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This paper presents a panoramic virtual stereo vision approach to the problem of detecting

and localizing multiple moving objects (e.g., humans) in an indoor scene. Two panoramic

cameras, residing on different mobile platforms, compose a virtual stereo sensor with a flexible

baseline. A novel ‘‘mutual calibration’’ algorithm is proposed, where panoramic cameras on

two cooperative moving platforms are dynamically calibrated by looking at each other. A de-

tailed numerical analysis of the error characteristics of the panoramic virtual stereo vision

(mutual calibration error, stereo matching error, and triangulation error) is given to derive

rules for optimal view planning. Experimental results are discussed for detecting and localizing

multiple humans in motion using two cooperative robot platforms.
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Nomenclature

List of symbols

v Angular resolution of the panoramic image
Dk Target�s distance to camera k ðk ¼ 1; 2Þ
/0, /1, and /2

Three interior angles of the triangle formed by two cameras and the target

hi Bearing angle of the target in image i ði ¼ 1; 2Þ
bij Bearing angle of the camera i in image j
B Baseline length

R Radius of the cylindrical body of the mobile robot used for mutual cali-

bration
a Angle subtended by the cylindrical body of the robot

W Width of the target

wi Width of the target in the panoramic image i ði ¼ 1; 2Þ
T ðkÞ
i Feature set of the blob i in camera k

oX Error in estimating parameter X (X ¼ B, o/1, o/2 b21, h1, h2, a, w, and D)
oDB

1 Distance error due to the baseline error

oD/
1 Distance error due to angular error

oDþ
1 Distance error when D1 > B

oD0
1 Distance error when D1 ¼ B

oD�
1 Distance error when D1 < B

oDfix
1 Distance error when the baseline is fixed

oDs
1 Distance error in the size-ratio method.
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Flexible, reconfigurable vision systems can provide an extremely rich sensing mo-

dality for sophisticated robot platforms. We propose a cooperative and adaptive ap-

proach to the problem of finding and protecting humans in emergency

circumstances, for example, during a fire in an office building. Real-time processing

is essential for the dynamic and unpredictable environments in our application do-

main, and it is important for visual sensing to rapidly focus attention on important
activity in the environment. Any room or corridor should be searched quickly to de-

tect people and fire. Field-of-view issues using standard optics are challenging since

panning a camera takes time, and multiple targets/objectives may require saccades to

attend to important visual cues. Using multiple conventional cameras covering dif-

ferent fields of view could be a solution, but the cost of hardware (cameras, frame

grabbers, and computers) and software (multiple stream data manipulation) would

increase. Thus, we employ panoramic cameras to detect and track multiple objects

(people) in motion, in a full 360-degree view, in real time.
We note that there is a fairly large body of work on detection and tracking of hu-

mans [1–5], motivated most recently by the DARPA VSAM effort [6]. On the other

hand, different kinds of omnidirectional (or panoramic) imaging sensors have been
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designed [7–12], and a systematic theoretical analysis of omnidirectional sensors has

been given by Baker and Nayar [7]. Omnidirectional vision has become quite popu-

lar with many vision approaches for robot navigation [10,13,14,30,31], 3D recon-

struction [15–17,29] and video surveillance [18–20,28]. Research on multiple

camera networks with panoramic cameras that are devoted to human and subject
tracking and identification can be found in the literature [19–23,30,31]. The most re-

lated work is the realtime human tracking system by Sogo et al. [21] using multiple

omnidirectional cameras distributed in an indoor environment. The system detects

people, measures bearing angles and determine their locations by triangulation. Gen-

erally there are two problems in such a system—(1) the correspondence problem

among multiple targets, and (2) the measurement accuracy of target locations. The

correspondence problem is more difficult in a panoramic stereo than a conventional

stereo because both large baseline and low resolution make it hard to establish cor-
respondences of the visual features. The second problem arises particularly when a

target is (almost) aligned with the stereo pair. In order to solve these problems, Sogo

et al. [21] proposed a ‘‘N-ocular stereo’’ approach without visual features that only

verifies the correspondences of multiple targets of binocular stereo by a third omni-

directional camera. They showed that the uncertainty in estimating 3D locations was

reduced by using the best estimations of pairs of four fixed panoramic cameras put in

the vertices of a square region. However, the error of localizing a target is still pro-

portional to the square of the target�s distance from the cameras with fixed baseline
distances; in their simulation, it increases 7-fold when a target moves 3.5m away

from the cameras. Our work differs from theirs in that we deal with panoramic stereo

vision on mobile platforms and thus study the issues of dynamic calibration and view

planning. We propose a novel concept of mutual calibration and give a detailed error

analysis of panoramic stereo that leads to dynamic stereo configurations with adap-

tive baselines and viewpoints for best depth estimation. The distinctive feature of our

approach is the ability to compose cooperative sensing strategies across the distrib-

uted panoramic sensors of a robot team to synthesize optimal ‘‘virtual’’ stereo vision
for human detection and tracking.

The idea of distributing sensors and cooperation across different robots stems

from the requirements of potentially limited (sensor) resources for a large robot team

and the need for mobile placement of sensor platforms given the limited resolution in

panoramic sensors. Nevertheless, the advantages of cooperative vision arise from

more than this compromise. Any fixed-baseline stereo vision system has limited

depth resolution because of the physical constraints imposed by the separation of

cameras, whereas a system that combines multiple views allows the planning system
to take advantage of the current context and goals in selecting viewpoints. In this

paper, we focus on the cooperative behavior involving cameras that are aware of

each other, residing on different mobile platforms, to compose a virtual stereo sensor

with a flexible baseline. In this model, the sensor geometry can be controlled to man-

age the precision of the resulting virtual sensor. The cooperative stereo vision strat-

egy is particularly effective with a pair of mobile panoramic sensors that have the

potential of almost always seeing each other. Once calibrated by ‘‘looking’’ at each

other, they can view the environment to estimate the 3D structure of the scene.
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The organization of the paper is as follows. After the introduction of two depth

estimation methods using panoramic sensors in Section 2, we will mainly focus on

the following critical issues of a panoramic virtual stereo system:

(1) Dynamic ‘‘mutual calibration’’ between the two cameras on two separate mobile

robots that forms the dynamic ‘‘virtual’’ stereo sensor with a full 360-degree view
(Section 3);

(2) A detailed numerical analysis of the error characteristics of the panoramic vir-

tual stereo in order to derive the rules for optimal view planning of the moving

sensor platforms (Sections 4 and 5); and

(3) View planning by taking advantage of the current context and goals, based on a

thorough error analysis of panoramic virtual stereo (Section 6).

Experimental systems and results for multiple human detection and localization

will be given in Section 7, and conclusion and future work will be discussed in the
last section.
ED
P

2. Panoramic virtual stereo geometry

In our experiments we use the panoramic annular lens (PAL) camera system [9] as

it can capture its surroundings with a field of view (FOV) of 360-degrees horizontally

and )15�+20 degrees vertically (Fig. 1). In the application of human tracking and
identification by a mobile robot, a vertical viewing angle that spans the horizon is pre-

ferred. After image un-warping, distortion rectification, and camera calibration

[22,24], we obtain cylindrical images generated by a panoramic ‘‘virtual’’ camera from
UN
CO

RR
EC
T

Fig. 1. Panoramic annular lens and images. (A) PAL camera. (B) An orignal PAL image (768� 576). (C)

Cylindrical panoramic image.
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the virtual viewpoint on the axis of the cylindrical image surface (Fig. 1C). Other om-

nidirectional sensors can also be applied; for example, the omnidirectional cameras

proposed by Nayar�s research group [7] have been used in our current experiments.

Panoramic virtual stereo vision is formed by two panoramic cameras residing on

two separate (possibly mobile) platforms. Let�s assume that both of them are subject
to only planar motion on the floor and are at the same height above the floor. Sup-

pose that in Fig. 2A, O1 and O2 are the viewpoints of the two cameras and they can

be localized by each other in the panoramic images as P12 and P21, respectively. B is

the baseline (i.e., distance O1O2) between them. The projection of a target T is rep-

resented by T1 and T2 in the two panoramic images. Then a triangle O1O2T can be

formed. By defining an arbitrary starting orientation for each cylindrical image,

three angles /1, /2, and /0 of the triangle can be calculated from the following four

bearing angles: h1 and h2, the bearings of the target in image 1 and image 2, respec-
tively, b12 and b21, the bearing angles of camera 1 in image 2, and camera 2 in image

1, respectively. Therefore, the distances from the two cameras to the target can be

calculated by triangulation as
Fig. 2

metho
D1 ¼ B
sin/2

sin/0

¼ B
sin/2

sinð/1 þ /2Þ
; D2 ¼ B

sin/1

sin/0

¼ B
sin/1

sinð/1 þ /2Þ
: ð1Þ
CT
EDWith stationary cameras, triangulation error, i.e., the error in estimating D1 (or D2)

varies with the target location—larger errors when the target is close to the baseline

and smaller errors when better triangulation is possible. Here, we show first that

panoramic stereo can almost always estimate the distance of the target in the full

360� view. It is commonly known that the triangulation relation in Eq. (1) ap-

proaches singularity as the target moves towards the baseline O1O2. Fortunately,
near colinearity of the sensors and the target can be easily verified, and even then the

3D location of the target can still be estimated by using the size-ratio of the target in

two panoramic images
 E

D1 ¼ B
w2 cos/2

w1 cos/1 þ w2 cos/2

cos/1; D2 ¼ B
w1 cos/1

w1 cos/1 þ w2 cos/2

cos/2; ð2Þ
R

where w1 and w2 are the widths of the target in the panoramic image pair. Note that

the cosines in the above equations only give signs since the angles are either 0� or
UN
CO

R

. Two 3D estimation methods. (A) Panoramic triangulation (top view). (B) Panoramic size-ratio

d (top view).
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them can be calculated as
D1 ¼ B
w2

w1 þ w2

; D2 ¼ B
w1

w1 þ w2

: ð3Þ
ED
PR
OO

FIn the size-ratio method, since the two cameras view the target (e.g., a human)

from exactly the opposite direction, the widths of the objects in the two images cor-

respond approximately to the same width in 3D space (Fig. 2B), which makes the es-

timation plausible. As an alternative, we can also use the height information (in the
same way as we use width) since the height of an object is more invariant. However,

it is only applicable when the top and/or bottom of the figure are visible in both of

the panoramic images and can be accurately localized. In contrast, the width infor-

mation is easier to extract and more robust since we can integrate the results from

different heights of the object. Realizing that the object and the robots may occlude

(part of) each other when in a collinear alignment, we will use the width and height

information adaptively.

In panoramic virtual stereo, where the viewpoint and baseline relation can
change, it is interesting to find the best configuration for estimating the distance

of a target. For this purpose, first a dynamic mutual calibration approach will be

presented in Section 3. Then a detailed numerical analysis of the distance estimation

error by the panoramic virtual stereo (with both the triangulation and size-ratio

methods) will be given in Section 4, which will lead to useful results for view planning

between the two mobile platforms with panoramic cameras.
T
UN
CO

RR
EC3. Dynamic mutual calibration

To estimate the distance of a target, we need to first estimate the baseline and the

orientation angles of the two panoramic cameras. In stereo vision, an epipole is de-

fined as the projection of one camera�s center in the other camera�s image plane. In a

stereo system with normal FOVs, epipoles are usually out of the FOVs in both cam-

eras, therefore we must use a third target in the scene for stereo calibration. In con-

trast, the panoramic stereo has two ‘‘visible epipoles’’ because the two panoramic
cameras can see each other. Here, we propose a special dynamic calibration proce-

dure called mutual calibration based on the visible epipole property in panoramic ste-

reo. Mutual calibration neither needs to setup any additional calibration targets nor

requires the use of a third object in the environment. Instead, each of the panoramic

cameras can use the other as the calibration target. The advantage of ‘‘sensor as the

target’’ in mutual calibration is that the geometric structures and the photometric

properties of the sensors as well their platforms can be well designed and are known

a priori.
Several practical approaches have been proposed for this purpose by using special

structures, such as cylinders, vertical lines, and rectangular planar surfaces [24]. The

basic idea is to make the detection and calculation robust and fast. One of the ap-

proaches is to design the body of each robot as a cylinder with some vivid colors



177

178

179

180

181
182

184

185

186

187

188

189

Z. Zhu et al. / Computer Vision and Image Understanding xxx (2004) xxx–xxx 7

YCVIU 1091
DISK / 11/6/04 / Sankar(CE) / Panneer (TE)

No. of pages: 26

DTD 4.3.1 / SPS
ARTICLE IN PRESS
(e.g., white in the intensity images of our current implementation), which can be eas-

ily seen and extracted in the image of the other robot�s camera (Fig. 3A). We assume

that the rotation axis of each panoramic camera is coincident with the rotation axis

of the cylindrical body of the corresponding robot, therefore the baseline between

the two panoramic cameras can be estimated using the occluding boundary of either
of the two cylinders, e.g., from the image of camera 2 we have
Fig. 3

Fig. 4

a¼ 11.

b21 ¼ 2
F

B ¼ R= sin
a
2

� �
; ð4Þ
RO
Owhere a is the angle between two occluding projection rays measured in the image of

camera 2, and R is the radius of the 1st cylindrical body (Fig. 3B). The orientation

angle (b12) of the line O2O1 is simply the average of the bearings of two occluding

boundary points P1 and P2. We can do the same in the image of camera 1.

Fig. 4 shows a calibration result. The cylindrical body of each robot (pointed at

by an arrow in Figs. 4A and B) is detected and measured in the panoramic image of
UN
CO

RR
EC
TE
D
P

. Finding the orientation and the distance using a cylinder (top view). (A) Setup. (B) Geometry.

. Dynamic calibration by cylinders (which are pointed by arrows). (A) Pano 1: Fh ¼ 159.15 (pixels),

52� (32 pixels), b21 ¼ 23.76�, B¼ 180 cm. (B) Pano 2: Fh ¼ 159.15 (pixels), a¼ 11.52� (32 pixels),

27.88�, B¼ 180 cm.
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the other robot. In the experiment, the perimeter of the cylindrical image is 1000 pix-

els, so the angular resolution in degrees is 360/1000¼ 0.36� per pixel. We define the

angular resolution of the panoramic image as v in radians for future use, which is

6.28mrad/pixel in this experiment. The radius of the cylindrical body of each robot

is designed as R ¼ 18:0 cm.
 F
CT
ED

PR
OO

4. Error analysis

Previous work (e.g., [21]) only gave the error distribution of the panoramic stereo

with a fixed stereo geometry. Shum et al. [25] studied the case of an omnidirectional

camera moving within a circular region of the plane and concluded that it was the

best to choose a pair of cameras that are vergent on a point with maximum vergence
angle in order to accurately localize the point. In this paper we will discuss a more

general case where the relations between the two panoramic cameras can change ar-

bitrarily. Our task is to find the distance of a given target point from camera 1 by

finding its correspondence in camera 2, so the localization error turns out to be

the distance error. For this reason, we use a different error formulation: for a certain

distance D1 from camera 1 to the target, what is the error distribution of this distance

with different locations of camera 2, which determines the configurations of baselines

and angles of the panoramic stereo? Can we achieve a better distance estimation for
distant targets with a larger baseline, which is also dynamically determined by the

mutual calibration? Eqs. (1) and (2) show that the accuracy of distance estimation

depends on the accuracy in estimating the baseline and the bearing angles. Here,

we derive an analysis of the error of estimating distance D1 from the first camera

to the target. First, with the triangulation method, the estimated distance error

can be computed by partial differentials of Eq. (1) as
EoD1 ¼
sin/2

sinð/1 þ /2Þ

����
����oBþ B

sin/2 cosð/1 þ /2Þ
sin2ð/1 þ /2Þ

�����
�����o/1 þ B

sin/1

sin2ð/1 þ /2Þ

�����
�����o/2
Ror
 RoD1 ¼

D1

B
oBþ D1 cotð/1j þ /2Þjo/1 þ

D2

sinð/1 þ /2Þ
o/2; ð5Þ
UN
CO

where oB is the error in computing the baseline B, and o/1 and o/2 are the errors in

estimating the angles /1 and /2 from the two panoramic images. Analyzing Eq. (5),

we have found that the distance error comes from three separate error sources:

mutual calibration error, stereo matching error and stereo triangulation error, which

will be discussed below.

4.1. Calibration error

Dynamic mutual calibration estimates the baseline B, and the bearing angles b12

and b21 of the two cameras, all of which are subject to errors in localizing the cali-

bration targets. The error in estimating the baseline by Eq. (4) can be derived as



227

228

229

230

231

232

233
234

235

236

237

238

239

240

241

242

243

244

245

246

247
248

249

250

251

252

253

254

255
256

257

258

259

260

261
262

263

264

Z. Zhu et al. / Computer Vision and Image Understanding xxx (2004) xxx–xxx 9

YCVIU 1091
DISK / 11/6/04 / Sankar(CE) / Panneer (TE)

No. of pages: 26

DTD 4.3.1 / SPS
ARTICLE IN PRESS
oB ¼ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � R2

p

2R
oa6

B2

2R
oa; ð6Þ
PR
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where R � B, and oa is the error in estimating the angle a in an image. From Eq. (6)

we can find that the baseline error oB is inversely proportional to the dimension of

the cylindrical body for dynamic calibration given the same angle error oa. On the

other hand, given the radius R and the angle error, the baseline error is roughly

proportional to the square of the baseline itself. The angle error (oa) is determined by

the errors in localizing the occluding boundaries of the second (or first) cylinder in

the first (or second) panoramic image (Fig. 3). The errors in estimating the bearing
angles b21 and b12 will introduce errors to the angles /1 and /2 of the stereo triangle

(Fig. 2A). Since each bearing angle is the average of the orientations of the two

occluding boundaries, their errors can be roughly modeled as the same as oa, i.e,.
ob21 ¼ ob12 ¼ oa. Note that these errors (oB, ob21, ob12) are derived from the specific

mutual calibration method we are using in this paper. However, the following

general relations hold: larger distance (baseline) between two cameras will introduce

larger errors in estimating the baseline, but the errors in bearing angles are inde-

pendent of the distance as long as the calibration targets can be detected.
OR
RE
CT
ED4.2. Matching error

We want to find the distance of a given point T1 in view 1 by finding its corre-

sponding point T2 in view 2. In this sense, there will be no error in providing the bear-

ing angle h1 in view 1, i.e., oh1 ¼ 0, which implies that the error o/1 is solely

determined by the error of the angle b21 via calibration, i.e., o/1 ¼ oaþ oh1 ¼ oa.
However, the perspective view difference in O1 and O2 will introduce a stereo
‘‘matching error’’ (denoted as oh2) in h2, the localization of T1�s matching point T2,
which could be a function of the location of the view point O2 (related to O1). Thus,

o/2 ¼ oaþ oh2 is a (complicated) function of the viewpoint location and is generally

larger than o/1. Generally speaking, the ‘‘matching error’’ is determined by three as-

pects—visibility (the size of a target in the panoramic image), detectability (the con-

trast of the target with the background) and similarity (appearance differences

between images of an object in two widely separated views). In the panoramic virtual

stereo, the sizes and the appearances of a target can suffer from significant perspec-
tive distortion due to widely separated views. The matching error will be directly re-

lated to the primitives we are using for stereo matching.
UN
C4.3. Triangulation error and overall distance error

Now we want to find a numerical result of the following problem: for a certain

distance D1 from camera 1 to the target, what is the error distribution for different

locations of camera 2, which determines configurations of baselines and angles of
the panoramic stereo? Since it is hard to give a numerical function of the error

o/2 versus the location O2, we will use the same measure error bounds for all the an-

gles, i.e., oa ¼ o/1 ¼ o/2 � o/. We will re-examine this matching error qualitatively
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after we find the optimal baseline/viewpoints. We decompose the analysis into two

steps. First, by fixing the baseline, we find the optimal angle /1. It is equivalent to

finding the optimal position of O2 on a circle of origin O1 and radius B (Fig. 5). Sec-

ond, under the optimal angle configuration of all possible baselines, we find the op-

timal baseline B. An additional consideration is that a human has a size comparable
to the robots, so the distances between a robot and the target should be at least

greater than the dimension of the robot, 2R. We have the following results by com-

bining the error analysis in the triangulation method (Appendix A) and in the size-

ratio method (Appendix B):

Case 1. When B6D1 � 2R, the best estimation can be achieved when
Fig. 5

BP
p

O

B ¼ 2
ffiffiffiffiffiffiffiffiffi
D1R

p
; cos/1 ¼

3BD1

2D2
1 þ B2

ð7Þ
R

and the error in the optimal configuration is
 P
oDþ

1 ¼ oDB
1 þoD/

1 ¼D1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D1R�R2

p

2R

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD1� 4RÞðD1�RÞ

p
ffiffiffiffiffiffiffiffiffi
D1R

p
!
o/< 2D1

ffiffiffiffiffiffi
D1

R

r
o/;

ð8Þ
UN
CO

RR
EC
TE
D

. Best view angles and baselines. (A) B6D1 � 2R. (B) B 2 ðD1 � 2R;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 þ 4R2
p

Þ. (C)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 þ 4R2.
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where oDB
1 and oD/

1 are the distance errors due to the baseline error and angular

errors, respectively. Note that in this case, the minimum error is achieved when

/1 < 90�, /2 > 90�, and /0 < 90� (see Appendix A). For example, when R ¼ 0:18m,

D1 ¼ 4:0m, o/ ¼ 6:28mrad (1 pixel), we have the best configuration of B ¼ 1:70m
and /1 ¼ 54:2�, and the relative error is oD1=D1 ¼ 5:4%.

Case 2. When B 2 ðD1 � 2R;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 þ 4R2
p

Þ, the best estimation can be achieved when
OB ¼ D1; cos/1 ¼
B2 � 2R2

B2
ð9Þ
and the error in the optimal configuration is
ROoD0
1 ¼ D1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 � R2
p

2R

 
þ 3Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
1 � R2

p
!
o/: ð10Þ
PNote that in this case, /1 < 90� is the minimum angle by physical constraint of the
minimum object distances, and /2 ¼ /0.

Case 3. When BP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 þ 4R2
p

, the best estimation can be achieved when
DB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 þ 4R2

q
; cos/1 ¼

D1

B
ð11Þ
Eand the error in the optimal configuration is
ToD�

1 ¼ D1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 þ 3R2
p

2R

 
þ 2R

D1

!
o/: ð12Þ
RR
ECNote that in this case, the minimum error is achieved when /1 < 90�, /2 < 90�, and

/0 ¼ 90�.

Case 4. In the case of colinearity of sensors and the target, triangulation is invalid.

However we can use the size-ratio method. A similar error analysis (Appendix B)

shows that if the target lies between the two cameras, minimum error is obtained

when the second camera O2 moves as close as possible to the target, i.e., D2 ¼ 2R,
or
B ¼ D1 þ 2R
 Oand the minimum error can be expressed by
CoDs
1 ¼ D1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD1 þ RÞðD1 þ 3RÞ

p
2R

 
þ 2R

W

!
ow: ð13Þ
UNWe always have oDs
1 > oD�

1 given that B > D1;, ow ¼ o/, and W � D1. Similar re-
sults can be obtained when the target lies in one side of both sensors. It can be also

proved that we always have oD�
1 < oD0

1, which means that it is better to set the
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baseline slightly greater than the distance D1 when they have to be approximately

equal. (In addition, the equality condition cannot be satisfied before we have an

accurate estimation of D1). By some tedious mathematical comparison of Eqs. (8)

and (12) under different D1, we arrive at the following observation:

Conclusion 1. If the distance from camera 1 (the main camera) to the target is

greater than 11.5 times the radius of the robot i.e., D1 > 11:5R, we have

oDþ
1 < oD�

1 , which means that the best configuration is B ¼ 2
ffiffiffiffiffiffiffiffiffi
D1R

p
, cos/1 ¼ 3BD1

2D2
1
þB2

(Eq. (7)). Otherwise, we have oDþ
1 � oD�

1 i.e., the best configuration is

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 þ 4R2
p

, cos/1 ¼ D1

B (Eq. (11)).

It is also interesting to compare the panoramic virtual stereo with a fixed baseline

stereo. Assume that in a fixed baseline stereo system on a robot, the two cameras are
mounted as far apart as possible. For a robot with cylindrical body of radius R, the
maximum stereo baseline in that case would be B ¼ 2R. Let us assume that there is

no error in stereo camera calibration (i.e., B is accurate). Since we always have

B < D1 in fixed-baseline stereo, we can use Eq. (A.3) in Appendix A to estimate

the distance error in the best case, i.e.,
 DoDfix
1 B¼2Rj � D2

1

R
o/: ð14Þ
CT
EComparing Eq. (14) with (8), we have the following conclusion.

Conclusion 2. The flexible baseline triangulation method is almost always more

accurate than a fixed baseline stereo. The error in fixed baseline stereo is propor-

tional to D2
1, but the error in flexible baseline stereo is proportional to D1:5

1 . The error

ratio is
 E

oDþ
1 B¼2

ffiffiffiffiffiffi
D1R

pj : oDfix
1 B¼2Rj ¼ 2

ffiffiffiffiffiffi
R
D1

r
ð15Þ
UN
CO

RRand oDþ
1 B¼2

ffiffiffiffiffiffi
D1R

pj < oDfix
1 B¼2Rj when D1 > 4R, which is almost always true.

The above error analysis results can be used in the optimal view planning. Though

the exact number 11.5R in Conclusion 1 is deduced from the calibration method we

are using, the guidelines apply to general cases. The distance error map under differ-

ent viewpoints of camera O2 is given in Fig. 6 for D1 ¼ 34R ¼ 6m to verify the above

conclusion. Minimum error is oD1=D1o/ ¼ 11:2 when B ¼ 220 cm, /1 ¼ 62:1�. (We

have two such symmetric locations for O2.) The upper bound of the relative error is
oD1=D1 ¼ 7:0% when o/ is equivalent to 1 pixel. The selection of optimal viewing

angle and baseline for different distances is shown in Fig. 7. Note that parameters

in Fig. 7 are slightly different from those in Fig. 6 because the curves in Fig. 7 are

drawn using Eqs. (8) and (12) with some approximation and practical consideration.

The error analysis can also be used in the integration of the results from more than

two such stationary sensors.
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Fig. 6. Error map for distance D1 when camera O2 is in different locations of the map by fixing camera O1

and the target T (D1 ¼ 34, R ¼ 6m, R ¼ 18 cm). The labels in the two axes are distances (in meters); the

black–white curve shows where the minimum errors can be achieved for viewpoint O2 on circles with dif-

ferent radii around O1 (see explanation in the text); the error value (oD1=D1o/) is encoded in intensity: see

the corresponding bar.

Fig. 7. Best baselines and angles vs. distance curves (the numbers in the parentheses are given when

R¼ 0.18m).
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Since our primary goal is to detect and to track moving targets (humans) in 3D

space, the primitives of the panoramic virtual stereo are image blobs of human sub-

jects that have already been extracted from the two panoramic images. A fast moving

object extraction and tracking algorithm using motion detection and background
subtraction with a stationary panoramic camera has been developed [24]. Fig. 8 de-

picts the results of our multiple human detection and tracking procedure. Multiple

moving objects (4 people) were detected in real-time while moving around in the scene

in an unconstrained manner; the panoramic sensor is stationary. Each of the four
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Fig. 8. Tracking multiple moving objects. (A) Cylindrical images with bounding rectangles around mov-

ing objects superimposed. (B) Object tracks, each track is for the last 32 frames.
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bounding rectangle, direction, and distance of each object. The dynamic track, repre-

sented as a small circle, and icon (elliptic head and body) for the last 30 frames of each

person is shown in Fig. 8B in different colors. The frame rate for multiple object de-

tection and tracking was about 5Hz in a Pentium 300MHz PC for 1080� 162 pan-

oramic images, and thus can be 15–20Hz with current standard CPUs.

We have realized that the bearing of the centroid of an entire blob is subject to the

effects of the positions of arms and legs, and the errors in body extraction. We have

found that the bearing of the head of a human is more accurate than the entire blob
of the human subject for three reasons: (1) it is usually visible in the panoramic im-

ages; (2) it is almost symmetric from all directions of the robot�s viewpoints; and (3)

it is easy to extract from the background (see Figs. 8 and 9). The quasi-symmetry

property of a head makes it more suitable for matching across two widely separated

views. The idea to select invariant features for stereo matching can be further ex-

tended by extracting different parts of a human blob for partial match between

two views.

The head part of a blob is extracted by using the knowledge that it is the top-
most part of the blob and it has roughly a fixed height-width ratio (e.g., 3:2) in a

panoramic image. Here, the exact height of the head segment is not critical since

we only use the bearing angle of the head for triangulation. Fig. 9 shows the ex-

tracted human blobs and heads from a pair of panoramic images. Bearing of the

head is more suitable for building up correspondence between a pair of human

blobs from two widely separated views because of the aforementioned reasons. No-

tice that the centroid of each head region gives correct bearing of the head even if

the size and view differences are large between two images of the same human sub-
ject. The estimated height is not accurate and not consistent across the correspond-

ing image pair. For example, the second human subject in the images shows that

the bearing of the head is more accurate than the entire blob, which is an inaccu-

rate detection of the human body: the left side is ‘‘underestimated’’ due to the sim-

ilarity between the shirt and the door, and the right side is ‘‘overestimated’’ due to

its shadow.
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Fig. 9. Head extraction and bearing estimation. The large rectangle around each human subject is the

bounding rectangle of the corresponding blob, and the small rectangle inside indicates the centroid of

the head.
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CFrom each panoramic image, a set of objects (blobs) is extracted, which is anno-
tated by the following parameters
 ETðkÞ ¼ fT ðkÞ

i ¼ ðI ðkÞi ; hðkÞi ;wðkÞ
i ; hðkÞi Þ; i ¼ 1; . . . ;Nkg; ð16Þ
UN
CO

RR

where k (1 or 2) is the number of cameras, I ðkÞi ; hðkÞi ;wðkÞ
i ; hðkÞi are the photometric

feature, bearing angle of the head of the target i in camera k, the width of the image

blob, and the vertical coordinate of the top of the blob (indicating the height of the

human).

The best triangulation configuration is derived when all the angular errors (oa,
o/1, o/2) are treated as the same, and are assumed to be independent to the view

configuration of the panoramic stereo. However, as we discussed in Section 4.2,
the error o/2 should be a function of the position of O2 (given the locations of O1

and T ). A quantitative result can be derived in the same manner as above if the func-

tion is known or can be approximated; but here we only give a qualitative analysis.

The error map in Fig. 6 shows that there is a relatively large region (black part of the

minimum-error curve) with errors that are less than twice the minimum error. The

large errors only occur when angle /0 is very close to 0� and 180�. Therefore a trade-

off can be made between the matching error (resulting from widely separated views)

and the triangulation error (resulting from small baseline). The target appears sim-
ilar from both the cameras at the best triangulation configuration (in the typical case
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parable (D2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 � 4D1R
p

). In addition, it is interesting to note that larger view dif-

ference can give a better measurement of the dimension of the 3D object (person),

which is similar to the volume intersection method (Fig. 10).
EC
TE
D
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F6. Cooperative strategies in the real system

In our panoramic virtual stereo vision approach, we face the same problems as in

traditional motion stereo: dynamic calibration, feature detection, and matching. In

our scenario, we are also dealing with moving objects before 3D matching, which

seems to add more difficulty. Fortunately, the following cooperative strategies can

be explored between two robots (and their panoramic sensors) to ease these prob-
lems: a ‘‘monitor-explore’’ working mode, mutual awareness, information sharing,

and view planning.

6.1. Monitor-explore mode

In the two-robot scenario of human searching, one of the robots is assigned as the

‘‘monitor’’ and the other as the ‘‘explorer.’’ The role of the monitor is to monitor the

movements in the environment, including the motion of the explorer. One of the rea-
sons that we have a monitor is that it is advantageous for it to be stationary while

detecting and extracting moving objects. On the other hand, the role of the explorer

is to follow a moving object of interest and/or find a better viewpoint for construct-

ing the virtual stereo geometry with the camera on the monitor. However, the mo-

tion of the explorer introduces complications in detecting and extracting moving

objects, so we assume that the explorer remains stationary in the beginning of an op-

erational sequence in order to initialize moving objects to be tracked. Then a track-

ing mechanism that can handle ego-motion of the robot continues to track objects of
interest. Such a tracking procedure may integrate the motion, texture and other cues,
UN
CO

RR

Fig. 10. Viewing differences and distance/dimension estimation. (A) Small viewpoint difference. (B) Large

viewpoint difference.
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which need future work. We also expect that the explorer will remain stationary in an

advantageous location after it has found a good viewpoint for 3D estimation. The

role of the monitor and the explorer can and will be exchanged during mission exe-

cution. The exchange of roles as well as the motion of the explorer may be deter-

mined by evaluating expected gain in triangulation accuracy. For example, when
the expected improvement is not significant, the robots may just remain in their cur-

rent state.

6.2. Mutual awareness and information sharing

Mutual awareness of the two robots is important for their dynamic calibration of

relative orientations and the distance between the two panoramic cameras. In the

current implementation, we have designed a cylindrical body with known radius,
and color so it is easy for the cooperating robots to detect each other. It is interesting

to note that while the motion of the explorer increases the difficulty of tracking other

moving objects by itself, tracking information from the monitor is quite useful. It is

also possible to use more complicated but known natural appearances and geometri-

cal models of a pair of robots to implement the mutual awareness and dynamic mu-

tual calibration.

The two panoramic imaging sensors have almost identical geometric and photo-

metric properties. Thus it is possible to share information between them about the
targets as well as the robots in the scene. For example, when some number of moving

objects are detected and extracted by the stationary monitor, it can pass the informa-

tion of the number of objects and their geometric and photometric features of each

object to the explorer that may be in motion, thereby increasing robustness of track-

ing by the moving explorer. Information sharing is especially useful for the mutual

detection of ‘‘cooperative’’ calibration targets since models of the robots are already

known a priori. In our simplified case, the cylindrical bodies of both robots always

have the same appearances from any viewing angle. Therefore, whenever the monitor
has detected the cylindrical body of the moving explorer, it can estimate the bearing,

and distance to the explorer. On receiving this information from the monitor, the ex-

plorer can try to search for the cylindrical body of the monitor in its image by pre-

dicting its size and color under the current configuration and illumination conditions.

6.3. View planning for a pair of robots and a single target

View planning is applied whenever there are difficulties in object detection and 3D
estimation by the virtual stereo system. In our case, we define the view planning as

the process of adjusting the viewpoint of the exploring camera so that the best view

angle and baseline can be achieved for the monitoring camera to estimate the dis-

tance to the target of interest. Occlusion of the human or the robot may occur when

an object (either a human or a robot) is between the observing camera and the target,

the configuration when triangulation is invalid (we use the size-ratio method in that

situation for an initial estimate). The error analysis in Section 4 provides guidelines

for ‘‘best’’ viewing planning as follows:
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(1) Observation rule. This rule is applied when the two robots ‘‘observe’’ the target

from a distance. If the initial estimated distance from viewpoint O1 to the target, D1,

is greater than 11.5R, the explorer should move as close as possible to an optimal

position that satisfies the minimum distance error conditions, i.e., baseline constraint

B ¼ 2
ffiffiffiffiffiffiffiffiffi
RD1

p
and the viewing angle constraint cos/1 ¼ 3BD1

2D2
1
þB2.

(2) Approaching rule. This rule is applied when both the two robots are close to the

target and the explorer is trying to ‘‘approach’’ the target. If the estimated distance is

smaller than 11.5R, the explorer should approach to the target to satisfy the baseline

constraint B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 þ 4R2
p

and the viewing angle constraint cos/1 ¼ D1

B .

(3) Mutual-awareness rule. When two panoramic cameras are aware the existence

of each other, the maximum distance of the baseline is B ¼ 2R=wv, given the angular

resolution of the panoramic image, v, the size of the cylindrical robot body, R, and
minimum number of detectable pixels of the robots, w.

For example, assume that w ¼ 10 pixels is the minimum detectable width, then the

maximum baseline is B ¼ 2:8m given R¼ 0.18m and v ¼ 6:28mrad/pixel. This con-

straint on the baseline still allows the optimal configuration of the panoramic virtual

stereo to provide an effective estimation of the distance of a target 10m away

(Fig. 7).

(4) Navigation rule. The view planning strategy should also consider the cost of

moving in finding a navigable path to the selected position. This cost is also a func-

tion of distance, smoothness of the path and time to travel.
Note that the explorer is always trying to find a best position in the presence of a

target�s motion. It is a more difficult problem than localizing a stationary target. For a

stationary target, as the robot is moving, the system could collect many stereo esti-

mates (of the target) along the way, and integrating them to form a much higher qual-

ity estimate of the actual position. However, for a continuously moving object, the

integration (if possible) requires formation of the dynamic track of the moving object.

This integration could use our derived error model with a Kalman filter methodology.

6.4. View planning for multiple robots and multiple objects

These strategies can be extended to more than two cooperative robots, and in fact

more than two robots will make the work much easier. For example, we can keep

two of the three robots in a team stationary so that they can easily detect the moving

objects in the scene, including the third robot in motion. Thus, the locations of all the

moving objects can be estimated from the pair of stationary panoramic cameras.

Then, for a target of interest, we can find (dynamically) the best viewpoint for the
third robot in order to estimate the target�s distance from either of the two stationary

robots. By using the knowledge of the (dynamic) locations of the target, other mov-

ing objects and the three robots, a navigable path for the third robot can be planned

to the desirable goal. These measurements can also facilitate the detection of the tar-

get and the two stationary robots by the mobile robots, for example, by tracking the

objects with visual features inherited from the other two robots. Thus, the stereo tri-

angulation relation can be constructed between the moving and the stationary plat-

forms.
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On the other hand, the view planning rules for a single moving object can also be

extended to deal with multiple moving objects. There are three interesting cases.

(1) In general, N +1 robots can construct optimal configurations for N moving

objects (N > 2), i.e., a main robot can cooperate with each of the N robots for the

detection and localization of each of the N objects (Fig. 11A). However, this method
is inefficient and needs to move the N robots.

(2) As a special case (Fig. 11B), two moving robots with panoramic cameras (O1

and O2) can construct optimal configurations for estimating the distances of two

moving objects (T ð1Þ and T ð2Þ), by the alignment of the two viewpoints of the cameras

to mirror each other.

(3) As an approximation method, two moving robots with panoramic cameras

can construct near optimal configurations for estimating the distances of multiple

moving objects. This can be done by clustering the targets into two groups, and
the two cameras then configure two best triangulations for the centers of the two

groups (Fig. 11B). It should be apparent that more than two robots usually can

do a better job in view planning.
RE
CT
ED

7. Experimental system and results

In our experimental system, we mounted one panoramic annual lens (PAL) cam-
era on an RWI ATRV-Jr. robot (the explorer), and the other PAL camera on a tri-

pod (the monitor) (Fig. 3A). Two Matrox-Meteor frame grabbers, each connected to

a PAL camera were installed on the ATRV-JR and a desktop PC, respectively, at the

time both had 333MHz PII processors. The communication between two platforms

is through sockets over an Ethernet link (wireless Ethernet communication will be

used in the future system). The 3D moving object detection and estimation programs

run separately on the two machines at about 5Hz. Only camera and object param-

eter data (i.e., baseline, bearing angles, sizes, and photometric features in Eq. (16))
were transmitted between two platforms so the delay in communication can be ig-

nored at the current processing rate (5Hz). In the implementation of examples
UN
CO

R

Fig. 11. View planning for multiple robots and multiple objects. (A) N objects, N þ 1 robots. (B) 2 (groups

of) objects, 2 robots.
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shown in this paper, we assume that the most recent results from both platforms cor-

respond to the events at same time instant. Synchronized image capture is currently

using network time protocol (NTP) with temporal interpolation [26], and it not an

issue with higher speed CPUs.

Fig. 12 shows the result from an experiment to evaluate the panoramic stereo�s
performance of tracking a single person walking along a known rectangular path

when the two cameras were stationary. Each red dot (dark in B/W) represents a lo-

cation of the person. The dense clusters of dots show the six locations where the per-
UN
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RR
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D
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Fig. 12. Panoramic stereo tracking result. The images in (A) and (C) are the panoramic image pair from

two panoramic cameras. Each image is actually the corresponding background with the superimposed

blob images and their annotations of the blobs. In (C) the real localization results are plotted in the

top view of the room where each grid is 50� 50 cm2. Each small circle (red in color version) represents

a location of the person in walking. In (D) the theoretical distance error bounds from camera 1 are shown

for the same track. The real estimates for best triangulation results validate the theoretical analysis.
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son made turns during the walking. We used two methods to localize the moving

subject—the triangulation method when a good triangle of the target and the two

cameras can be formed, and the size-ratio method when the target was near the lo-

cations of colinearity. The theoretical error bounds superimposed on the 2D map in

Fig. 12D, were computed assuming that all the angular errors in Eqs. (5) and (6)
were equivalent to 1 pixel. The target (T) position where the theoretical best triangu-

lation on this track can be expected is shown in (Figs. 12B and D), which is consis-

tent with the real experimental results. Even if the localization errors in images are

larger than the assumed 1 pixel error in our previous analysis, the average error of

the estimated track is �10 cm, which is comparable to the theoretical error bounds.

The bad localizations occurred when the extraction of the human blobs is not cor-

rect. For example, in the beginning and the end of the walk, where the size-ratio

method is used, large errors occurred not because the size-ratio method is not stable
computationally, but because the detection of the human figure is not correct when it

is small and occluded by one sensor platform.

Fig. 13 shows the results of detecting and tracking two people who walked from

the opposite directions along the same known rectangular path. In this example, a

simple ‘‘greedy’’ match algorithm [22] was used where the similarities of the match-

ing primitives in intensity and the consistencies in 3D measurements are calculated.

In the 2D map of the room (center of each picture in Fig. 13), the red (which is dar-

ker in B/W print) dot sequence shows the path of one person, and the green (which is
lighter in B/W print) dot sequence shows that of the other. The proposed 3D match,

localization and tracking algorithms produced rather good results with consistent

3D localization for both people. The average localization error is about 20 cm. There

are about 5% mis-matches in this set of experiment, which happened in two places.

One place is when the shadow of a person was projected on the wall and was detected

and mis-matched by the system. The second place of error is when the two people

met. Further improvements and experiments on stereo match, view planning and

evaluation are needed.
UN
CO

RR8. Concluding remarks

This paper has presented a panoramic virtual stereo approach for two (or more)

cooperative mobile platforms. There are three main contributions in our approach:

(1) a simple but effective dynamic mutual calibration between two panoramic sen-

sors; (2) a thorough error analysis for the panoramic virtual stereo vision system;
and (3) viewing planning based on optimal stereo configurations. The integration

of omnidirectional vision with mutual awareness and dynamic calibration strategies

allows intelligent cooperation between visual agents, which provides a nice way to

solve problems of limited resources, view planning, occlusions and motion detection

of mobile robot platforms. Experiments have shown that this approach is encourag-

ing. At the system level, the panoramic virtual stereo is one of the important modules

to localize multiple moving human subjects in the distributed sensor network archi-

tecture proposed in [26]. In particular, the error modeling and the view planning
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Fig. 13. Panoramic stereo tracking two people. The four pictures show localizing and tracking results (A)

before they met, (B) when they met, (C) after they departed, and (D) when they arrived at their goals, out

of 214�2 localization results. Each picture of (A)–(D) has the same layout as in Fig. 12. Each small circle

in darker tone (red in color version) or in lighter tone (green in color version) represents a location of the

corresponding person marked by a bounding rectangle with the same tone (color) in images.
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strategy developed in this paper are applied. Interesting future work include the fol-

lowing:

(1) Improvement of the mutual calibration accuracy. By integrating a panoramic cam-

era with a pan/tilt/zoom camera, the system can increase the capability in both

viewing angle and image resolution to detect the cooperating robots as well as

the targets. Robust and accurate dynamic mutual calibration is one of the key

issues in cooperative stereo vision.
(2) Improvement of 3D matching. By using the image contours of objects and more

sophisticated features (color, texture, etc), more accurate results can be expected.

This is another significant factor that affects the robustness and accuracy of 3D

estimation.
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(3) Tracking of 3D moving objects. More sophisticated algorithms for tracking mov-

ing objects should be incorporated, in the presence of occlusion, and by moving

cameras as well as stationary cameras.
F9. Uncited reference

[27].
 O

ROAppendix A. Best baseline and viewpoint when B < D1

In the first step, we are trying to find the minimum value of the error due to the
second and third terms of Eq. (5), i.e.,
 PoD/

1 ¼ D1 cotð/1j þ /2Þjo/1 þ
D2

sinð/1 þ /2Þ
o/2: ðA:1Þ
DIt is equivalent to find the optimal position of O2 on a circle of origin O1 and

radius R. We first consider the case, where B < D1. In this case, ð/1 þ /2Þ > 90�,
so Eq. (A.1) can be re-written as a function of /1 by using the sine and cosine

laws
 E
oD/

1 ¼ B2 þ 2D2
1 � 3BD1 cos/1

B sin/1

o/; ðA:2Þ
CTwhere we assume that the same measure errors in angles, i.e., o/1 ¼ o/2 ¼ o/. By
some mathematical deductions, we can find that the minimum error can be achieved

when cos/1 ¼ 3BD1

2D2
1
þB2. The minimum error under the best configuration is
E

oD/
1 minj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD2

1 � B2Þð4D2
1 � B2Þ

p
B

o/ <
2D2

1

B
o/: ðA:3Þ
OR
RThe error in Eq. (A.2) increases from the minimum value to 1 when the angle /1

changes from the optimal value to 0� and 180�, respectively (Fig. 6A). Note that in

this case, the minimum error is achieved when /1 < 90�, /2 > 90�, and /0 < 90�.
Here, we compare this result with three special cases (Fig. 14):

(1) Max-vergent configuration. Two rays O1T and O2T have the maximum vergent

angle given the fixed baseline B. In this case /2 ¼ 90�, the distance error due to an-

gular errors is
 C

oD/
1 /2¼90�

��� ¼ 2D1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 � B2
p

B
o/ > oD/

1 min:j ðA:4Þ
N(2) Symmetric configuration. Two rays O1T and O2T have the same length given

the fixed baseline B. In this case /1 ¼ /2, the distance error due to angular errors is
U

oD/
1 /1¼/2

��� ¼ D1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

1 � B2
p

B
o/ > oD/

1 min:j ðA:5Þ
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Fig. 14. Best viewpoints given the baseline distance.
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D(3) Mirror configuration. The ray O1T is perpendicular to the baseline B. In this

case /1 ¼ 90�, which seems to be a ‘‘mirror’’ of case 1, however, the distance error

is larger
 EoD/
1 /1¼90�

��� ¼ 2D2
1 þ B2

B
o/ >

2D2
1

B
o/: ðA:6Þ
By a simple comparison we have
 T

oD/
1 /1¼90�

��� >
2D2

1

B
o/ > oD/

1 /1¼/2

��� > oD/
1 /2¼90�

��� > oD/
1 minj ðA:7Þ
RR
ECwhich implies three conclusions: (1) Given the fixed baseline, the distance error in the

max-vergent configuration or the symmetric configuration is slightly larger than the

best configuration. (2) The errors in all the three configurations (max-vergent,

symmetric, and the best) are smaller than
2D2

1

B o/, which is smaller than the mirror

configuration error. (3) Given the fixed baseline, the max-vergent configuration is the

closest to the best configuration.

In the second step, we will find the optimal baseline in the case of optimal angle.
Inserting Eqs. (6) and (A.3) into (5) and assuming that the angle error oa in Eq. (6)

also equals to o/, we have
COoD1 ¼
D1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�R2

p

2R

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD2

1�B2Þð4D2
1�B2Þ

p
B

!
o/<D1

B
2R

�
þ2D1

B

�
o/: ðA:8Þ
UN

It is intuitive that the larger is the baseline, the better the triangulation will be

(term 2 in Eq. (A.8)), however the estimated error in the baseline is also larger (term

1). The minimum value can be achieved when B � 2
ffiffiffiffiffiffiffiffiffi
D1R

p
, which means that (1)

more accurate baseline estimation can be obtained given a larger cooperative robotic

target (i.e., R), hence the optimal baseline for estimating distance D1 can be larger,

and (2) the farther the target is, the larger the baseline should be.
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Assuming that the human object has a size comparable to the robots, the dis-

tances between a robot and the target should be at least greater than the dimension

of the robot, 2R. So Eq. (3)–(9) is only valid when D2 P 2R, hence we should have

D1 PBþ 2R. Similarly, we can find the optimal solutions when B ¼ D1 and B > D1.
OFAppendix B. Comparison between triangulation and size-ratio approach

The error for the size-ratio method can be calculated in a similar way, For exam-

ple, the distance error for Eq. (3) is
 OoD1 ¼
D1

B
oBþ D1

w1 þ w2

ow1 þ
B� D1

w1 þ w2

ow2: ðB:1Þ
Using the mutual calibration error Eq. (6) we have
 R
PoD1 ¼ D1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � R2

p

2R

 
þ B� D1

W

!
ow; ðB:2Þ
ED
where W is the width of the target, and we have w1 þ w2 ¼ W ð 1

D1
þ 1

D2
Þ. We assume

that ow1 ¼ ow2 ¼ oa ¼ ow, where w is measured in radians. Obviously, we have

B > D1, D1 > 2R and D2 > 2R. Eq. (B.2) implies that a larger target means better

distance estimation. The minimum error is obtained when the baseline is as large as

possible (B ¼ D1 þ 2R), i.e., the second camera O2 moves as close as possible to the

target (D2 ¼ 2R). So the minimum error can be expressed by
T

oDs
1 ¼ D1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD1 þ RÞðD1 þ 3RÞ

p
2R

 
þ 2R

W

!
ow: ðB:3Þ
C

We always have oDs
1 > oD�

1 given that B > D1, ow ¼ o/ and W � D1.
E
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