ is time-free polynomially bounded
with regard to (𝑋, cod, 𝑠); namely, there exists
a polynomial function 𝑝(𝑛) such that for each
𝑢 ∈ 𝐼𝑋, when all the computations in Π(𝑠(𝑢), 𝑒)
with input cod(𝑢) halt, there is at most 𝑝(|𝑢|)
RS-steps for any time mapping e.

For the set of decision problems, we denote it with
PMCTF-TP(𝑘) which can be solved by recognizer timed tissue
P systems and the length of evolution rules atmost 𝑘working.
3. A Time-Free Uniform Solution to SAT

Problem Using Tissue P Systems

Definition 6. The SAT problem is, for a Boolean formula of
CNF, to look for whether or not there exists an assignment to
its variables on which it is evaluated to be true [4].

The SAT problem is a well-known NP-complete problem.
This problem has been widely used in artificial intelligence
and computer theories. Boolean formula containing n vari-
ables has 2𝑛 values. By membrane division, we can obtain 2𝑛
membranes in n steps. In addition, by the maximal paral-
lelism, we can obtain polynomial (maybe, linear) solutions to
NP-hard problems. In what follows, we will propose a time-
free uniform solution to the SAT problem; that is, P systems
are constructed from the size of instances of the SAT problem
in a time-free manner.

Theorem 7. SAT problem can be solved by a uniform family of
timed tissue P systems by cell division.

Proof. For a SAT formula with 𝑛 Boolean variables and 𝑚
clauses, its CNF form is input into P systems. Let us consider
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a propositional formula 𝛾 = 𝐶1∧𝐶2∧⋅ ⋅ ⋅∧𝐶𝑚, consisting of𝑚
clauses𝐶𝑗 = 𝑦1,𝑗∧⋅ ⋅ ⋅∧𝑦𝑝𝑗,𝑗, where 𝑦𝑖,𝑗 ∈ {𝑥𝑙, ¬𝑥𝑙 | 1 ≤ 𝑙 ≤ 𝑛}.
1 ≤ 𝑖 ≤ 𝑝𝑗, 1 ≤ 𝑗 ≤ 𝑚.

Let us consider the polynomial–time computable func-
tion (the pair function)

𝑔 (𝑛, 𝑘) = ((𝑛 + 𝑘) (𝑛 + 𝑘 + 1)
2 ) + 𝑛. (4)

It is a primitive recursive and bijective function from N2 to
N.

The instance 𝛾 is encoded by multiset as follows:

cod (𝛾)
= 𝛼1,1𝛼1,2 ⋅ ⋅ ⋅ 𝛼1,𝑚𝛼2,1𝛼2,2 ⋅ ⋅ ⋅ 𝛼2,𝑚 ⋅ ⋅ ⋅ 𝛼𝑛,1𝛼𝑛,2 ⋅ ⋅ ⋅ 𝛼𝑛,𝑚.

(5)

We codify 𝛾, where for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, by the
multiset

𝛼𝑖,𝑗 =
{{{{
{{{{{

𝛽𝑖,𝑗 if 𝑥𝑖 appears in 𝐶𝑗,
𝛽𝑖,𝑗 if ¬𝑥𝑖 appears in 𝐶𝑗,
𝛽0𝑖,𝑗 if 𝑥𝑖 and ¬𝑥𝑖 do not appear in 𝐶𝑗.

(6)

Next, we define a family of recognizer tissue P systems with
cell division, which can process all instances 𝛾 provided the
appropriate input multiset cod(𝛾). The instance 𝛾 will be
processed by the tissue P system with input cod(𝛾). For the
given 𝑛 variables and 𝑚 clauses, we construct the recognizer
tissue P system as follows:

ΠSAT(𝑚,𝑛) = (𝑂, Σ, 𝐸, 𝑤1, 𝑤2, 𝑅, 𝑒, 𝑖in, 𝑖out) , (7)

where

(i) 𝑂 is the finite alphabet of the system,
𝑂 = Σ ∪ {𝑎𝑖1 ≤ 𝑖 ≤ 𝑛 + 1} ∪ {𝑡𝑖,𝑗, 𝑓𝑖,𝑗1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤
𝑚+1}∪ {𝑒𝑖2 ≤ 𝑖 ≤ 𝑛+ 1} ∪ {𝑏𝑖,𝑗, 𝑇𝑖, 𝐹𝑖, 𝑟𝑗1 ≤ 𝑖 ≤ 𝑛, 1 ≤
𝑗 ≤ 𝑚} ∪ {𝑠𝑗2 ≤ 𝑗 ≤ 𝑚 + 1} ∪ {𝑑, yes, no},
the objects in the 𝑂mainly contain

(a) 𝑡𝑖,𝑗 denotes true of the Boolean value for the
variable;

(b) 𝑓𝑖,𝑗 denotes false of the Boolean value for the
variable;

(c) the object yesmeans that the CNF is satisfiable;
(d) the object no means that the CNF is unsatisfi-

able,

(ii) Σ = {𝛽𝑖,𝑗, 𝛽0𝑖,𝑗, 𝛽𝑖,𝑗 | 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚} is the input
alphabet contained in O,

(iii) E is the arbitrary copies of objects in the environment,
𝐸 = {𝑎𝑖2 ≤ 𝑖 ≤ 𝑛 + 1} ∪ {𝑡𝑖,𝑗, 𝑓𝑖,𝑗1 ≤ 𝑖 ≤ 𝑛, 2 ≤ 𝑗 ≤
𝑚+1}∪ {𝑒𝑖2 ≤ 𝑖 ≤ 𝑛+ 1} ∪ {𝑏𝑖,𝑗, 𝑇𝑖, 𝐹𝑖, 𝑟𝑗1 ≤ 𝑖 ≤ 𝑛, 1 ≤
𝑗 ≤ 𝑚} ∪ {𝑠𝑗2 ≤ 𝑗 ≤ 𝑚 + 1} ∪ {𝑑},

(iv) 𝑤𝑖 (1 ≤ 𝑖 ≤ 𝑚) are finite multisets over 𝑂,
𝑤1 = {yes, no}, 𝑤2 = 𝑎1,

(v) 𝑖in = 2 is the input cell; 𝑖out = 0 is the output region
which saves the results,

(vi) We can specify the execution time of each rule by a
mapping 𝑒: 𝑅 → N, where 𝑅 is the set of rules of
ΠSAT(𝑚,𝑛). 𝑅 is the following set of rules.

(a) Generation Phase

𝑅1,𝑖: [𝑎𝑖]2 → [𝑡𝑖,1]2 [𝑓𝑖,1]2 , 1 ≤ 𝑖 ≤ 𝑛,

𝑅𝑡
{{{
{{{{

𝑅2,𝑖,𝑗: {(2, 𝑡𝑖,𝑗𝛽𝑖,𝑗/𝑏𝑖,𝑗, 0) , (2, 𝑏𝑖,𝑗/𝑟𝑗𝑡𝑖,𝑗+1, 0) , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚} ,
𝑅3,𝑖,𝑗: (2, 𝑡𝑖,𝑗𝛽𝑖,𝑗/𝑡𝑖,𝑗+1, 0) , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,
𝑅4,𝑖,𝑗: (2, 𝑡𝑖,𝑗𝛽0𝑖,𝑗/𝑡𝑖,𝑗+1, 0) , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,

𝑅𝑓
{{{
{{{{

𝑅5,𝑖,𝑗: {(2, 𝑓𝑖,𝑗𝛽𝑖,𝑗/𝑏𝑖,𝑗, 0) , (2, 𝑏𝑖,𝑗/𝑟𝑗𝑓𝑖,𝑗+1, 0) , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚} ,
𝑅6,𝑖,𝑗: (2, 𝑓𝑖,𝑗𝛽𝑖,𝑗/𝑓𝑖,𝑗+1, 0) , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,
𝑅7,𝑖,𝑗: (2, 𝑓𝑖,𝑗𝛽0𝑖,𝑗/𝑓𝑖,𝑗+1, 0) , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,

𝑅8,𝑖: (2, 𝑡𝑖,𝑚+1/𝑇𝑖𝑑, 0) , 1 ≤ 𝑖 ≤ 𝑛,
𝑅9,𝑖: (2, 𝑓𝑖,𝑚+1/𝐹𝑖𝑑, 0) , 1 ≤ 𝑖 ≤ 𝑛,
𝑅10,𝑖: (2, 𝑇𝑖/𝜆, 1) , 1 ≤ 𝑖 ≤ 𝑛,
𝑅11,𝑖: (2, 𝐹𝑖/𝜆, 1) , 1 ≤ 𝑖 ≤ 𝑛,
𝑅12,𝑖: (1, 𝑇𝑖𝐹𝑖/𝑒𝑖+1, 0) , 1 ≤ 𝑖 ≤ 𝑛,
𝑅13,𝑖: (1, 𝑒𝑖/𝑎2𝑖 , 0) , 2 ≤ 𝑖 ≤ 𝑛 + 1,
𝑅14,𝑖: (2, 𝑑/𝑎𝑖, 1) , 2 ≤ 𝑖 ≤ 𝑛 + 1.

(8)
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(b) Checking Phase

𝑅15: (2, 𝑎𝑛+1𝑟1/𝑠2, 0) ,
𝑅16,𝑗: (2, 𝑠𝑗𝑟𝑗/𝑠𝑗+1, 0) , 2 ≤ 𝑗 ≤ 𝑚. (9)

(c) Output Phase

𝑅17: (1, no/𝜆, 0) ,
𝑅18: (2, 𝑠𝑚+1/yes, 1) ,
𝑅19: (2, yes/no, 0) .

(10)

The computing process consists of the following phases:

(a) Generation phase: all assignments of variables can
be generated by using membrane division. Finally, 2𝑛
copies of membranes can be generated.

(b) Checking phase: the system checks whether or not the
formula has a truth assignment. If all assignments of
variables cannot satisfy the clause, it means that there
is no satisfiable solution; or it means that there is at
least one satisfiable solution.

(c) Output phase: the object yes/no of outputmembrane
is computing result in the stopping configuration.

The multiset of an instance is introduced into input cell
of the system, and we can get the initial configuration. In
what follows, we will give an overview of computing process
to show how the system works. In order to have a global
understanding of the subsequent process of proof, we classify
all the rules as follows:

(i) 𝑅1,𝑖 (1 ≤ 𝑖 ≤ 𝑛) are division rules which can be used
to produce an exponential space.

(ii) The rules 𝑅𝑡 and 𝑅𝑓 are used to check whether the
corresponding clauses are satisfied by the assignment
true or false of variable 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑛).

(iii) The rules from 𝑅8,𝑖,𝑗 to 𝑅14,𝑖 are used for the next
iteration of variable 𝑥𝑖 or preparing for checking
phase.

(iv) With the rules R15 and𝑅16,𝑖, the final detection results
can be generated in each cell.

(v) With the rules from R17 to R19, the system sends to
the environment the final answer.

(a) Generation Phase. Let 𝑒 be the execution time of the rules.
Initially, cell 1 contains objects yes and no; cell 2 contains
object a1, cod(𝛾). Object a1 in cell 2 corresponds to variable
𝑥1.

In general, objects 𝑎𝑖 in the cell with label 2 correspond
to variable 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛. Boolean formula containing 𝑛
variables has 2𝑛 values. By cell division, 2𝑛 copies of cells can
be generated in 𝑛 steps. Hence, we can obtain all the possible
solutions of SAT problem in the end. At step 1, the system
starts running, and rules R1,1 and R17 can be applied at the
same time. Rule R1,1 is a division rule, which can be applied
to divide this cell into new cells with the same label. At the

same time, object a1 evolves to objects t1,1 and 𝑓1,1 in the two
newly generated cells: object t1,1 corresponds to assignment
true of variable 𝑥1, and object 𝑓1,1 corresponds to assignment
false of variable 𝑥1. In this process, there is only one RS-step
because no other rules can be applied except for the rules R1,1
and R17. When the execution of rule R1,1 finishes, a rule in 𝑅𝑡
(resp., 𝑅𝑓) can be enabled. These rules correspond to check
whether the assignment (true or false) to the variable 𝑥1 in
each clause is satisfiable.

When object 𝑡1,𝑗 and object 𝛽1,𝑗 appear in cell 2 or
object 𝑓1,𝑗 and object 𝛽1,𝑗 appear in cell 2, it means that the
assignment of the current variable 𝑥1 can satisfy the clause. At
this moment, by the application of the first rule in𝑅2,𝑖,𝑗 (resp.,𝑅5,𝑖,𝑗), object 𝑏𝑖,𝑗 can be generated.When the execution of this
rule has completed, the second rule in 𝑅2,𝑖,𝑗 (resp., 𝑅5,𝑖,𝑗) can
be applied. By using the rule, object 𝑏𝑖,𝑗 in cell 2 can be sent
out the cell, and object 𝑟𝑗 can be generated, which represent
that this clause can be satisfied by the assignment. For object
𝑡1,𝑗 (resp., 𝑓1,𝑗), 1 ≤ 𝑖 ≤ 𝑛, by using the rule 𝑅2,𝑖,𝑗, 𝑅3,𝑖,𝑗,
or 𝑅4,𝑖,𝑗 (resp., 𝑅5,𝑖,𝑗, 𝑅6,𝑖,𝑗, or 𝑅7,𝑖,𝑗), the second component
of the subscript will increase one by one. In general, for the
current variable 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑛), there are𝑚 clauses; that is, the
second component of the subscript can reach to𝑚 + 1 in the
end. Thus, when the application of all the rules in 𝑅𝑡 (resp.,𝑅𝑓) completes, object 𝑡𝑖,𝑚+1 (resp., 𝑓𝑖,𝑚+1) can be generated.
Because the first two rules in𝑅𝑡 and𝑅𝑓 are started at the same
time, these two rules take only one RS-step. In addition, we
consider maximum number of rules in 𝑅𝑡 and 𝑅𝑓, namely,
𝑅2,𝑖,𝑗 and𝑅5,𝑖,𝑗. Note that the two rules (𝑅2,𝑖,𝑗 and𝑅5,𝑖,𝑗) cannot
be executed together because the same variable in the same
clause is either 𝑥𝑖 or ¬𝑥𝑖. Therefore, it takes at most 3𝑚 − 1
RS-steps to complete this process.

Figure 1 shows the division process of 𝑛 variables, which
can be represented by a binary tree. Each variable of a CNF
formula is divided into two parts in an iterative manner.
Each node of the binary tree is assigned to true or false,
which represents the assignment of a variable. Left and right
subtree branches indicate the true value and the false value,
respectively. For every iteration of variable 𝑥𝑖, when the
execution of rule 𝑅𝑡 (resp., 𝑅𝑓) finishes, at that moment,
object 𝑡𝑖,𝑚+1 (resp., 𝑓𝑖,𝑚+1) can be generated in every cell with
label 2. For example, for the iteration of variable𝑥3 in Figure 1,
there are four copies of object 𝑡𝑖,𝑚+1 (resp., 𝑓𝑖,𝑚+1) generated
at the same time. When division rule completes, the rules in
𝑅𝑡 and 𝑅𝑓 start simultaneously in each cell 2. For every cell
containing object 𝑡𝑖,𝑚+1 (resp.,𝑓𝑖,𝑚+1), in which the same rules
are applied, object 𝑡𝑖,𝑚+1 (resp., 𝑓𝑖,𝑚+1) in each cell with label
2 is generated at the same time. But 𝑡𝑖,𝑚+1 and 𝑓𝑖,𝑚+1 cannot
be generated at the same time because the execution time of
rules in 𝑅𝑡 and 𝑅𝑓 is different.

According to the analysis above, the applications of rules
𝑅8,1 and 𝑅9,1 start at different steps. When an object 𝑡1,𝑚+1
(resp., 𝑓1,𝑚+1) is generated, rule 𝑅8,1 (resp., 𝑅9,1) can be
applied, by which cell 2 sends out object 𝑡1,𝑚+1 (resp., 𝑓1,𝑚+1)
to the environment and receives multiset 𝑇1𝑑 (resp., 𝐹1𝑑)
from the environment. Thus, the application of rule 𝑅8,𝑖
(resp., 𝑅9,𝑖) can ensure that only one copy of object d can be
generated in each cell with label 2. When the object 𝑇1 (resp.,
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Figure 1: The division process of variables.

𝐹1) is generated in a cell 2, rule R10,1 (resp., 𝑅11,1) is applied,
by which object 𝑇1 (resp., 𝐹1) can be sent to cell 1. When the
execution of both rule 𝑅10,1 and rule 𝑅11,1 finishes, rule 𝑅12,1
can be applied. At this moment, object 𝑇1 and 𝐹1 can appear
in the cell 1. By using the rule 𝑅12,1, object 𝑇1 and 𝐹1 in cell 1
can be sent out that cell. At the same time, object 𝑒2 enters the
cell 1.

As we know, it is obvious that 𝑒(𝑅𝑡) + 𝑒(𝑅8,1) + 𝑒(𝑅10,1)
may not be equal to 𝑒(𝑅𝑓) + 𝑒(𝑅9,1) + 𝑒(𝑅11,1) because the
system works independently of the execution time of rules.
Hence, the rule 𝑅12,1 is applied to solve synchronization
problem of the rules. When the application of rule 𝑅12,1
finishes, the execution of all the aforementioned rules has
completed. At that moment, cell 1 has one copy of object 𝑒2.
By using the rule 𝑅13,2, two copies of object a2 enter the cell 1.
Note that each cell 2 has an object d; by using the rule 𝑅14,2,
each cell 2 will obtain one copy of object 𝑎2 simultaneously
because of the principle of maximal parallelism; that is, all of
the rules that can be applied must be applied simultaneously.
Note that only one copy of object 𝑑 appears in each cell
with label 2; eventually, each cell 2 contains one copy of
object 𝑎𝑖+1.

The system runs in this way, and object 𝑎2 must appear
in each cell 2 simultaneously. When the application of rule
𝑅14,2 is completed, note that the execution of all the afore-
mentioned rules has been completed for the first iteration of
variable 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑛).These available rules are applied in the
order

{𝑅1,1} → {{𝑅2,1,𝑗, 𝑅3,1,𝑗, 𝑅4,1,𝑗} → {𝑅8,1} → {𝑅10,1}(resp., {𝑅5,1,𝑗, 𝑅6,1,𝑗, 𝑅7,1,𝑗} → {𝑅9,1} → {𝑅11,1})} →
{𝑅12,1} → {𝑅13,2} → {𝑅14,2}.

When the application of all rules above is completed, it
takes at most 3𝑚 + 7 RS-steps.

When the first iteration of variable 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑛) is
completed, every cell 2 contains object 𝑎2. Under the influ-
ence of object 𝑎2, rule 𝑅1,2 can be applied simultaneously.
With the application of the division rule, four cells with label
2 can be generated. Similarly, the system executes the above
process in an iterative manner till the assignments of all the
variables are obtained.

The available rules from R1,1 to 𝑅14,𝑛 are applied in the
following order:

The application of rules for the first iteration:

{𝑅1,1} → {{𝑅2,1,𝑗, 𝑅3,1,𝑗, 𝑅4,1,𝑗} → {𝑅8,1} → {𝑅10,1}(resp., {𝑅5,1,𝑗, 𝑅6,1,𝑗, 𝑅7,1,𝑗} → {𝑅9,1} → {𝑅11,1})} →
{𝑅12,1} → {𝑅13,2} → {𝑅14,2}.
The application of rules for the second iteration:

{𝑅1,2} → {{𝑅2,2,𝑗, 𝑅3,2,𝑗, 𝑅4,2,𝑗} → {𝑅8,2} → {𝑅10,2}(resp., {𝑅5,2,𝑗, 𝑅6,2,𝑗, 𝑅7,2,𝑗} → {𝑅9,2} → {𝑅11,2})} →
{𝑅12,2} → {𝑅13,3} → {𝑅14,3}.
...
The application of rules for the last iteration:

{𝑅1,𝑛} → {{𝑅2,𝑛,𝑗, 𝑅3,𝑛,𝑗, 𝑅4,𝑛,𝑗} → {𝑅8,𝑛} → {𝑅10,𝑛}(resp., {𝑅5,𝑛,𝑗, 𝑅6,𝑛,𝑗, 𝑅7,𝑛,𝑗} → {𝑅9,𝑛} → {𝑅11,𝑛})} →
{𝑅12,𝑛} → {𝑅13,𝑛+1} → {𝑅14,𝑛+1}.

In general, when the application of rules fromR1,1 to𝑅14,𝑛
is completed, this computation process takes at most 3mn +
7n RS-steps.

When object 𝑎𝑛+1 occurs in an arbitrary cell 2, it means
that the execution of all the aforementioned rules has been
completed. Note that the application of 𝑅13,𝑛+1 and 𝑅14,𝑛+1
in each cell follows the principle of maximal parallelism.
Therefore, objects 𝑎𝑛+1 in each cell 2 can be generated
simultaneously.

(b) Checking Phase. When the execution of rule 𝑅14,𝑛+1 is
completed, there are some objects (or no object) from the set
{𝑟1, 𝑟2, . . . , 𝑟𝑛} in every cell 2. These objects represent that the
corresponding clauses can be satisfied.Thus, if at least one cell
contains all objects including 𝑟1, 𝑟2, . . . , 𝑟𝑛, it means that there
is a satisfiable solution; or it means that there is no satisfiable
solution. At this moment, rule 𝑅15 is applied in each cell 2
simultaneously.With the appearance of object 𝑎𝑛+1 and object𝑟1 (if this object exists in a cell 2) in cells 2, by using the rule
𝑅15, the object 𝑟1 is checked and 𝑠2 can be sent to cell 2 from
the environment. If the object 𝑠𝑖 (2 ≤ 𝑖 ≤ 𝑚) appears in a
cell 2, rule 𝑅16,𝑖 can be applied. Eventually, if the object 𝑠𝑚
appears in a cell 2, rule𝑅16,𝑚 can be applied.Thus, object 𝑠𝑚+1
can be generated in that cell. Please note that the rules are
used in a time-free manner. In addition, although there may
be more than one copy of object 𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑚), only one copy
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can be applied by the rules of 𝑅15 and 𝑅16,𝑖. In general, this
computation process takes at most𝑚 RS-steps.

(c) Output Phase.When the checking phase and the execution
of rule R17 are complete, there are the following two cases:

(i) Affirmative answer: in this case, object 𝑠𝑚+1 is gener-
ated in a cell 2, telling us that the formula is satisfiable;
by using the rule R18, objects 𝑠𝑚+1 can be sent out
to cell 1; at the same time, object yes enters the cell
2. Eventually, by using the rule R19, the object yes
in one cell 2 can be sent out to the environment; at
the same time, object no enters the cell 2. Thus, if the
system halts, object yes is in the environment; we can
draw a conclusion that there is at least one satisfiable
solution. Hence, in this case, the formula is satisfiable.
This process takes 2 RS-steps.

(ii) Negative answer: in this case, object 𝑠𝑚+1 does not
appear in a cell with label 2. Therefore, the rule R18
and rule R19 cannot be applied. Eventually, when the
system halts, if object no is still in the environment,
we can draw a conclusion that there is no satisfiable
solution. Hence, in this case, the formula is not
satisfiable. This process takes no RS-step.

4. Some Formal Details

For a SAT instance with 𝑛 Boolean variables and 𝑚 clauses,
the necessary resources to construct ΠSAT(𝑚,𝑛) can be drawn
as follows:

(i) Size of the set O: 6mn + 6n + 2m + 4.
(ii) Initial number of cells: 2.
(iii) Initial number of objects: 3.
(iv) The total number of rules: 8mn + 8n +m + 3.
(v) The maximal length of a rule: 3.
ΠSAT(𝑚,𝑛) always halts till the output is yes or no in the

end.As a recognizer tissue P system, the system stopsworking
within a certain RS-steps. Hence, eventually, object yes or no
must appear in the environment in a feasible time. According
to the analysis in Section 3, if the formula 𝛾 is satisfiable, then
after at most 3mn + 7n + m + 2 RS-steps the P systems will
stop working; if the formula 𝛾 is not satisfiable, then after at
most 3mn + 7n +m RS-steps the P systems will stop working.
For both cases, the generation phase takes at most 3mn + 7n
RS-steps, and the checking phase takes at most m RS-steps;
for output phase, the former takes at most 2 RS-steps, and the
latter takes no RS-step.

Obviously, there is a polynomial bound of the compu-
tation for the system. The SAT problem can be solved in
polynomial RS-steps by a family of recognizer timed tissue
P systems. Hence, the constructed P systems have high
computational efficiency to solve the NP-hard problems even
in the time-free manner.

Theorem 8. A family of a timed tissue P system can be
constructed as a uniform solution to the SAT problem in a time-
free way. For any timemapping e, the execution time of the rules
does not influence the results of the system.

Proof. ΠSAT(𝑚,𝑛) always halts till the output is yes or no
in the end. According to the analysis above, the SAT can
be solved by a family of recognizer tissue P systems in
polynomial RS-steps. Hence, theΠSAT(𝑚,𝑛) have the powerful
computational efficiency to solve the computationally hard
problem. Furthermore, the execution time of rules has no
influence on the computation results.

It is easy to prove that ΠSAT(𝑚,𝑛) is time-free sound, time-
free complete, and time-free polynomially bounded. Hence,
we can draw a conclusion that it is a time-free solution to the
SAT problem.

Theorem 9. SAT ∈ PMCTF-TP(3).

Proof. It suffices to remark that the SAT problem is NP-
complete. Note that the family of recognizer P systems given
in Section 3 has the length of communication rules which
is no more than 3. According to Definition 5 and from the
discussion in the previous subsections, it is easy to prove
PMCTF-TP(3) and that this complexity class is closed under
polynomial time reduction and under complement.

Corollary 10. NP ∪ co-NP ⊆ PMCPF(3).

5. Conclusions

In this work, time-free method is introduced into tissue P
systems. We consider that the lasting time of the chemi-
cal communication between living cells is often different,
because it is influenced by many factors. Thus, a time
mapping is added to specify the execution time of rules.
Compared with traditional tissue P systems, it is a more
realistic model from a biological point of view. The output of
the timed tissue P system has no influence on the correctness
of the solutions.We prove that SAT problem can be efficiently
solved by a family of timed tissue P systems with cell division
and communication rules with length at most 3, which is
a relatively good result from the computational complexity
point of view in the time-free way. Our work provides a new
and effective solution to SAT problem in a distributed and
parallel manner.

Finally, the reader can consider further problems. For
instance, in Section 3, we prove that NP-complete problem
can be solved by timed tissue P systems with communication
rules with length atmost 3.We can consider what will happen
if only symport rules or antiport rules are allowed in timed
tissue P systems.
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“Research frontiers of membrane computing: open problems
and research topics,” International Journal of Foundations of
Computer Science, vol. 24, no. 5, pp. 547–623, 2013.

[19] B. Song and L. Pan, “Computational efficiency and universality
of timed P systems with active membranes,” Theoretical Com-
puter Science, vol. 567, pp. 74–86, 2015.

[20] B. Song, T. Song, and L. Pan, “Time-free solution to SAT
problem by P systems with active membranes and standard cell
division rules,” Natural Computing, vol. 14, no. 4, pp. 673–681,
2015.

[21] B. Song, T. Song, and L. Pan, “A time-free uniform solution
to subset sum problem by tissue P systems with cell division,”
Mathematical Structures in Computer Science, vol. 27, no. 1, pp.
17–32, 2017.

[22] Y. Niu, Y. Jiang, and J. Xiao, “Time-free solution to 3-coloring
problem using tissue P systems,” Chinese Journal of Electronics,
vol. 25, no. 3, pp. 407–412, 2016.

[23] X. Zeng, N. Ding, F. Xing, and X. Liu, “Time-free tissue P sys-
tems for solving the hamilton path problem,” Communications
in Computer & Information Science, vol. 472, pp. 562–565, 2014.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


