Properties of the longest-edge n-section refinement scheme for triangular meshes

José P. Suárez ${ }^{\text {a,* }}$, Tania Moreno ${ }^{\text {b }}$, Pilar Abad ${ }^{\text {a }}$, Ángel Plaza ${ }^{\text {a }}$
${ }^{\text {a }}$ Division of Mathematics, Graphics and Computation (MAGiC), IUMA, Information and Communication Systems, University of Las Palmas de Gran Canaria, Canary Islands, Spain
${ }^{\text {b }}$ Faculty of Mathematics and Informatics, University of Holguín, Avenida XX Aniversario, vía Guardalavaca, Holguín, Cuba

ARTICLE INFO

Article history:

Received 6 February 2012
Received in revised form 20 April 2012
Accepted 20 April 2012

Keywords:

Longest-edge
Triangle partition
Triangle n-section

Abstract

We prove that the longest-edge n-section of triangles for $n \geqslant 4$ produces a sequence of triangle meshes with minimum interior angle converging to zero. The so called degeneracy property of LE for $n \geqslant 4$ is proved.

© 2012 Elsevier Ltd. All rights reserved.

The stability condition or non-degeneracy property means that the interior angles of all elements have to be bounded uniformly away from zero. Non-degeneracy is essential, for example, for the approximation properties of finite element spaces and the convergence behavior of multigrid and multilevel algorithms.

Rosenberg and Stenger [1] showed the non-degeneracy property for LE-bisection: if α_{0} is the minimum angle of initial given triangle, and α_{k} is the minimum interior angle in new triangles appeared at iteration k, then $\alpha_{k} \geqslant \alpha_{0} / 2$. A similar bound has been obtained recently for the LE-trisection: $\alpha_{k} \geqslant \alpha_{0} / c$ where $c=\frac{\pi / 3}{\arctan \left(\frac{\sqrt{3}}{11}\right)}$ [2].

Theorem 1. The iterative application of longest-edge n-section when $n \geqslant 4$ to a given arbitrary triangle $\triangle A B C$ generates a sequence of new triangles in which $\lim _{k \rightarrow \infty} \alpha_{k}=0, \alpha_{k}$ being the minimum triangle angle in iteration k.
Proof. It is enough to prove that there exists a sequence $\left\{\tau_{k}\right\}_{k=0}^{\infty}$ such that:
(1) τ_{k} is the value of the interior angle obtained after k th iteration of the LE n-section of the given triangle $\triangle A B C$.
(2) $\lim _{k \rightarrow \infty} \tau_{k}=0$.

In fact, for all $k \geqslant 1$ we have $\alpha_{k} \leqslant \tau_{k}$, then: $0 \leqslant \lim _{k \rightarrow \infty} \alpha_{k} \leqslant \lim _{k \rightarrow \infty} \tau_{k}=0$, where, clearly, $\lim _{k \rightarrow \infty} \alpha_{k}=0$.
We now prove that there exists such a sequence $\left\{\tau_{k}\right\}_{k=0}^{\infty}$. Let $n \geqslant 4$ and $\triangle A B C$ be an arbitrary triangle with sides $|\overline{A B}| \leqslant|\overline{A C}| \leqslant|\overline{B C}|$. We consider a triangle sequence $\left\{\Delta_{k}\right\}_{k=0}^{\infty}$ such that $\Delta_{0}=\triangle A_{0} B_{0} C_{0}, A_{0}=A, B_{0}=B, C_{0}=C$. For all $k \geqslant 0$ let $\Delta_{k+1}=\triangle A_{k+1} B_{k+1} C_{k+1}$ where $A_{k+1} \in \overline{B_{k} C_{k}}$ such that $\left|\overline{A_{k+1} C_{k}}\right|=\frac{1}{n}\left|\overline{B_{k} C_{k}}\right|, B_{k+1}=C_{k}$ and $C_{k+1}=A_{k}$. It should be noted that for all $k \geqslant 1,\left|\overline{A_{k} B_{k}}\right| \leqslant\left|\overline{A_{k} C_{k}}\right|<\left|\overline{B_{k} C_{k}}\right|$ and that Δ_{k} is one of the triangles generated by applying the LE n-section to triangle Δ_{k-1}.

[^0]

Fig. 1. Scheme for the constructed triangle sequence in the LE n-section.

(a) LE 4-section.

(b) LE 5-section.

Fig. 2. LE n-section $(n=4,5)$ of triangle $A_{k} B_{k} C_{k}$ and of its descendant $A_{k+1} B_{k+1} C_{k+1}$.
Denote by $P_{k}(k \geqslant 0)$ the point within the segment $\overline{B_{k} C_{k}}$ such that:

$$
\begin{equation*}
\frac{\left|\overline{B_{k} P_{k}}\right|}{\left|\overline{P_{k} C_{k}}\right|}=\frac{n-2}{2} \tag{1}
\end{equation*}
$$

and let M_{k} be the midpoint of segment $\overline{B_{k} C_{k}}$. See Fig. 1 for a graphical illustration of point P_{k}.
Note that $\left|\overline{P_{k} A_{k+1}}\right|=\left|\overline{A_{k+1} C_{k}}\right|$. Moreover, from Eq. (1) and recalling that $n \geqslant 4$ we have:

$$
\begin{equation*}
\frac{\left|\overline{B_{k} P_{k}}\right|}{\left|\overline{P_{k} C_{k}}\right|} \geqslant 1 . \tag{2}
\end{equation*}
$$

From inequality (2) we have $P_{k+1} \in \overline{M_{k+1} C_{k+1}}=\overline{M_{k+1} A_{k}}$.
On the other hand, it is evident that $A_{k} P_{k} \| A_{k+1} M_{k+1}$; see Fig. 2(a) and (b) for $n=4$ and $n=5$, respectively. Let $\angle P_{k} A_{k} A_{k+1}=\delta_{k}$ and $\angle A_{k} C_{k} B_{k}=\tau_{k}$. Then, by equality of alternate interior angles between parallels and the sum of consecutive angles:

$$
\begin{aligned}
\angle P_{k} A_{k} A_{k+1} & =\angle A_{k} A_{k+1} M_{k+1}=\angle P_{k+1} A_{k+1} M_{k+1}+\angle P_{k+1} A_{k+1} A_{k+2}+\angle A_{k} A_{k+1} A_{k+2} \\
& \geqslant \angle P_{k+1} A_{k+1} A_{k+2}+\angle A_{k} A_{k+1} A_{k+2} .
\end{aligned}
$$

This is $\delta_{k} \geqslant \delta_{k+1}+\tau_{k+2}$, consequently:

$$
\begin{equation*}
\tau_{k+2} \leqslant \delta_{k}-\delta_{k+1} \tag{3}
\end{equation*}
$$

Note that the equality in (3) holds for $n=4$; see Fig. 2(a) which illustrates the case of LE quartersection of triangle $A_{k} B_{k} C_{k}$ and of its descendant $A_{k+1} B_{k+1} C_{k+1}$. The case $\tau_{k+2}<\delta_{k}-\delta_{k+1}$ is attained when $n>4$ and this situation is depicted in Fig. 2(b) for $n=5$.

Fig. 3. A simple test: max-min angle evolution in iterative refinement with $\mathrm{LE} n$-section when $n=2,3$ and 4 .
It can be noted from inequality (3) that $\left\{\delta_{k}\right\}_{k=0}^{\infty}$ is a decreasing sequence. Since this sequence is bounded from below by 0 , using the Bolzano-Weierstrass Theorem we conclude that $\left\{\delta_{k}\right\}_{k=0}^{\infty}$ converges and thus $\lim _{k \rightarrow \infty}\left(\delta_{k}-\delta_{k+1}\right)=0$. It follows:

$$
0 \leqslant \lim _{k \rightarrow \infty} \tau_{k}=\lim _{k \rightarrow \infty} \tau_{k+2} \leqslant \lim _{k \rightarrow \infty}\left(\delta_{k}-\delta_{k+1}\right)=0
$$

and then $\left\{\tau_{k}\right\}_{k=0}^{\infty}$ exists and converges to 0 which proves the result of the theorem.
Finally, in order to show a face-to-face comparison among LE bisection, LE trisection and LE quartersection ($n=2,3,4$), we show in Fig. 3 max-min angles generated in repeated refinements using such triangle partitions and considering an initial triangle with equal interior angles of $\pi / 3$ rads (other examples get analogous behavior and are omitted for brevity).

In this example, LE bisection, as expected, exhibits a better tight max-min angle in comparison to LE trisection and quartersection which is in agreement with reported results.

In this paper, we have responded to how good is longest-edge n-section of triangles. Proven results by Rosenberg and Stenger [1], Perdomo et al. [2] and Plaza et al. [3] show that LE bisection and LE trisection exhibit non-degeneracy in iterative application. We show that degeneracy of LE n-section is attained for the so called LE quartersection $(n=4)$. We then find a frontier where LE n-section methods start to degenerate. A matter of similar interest is to study the similarity classes of triangles in the LE n-section for $n \geqslant 4$.

Acknowledgments

This work has been supported in part by CYCIT Project MTM2008-05866-C03-02/MTM from Ministerio de Educación y Ciencia of Spain and AECID Project A/030194/10 of Ministerio de Asuntos Exteriores y de Cooperación of Spain.

References

[1] I. Rosenberg, F. Stenger, A lower bound on the angles of triangles constructed by bisecting the longest side, Math. Comp. 29-130 (1975) 390-395.
[2] F. Perdomo, A. Plaza, E. Quevedo, J.P. Suárez, A lower bound on the angles of triangles constructed by LE-trisection, in: Proceedings of the XIV Spanish Meeting on Computational Geometry, 2011, pp. 201-204.
[3] A. Plaza, J.P. Suárez, M.A. Padrón, S. Falcón, On the non-degeneracy property of the longest-edge trisection of triangles, Appl. Math. Comput. 216-3 (2010) 862-869.

[^0]: * Correspondence to: University of Las Palmas de Gran Canaria, Escuela de Ingenierías Industriales y Civiles, 35017-Las Palmas de Gran Canaria, Spain. Tel.: +34 9284572 68; fax: +34 928451872.

 E-mail address: jsuarez@dcegi.ulpgc.es (J.P. Suárez).

