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a b s t r a c t

We prove that the longest-edge n-section of triangles for n > 4 produces a sequence of
trianglemeshes withminimum interior angle converging to zero. The so called degeneracy
property of LE for n > 4 is proved.

© 2012 Elsevier Ltd. All rights reserved.

The stability condition or non-degeneracy property means that the interior angles of all elements have to be bounded
uniformly away from zero. Non-degeneracy is essential, for example, for the approximation properties of finite element
spaces and the convergence behavior of multigrid and multilevel algorithms.

Rosenberg and Stenger [1] showed the non-degeneracy property for LE-bisection: if α0 is the minimum angle of initial
given triangle, and αk is the minimum interior angle in new triangles appeared at iteration k, then αk > α0/2. A similar
bound has been obtained recently for the LE-trisection: αk > α0/c where c =

π/3

arctan(

√
3

11 )
[2].

Theorem 1. The iterative application of longest-edge n-section when n > 4 to a given arbitrary triangle △ABC generates a
sequence of new triangles in which limk→∞ αk = 0, αk being the minimum triangle angle in iteration k.

Proof. It is enough to prove that there exists a sequence {τk}
∞

k=0 such that:
(1) τk is the value of the interior angle obtained after kth iteration of the LE n-section of the given triangle △ABC .
(2) limk→∞ τk = 0.

In fact, for all k > 1 we have αk 6 τk, then: 0 6 limk→∞ αk 6 limk→∞ τk = 0, where, clearly, limk→∞ αk = 0.
We now prove that there exists such a sequence {τk}

∞

k=0. Let n > 4 and △ABC be an arbitrary triangle with sides
|AB| 6 |AC | 6 |BC |. We consider a triangle sequence {∆k}

∞

k=0 such that ∆0 = △A0B0C0, A0 = A, B0 = B, C0 = C . For
all k > 0 let ∆k+1 = △Ak+1Bk+1Ck+1 where Ak+1 ∈ BkCk such that |Ak+1Ck| =

1
n |BkCk|, Bk+1 = Ck and Ck+1 = Ak. It should be

noted that for all k > 1, |AkBk| 6 |AkCk| < |BkCk| and that ∆k is one of the triangles generated by applying the LE n-section
to triangle ∆k−1.
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Fig. 1. Scheme for the constructed triangle sequence in the LE n-section.

(a) LE 4-section.

(b) LE 5-section.

Fig. 2. LE n-section (n = 4, 5) of triangle AkBkCk and of its descendant Ak+1Bk+1Ck+1 .

Denote by Pk (k > 0) the point within the segment BkCk such that:

|BkPk|

|PkCk|
=

n − 2
2

(1)

and letMk be the midpoint of segment BkCk. See Fig. 1 for a graphical illustration of point Pk.
Note that |PkAk+1| = |Ak+1Ck|. Moreover, from Eq. (1) and recalling that n > 4 we have:

|BkPk|

|PkCk|
> 1. (2)

From inequality (2) we have Pk+1 ∈ Mk+1Ck+1 = Mk+1Ak.
On the other hand, it is evident that AkPk ∥ Ak+1Mk+1; see Fig. 2(a) and (b) for n = 4 and n = 5, respectively. Let
̸ PkAkAk+1 = δk and ̸ AkCkBk = τk. Then, by equality of alternate interior angles betweenparallels and the sumof consecutive
angles:

̸ PkAkAk+1 = ̸ AkAk+1Mk+1 = ̸ Pk+1Ak+1Mk+1 + ̸ Pk+1Ak+1Ak+2 + ̸ AkAk+1Ak+2

> ̸ Pk+1Ak+1Ak+2 + ̸ AkAk+1Ak+2.

This is δk > δk+1 + τk+2, consequently:

τk+2 6 δk − δk+1. (3)

Note that the equality in (3) holds for n = 4; see Fig. 2(a) which illustrates the case of LE quartersection of triangle
AkBkCk and of its descendant Ak+1Bk+1Ck+1. The case τk+2 < δk − δk+1 is attained when n > 4 and this situation is depicted
in Fig. 2(b) for n = 5.
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Fig. 3. A simple test: max–min angle evolution in iterative refinement with LE n-section when n = 2, 3 and 4.

It can be noted from inequality (3) that {δk}
∞

k=0 is a decreasing sequence. Since this sequence is bounded from below by
0, using the Bolzano–Weierstrass Theoremwe conclude that {δk}∞k=0 converges and thus limk→∞(δk − δk+1) = 0. It follows:

0 6 lim
k→∞

τk = lim
k→∞

τk+2 6 lim
k→∞

(δk − δk+1) = 0

and then {τk}
∞

k=0 exists and converges to 0 which proves the result of the theorem. �

Finally, in order to show a face-to-face comparison among LE bisection, LE trisection and LE quartersection (n = 2, 3, 4),
we show in Fig. 3 max–min angles generated in repeated refinements using such triangle partitions and considering an
initial triangle with equal interior angles of π/3 rads (other examples get analogous behavior and are omitted for brevity).

In this example, LE bisection, as expected, exhibits a better tight max–min angle in comparison to LE trisection and
quartersection which is in agreement with reported results.

In this paper, we have responded to how good is longest-edge n-section of triangles. Proven results by Rosenberg and
Stenger [1], Perdomo et al. [2] and Plaza et al. [3] show that LE bisection and LE trisection exhibit non-degeneracy in iterative
application. We show that degeneracy of LE n-section is attained for the so called LE quartersection (n = 4). We then find
a frontier where LE n-section methods start to degenerate. A matter of similar interest is to study the similarity classes of
triangles in the LE n-section for n > 4.
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