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Plots of P-values to evaluate many tests simultaneously 

BY T.  SCHWEDER 


Institute of LWathematical and Physical Sciences, University of Tromsu, A70rway 


AND E. SPJDTVOLL 
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When a large number of tests are made, possibly on the same data, it is proposed to 
base a simultaneous evaluation of all the tests on a plot of cumulative P-values using the 
observed significance probabilities. The points corresponding to true null hypotheses 
should form a straight line, while those for false null hypotheses should deviate from this 
line. The line may be used to estimate the number of true hypotheses. The properties of 
the method are studied in some detail for the problems of comparing all pairs of means in 
a one-way layout, testing all correlation coefficients in a large correlation matrix, and the 
evaluation of all 2 x 2 subtables in a contingency table. The plot is illustrated on real 
data.  

Some key words:Simultaneous tests; Multiple comparison; P-value plot; One-way layout; Correlation 
matrix; Contingency table. 

We consider a situation in which a large number of tests are made on the same data or 
are related to the same problem. A classical example is the one-way layout in the analysis 
of variance when all pairs of means are compared. With 10 means there are 45 pairwise 
comparisons. For this example there exist simultaneous tests such as the S-method, the 
T-method and others. These methods, however, are not very powerful when a large 
number of comparisons is involved. Thus, if few real differences are detected, i t  may be 
due to lack of sensitivity of the tests. I n  this paper we present a simple graphical 
procedure, called a P-value plot, which gives an overall view of the set of tests. I n  
particular, from the graph i t  is possible to estimate the number of hypotheses that  ought 
to be 'rejected'. The technique is primarily intended for informal inference, and i t  is 
difficult to make exact probability statements. The method is general and can be used in 
many situations where other simultaneous methods are inapplicable. 

The P-value plot is closely related to the half-normal plot'of Daniel (1959) in the case 
of a known error variance, or its application to correlation coefficients (Hills, 1969), or 2" 
contingency tables (Cox & Lauh, 1967). By applying a normal scores transform to both 
axes a P-value plot is converted to a normal plot. The inverse transformation may also 
be carried out. In  $ 4  we argue slightly in favour of the P-value plot. 

2. PROBLEM METHODAND 

Consider a situation where we have T null hypotheses Ht ( t  = 1 ,  ...,T) .  Suppose that  H, 
is rejected when a statistic Z,  is large. Let Ft be the cumulative distribution function of Zt 



under Ht. The P-value, i.e. significance probability, for the hypothesis Ht is 

with possible correction if the distribution is discrete (Cox, 1977). We assume that the 
distribution of Zt is completely known when Ht is true, so that Ptdoes not depend upon 
unknown parameters. We shall base our procedure upon the observed significance 
probabilities PI,. . .,P,. If H, is true, the significance probability P, is uniformly 
distributed on the interval ( 0 , l ) .  If H, is not true, Pt will tend to have small values. 

Let To be the unknown number of true null hypotheses, and let NP be the number of P-
values greater than p .  Since the P-value should be small for a false null hypothesis, we 
have 

when p is not too small. A plot of NP against 1-p  should therefore for large p indicate a 
straight line with slope To. 

For small values of p ,  we have E(Np) > To(l -p) since false hypotheses are then also 
counted in NP. Hence for small p ,  Np will lie above the line indicated by the NP for large p. 

The above analysis suggests the use of a cumulative plot of Q, = 1-Pt against t 
( t  = 1, ...,T).  This is of course a probability plot versus the uniform distribution. With 
absolute frequency along the vertical axes the plot may be considered a plot of the 
observed values of (1 -p, N,). The left-hand part of the plot should be approximately 
linear. According to (1)the slope of that straight line is an estimate of To, the number of 
true null hypotheses. One should reject the null hypotheses corresponding to the points 
deviating from the straight line on the right-hand part of the plot. 

Often, the plot will not show a clearcut break but rather a gradual bend. This indicates 
the presence of some 'almost true' null hypotheses, and the interpretation of the plot is 
less clear. 

The number of P-values or null hypotheses needed to get sensible results with our 
methods will depend on several things. The number of true null hypotheses should be 
sufficiently large to permit a straight line to be fitted. The uncertainty in the plot is 
greater the more positive correlations there are between the P-values. This will vary 
with the type of application, as seen from the variance calculations we present below. 
These or other similar calculations will be of help in assessing the precision with which To 
may be estimated. For example, Quesenberry & Hales (1980) have studied the 
variability of plots of the cumulative distribution function of a random sample from a 
uniform distribution. But also, in cases where no quantified estimate of To is aimed at ,  
one may obtain a valuable overview of the situation by a P-value plot, even based on as 
few as 15 P-values. 

The results of Silverman (1976) may perhaps be used to study the asymptotic 
behaviour of the plot. 

3. ONE-WAYLAYOUT 

3.1. The problem 

As an application of the above method, consider the one-way layout in the analysis of 
variance 
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where the errors (eij} are assumed to be independent and identically normally 
distributed. The -$z(a- 1) null hypotheses are Hij:pi = yj  (i  <j).As test statistics we 
may use 

Tij = 1 Xi,-Xj, 1 ( l /ni+ 1/nj)-*s-', 

where Xi. is the average of the i th group and s is an independent standard deviation 
estimate with v degrees of freedom. 

The observed significance probabilities are 

Pij= 2{1- H(Tij)}, 

where H is the cumulative t distribution with v degrees of freedom. 
To base a simultaneous analysis on the set of pairwise comparisons is of course not a 

new idea (Lehmann, 1975, 5.6). But utilizing the P-values in the way we propose, is, to 
our knowledge and surprise, novel; and it may be done whether t tests, the Wilcoxon 
method or any other appropriate test method is used. 

3.2. An example 

To demonstrate the method we analyse the same data as Duncan (1965). There are 
a = 17 observed group means: 654, 729, 755, 801, 828, 829,846, 853, 861,903, 908, 922, 
933, 951,977,987, 1030. Each mean is the average of 5 observations. The residual mean 
square is 1713 on 64 degrees of freedom. The experiment is actually a two-factor 
experiment without interaction and hence with 64 and not 68 degrees of freedom, but 
this is of no importance in our context. 

The plot of the P-values of the T = 136 tests comparing two means is given in Fig. 1. 
I t  seems that the left-hand part of the plot lies close to a straight line. The line given in 
the figure is drawn by visual fit. The slope of the line, which is an estimate of To, is 
approximately 25. 

1-P 

Fig. 1. Plot of P-values for Duncan's data involving 17 means 

Duncan (1965, Table 5) gives the number of hypotheses not rejected by various 
multiple comparisons methods. When using level 0.05 it ranges from 34 for the least 
significant difference method to 69 for the S-method. Since the P-value plot indicates 
that there are approximately only 25 true null hypotheses, one conclusion is that we are 
in a situation where the standard multiple comparison methods do not detect differences 
due to low power. There are 34 hypotheses with P-values larger than 0.05. Most likely, 
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many of these are due to false null hypotheses since the estimate of the number of true 
hypotheses is 25. Furthermore, one would expect that a t  most 1 or 2 of the P-values less 
than 0.05 correspond to true hypotheses. In other words, if one used the least significant 
difference a t  level 0.05, one would include 1 or 2 false rejections. 

An approximate formal way of identifying null hypotheses that clearly should be 
rejected is the following. Since there are about 25 true null hypotheses we should, when 
aiming a t  an overall level a for a t  least one false rejection, use level a125 for the individual 
tests. This is an improvement over the same Bonferroni argument applied to all tests 
which would have given level a1136 for the individual tests. 

The P-value plot is primarily of help in deciding on the number of null hypotheses to 
be rejected, or alternatively on the significance level to be used. When the set of rejected 
hypotheses is settled, the further analysis is done in a standard way. 

3.3. The plot variance 

The P-value plot in the present situation, i.e. the null case, has a larger sampling 
variation than a P-value plot based on T independent uniformly distributed variates. 
This is due to the positive correlation between the P-values. Some care must therefore be 
taken in order not to over-interpret the P-value plot. 

To get some idea of the amount of chance variation involved in the plots we shall 
calculate the variance of Np in the null case where there are no differences in the y's. Let 
Dij be the indicator of Pij2 p such that 

Due to the common standard deviation s, all the terms Dij are slightly positively 
correlated. We shall neglect this correlation, that is we take v = co,and only take into 
account the correlation due to a common index in pairs of index pairs ( i ,j).Let X and Y 
be standardized binormal variates with correlation p and let x, be the upper +p fractile of 
the univariate normal distribution. Let 

denote the centred quadrat probability of the bivariate normal distribution. By a simple 
argument it is seen that 

when v = oo and under the null case. Therefore 

With a balanced one-way layout, (3) simplifies to 

var (N,) = + a ( a - ~ ) ~ ( l  (4)-p)+a(a-1)  (a -2)  {B(p ,+)- (1  - P ) ~ ) .  

All the calculations we have done indicate that B ( p , p )  is convex in p. Since the 
correlations occurring in (3 )scatter around 3, we may take (4) as a lower bound for (3 ) .  
And in turn, (3 )is a lower bound for var (N,) when v is finite. 

To compute var (N,), Table 1 or the table by Krishnaiah & Armitage (1965)may be 
used. 
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Table 1. Binormal quadrat probability (2)for diflerent values of 
the correlation coeficient p and diflerent values of p .  

3.4. The number of true hypotheses 

In the above example, we estimated the number To of true null hypotheses by fitting 
visually a straight line through the points in the first part of the plot. The slope is used to 
estimate To. This technique could be formalized using some form of least squares fit. 
Since the points are not statistically independent, it would, however, be difficult to 
evaluate the properties of the estimation procedure. 

To get some idea of the uncertainties involved, we shall consider a simple, but perhaps 
not very efficient estimator of To. Take a fixed value of p ,  find the corresponding N,, and 
use the estimate Po= Np/(l -p).  By (1) this should be an approximately unbiased 
estimator for p not too small. We have 

var (Po)= var (Np)/(l -p)2. 

To have a small variance a small p should be used. But a small p would increase the bias 
of the estimator since many of the nonzero differences would be included in N,. 
Therefore, a moderate value of p belonging to the part of the plot where there is an 
approximate straight line relationship should be used. 

When we calculate var (Po)in an actual case, it is important to adjust for the fact that 
the number of true null hypotheses is less than T.  A reasonable estimate of the variance 
is obtained by using for a in (4) the value & found from Po= +&(&- 1). Let us illustrate 
this on the data in the example. With p = 0.3 we find ATp= 18 and Po1 2 6 .  This 
corresponds to & 1 7  and an adjusted var (Po)"-8.9. Adding two standard deviations, 
we get 32 which may be considered as a certain approximate upper confidence limit for 
the number of true null hypotheses. The use of To = 32 instead'of To = 25 will not 
greatly modify the conclusions drawn in 8 3.2. 

4. CORRELATIONMATRICES 

The T = &(a- 1) empirical correlation coefficients based on an a-variate sample of 
size n may be plotted by their normal scores (Hills, 1969), or they may be plotted by their 
P-values relative to the hypotheses of no pairwise correlation. As an example we use 
data taken from Hills (1969). There are altogether a = 13 variables with sample size 
n = 45. Thus there are T = 78 different correlation coefficients. The plot of the 
significance probabilities is given in Fig. 2. The points in the main part of the plot seem 
to oscillate around a straight line. Such oscillations are natural when one considers the 
correlations among order statistics. The estimate of the number of true null hypotheses 
as read from the visually fitted line is Po= 64. 



1 - P  

Fig. 2. Plot of P-values for 78 correlation coefficients 

The formula for the variance of Np, i.e. the number of significance probabilities greater 
than p, is very simple in the null case when all correlations are zero. This is because any 
two empirical correlation coefficients are uncorrelated when the corresponding true 
correlations are zero. This may be seen by utilizing results of Anderson (1958, p. 53) and 
by conditioning. We thus have 

var (Np) = &(a- 1)p(1-p) .  

In  the example with p = 0.1 and Po= 64 we find that  var (Po)is estimated to be 7.1 
when we adjust as in 5 3.4. The plot, however, indicates that  the precision of the estimate 
of To is greater than indicated by this variance. This corresponds to  the impression that  a 
smaller p, say p = 0.05, could have been used in estimating To, which would have 
reduced var (Po)considerably. 

The half-normal plot of Hills (1969) is closely related to the P-value plot. The plots 
may be obtained from each other by a simple transformation. Hills presented his plot 
only in the present context of correlation coefficients, but it may be constructed 
whenever a P-value plot may be. We tend to preier the P-value plot over the half-normal 
plot. First, the uniform probability transform, or the P-value, is widely used when 
testing hypotheses. Furthermore, it may be slightly easier to evaluate the variance of a 
P-value plot than of a half-normal plot. Finally, when we compa,re Hills's (1969) Fig. 1 
with our Fig. 2, it  seems somewhat easier to fit the line in the P-value plot, and the 
reason is that  the tails of both the axes are too stretched out in the half-normal plot. 

If we return to the example, Hills's estimate of To as read from the normal plot is 62, 
since the ordered observations number 63 and 64 seem to deviate a good deal from the 
preceding observations (Hills, 1969, p. 250). In  the P-value plot, however, this does not 
seem to be the case. The significance probabilities 0.03 and 0.01 associated with these 
observations are not suspiciously small, considering that  they are the smallest among 
more than 60 significance probabilities. 

5. SUBTABLES A TABLEOF CONTINGENCY 

5.1. The problem 

As a final illustration of the applicability of P-value plots we shall consider a two-way 
contingency table with r rows and c columns. Sometimes it is of interest to investigate 
subtables of such a table. We consider the set of 2 x 2 subtables. These may for example 
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be of help in identifying one or more deviant cells relative to the assumption of 
independence between the two classifications. Many patterns may be conceived in which 
such a set of outlying cells is hard to identify by traditional methods based on residuals. 
The 2 x 2 subtables may also be of interest for other reasons, for example in testing for 
independence in a table with missing cells. 

Also P-value plots other than those based on 2 x 2 subtables may be of interest in 
connexion with contingency tables. One may test for independence between pairs of rows 
or columns. Or, for higher dimensional contingency tables, one may plot all the P-values 
obtained by testing the interactions in say a log linear model. Cox & Lauh proposed a 
half-normal plot for the interactions in a 2"-table: by use of the P-values this may be 
extended to any higher-dimensional table, although the P-values will not generally be 
uncorrelated as is the case in the simple 2" case. 

5.2. T w o  examples 

We give two examples of plots for contingency tables. The first is taken from Kendall 
& Stuart (1967, p. 558), and concerns classification of students according to level of 
intelligence and standard of clothing. The data are given in Table 2. The P-value plot 
based on the chi-squared test of independence in the 90 subtables of size 2 x 2 is given in 
Fig. 3(a). The first part of the plot may be approximated reasonably well by a straight 

Table 2. Distribution of 1725 school children according to their 
standard of clothing and their intelligence: Kendall & Stuart 

(1967, p. 558) after Gilby. 

Intelligence class 
Standard of clothing A, B C D E F G Total 

Very well clad 33 48 113 209 194 39 636 
Well clad 41 100 202 255 138 15 751 
Poor but passable 39 58 70 61 33 4 265 
Very badly clad 17 13 22 10 10 1 73 

Total 130 219 407 535 375 59 1725 

1-P 1-P 


Fig. 3. Plot of P-values for the 2 x 2 subtables of (a) Table 2, and (b) Table 3. 



line. There is, however, a good deal of uncertainty in the choice of the position of the line. 
Lines drawn through the main parts of the left-hand points will give an estimate of Toin 
the neighbourhood of 40. 

When one looks more carefully a t  which hypotheses are not rejected, i.e. the ones with 
the 40 largest P-values, Table 2 may be simplified. The 'poor but passable' and the 'very 
badly clad' classes may be put together into one. The same is true for the F and G 
intelligence classes. 

The second example is taken from Fisher (1946, p. 88), and concerns an experiment 
with crosses in mice. The data showing the results of 1204 crosses are given in Table 3. 
This is actually a .Z4 table. The table does not allow a simple interpretation in terms of a 
log linear model. Let us therefore look a t  the table in search of deviant cells relative to a 
simple structure. A reasonable approach would be to test all the 24 subtables of size 2 x 2 
obtained by keeping the levels of 2 of the 4 factors fixed a t  a time. Instead of looking a t  a 
P-value plot based on these subtables, we have chosen to consider the P-value plot 
shown in Fig. 3(b), which is based on testing for independence in all the 36 subtables of 
size 2 x 2 obtained from Table 3 regarded as a two-way table. From the P-value plot it is 

Table 3. Distribution of 1204 crosses in mice according as 
the male or female parents were heteroxygous, F,, in the 
two ,factors, and according to whether the two dominant 
genes were received both from one, i.e. coupling, or one 
from each parent, i.e. repulsion; Fisher (1946, p. 88) 

after Wachter. 

Black Black Brown Brown 
self Piebald self Piebald Total 

Coupling 
F ,  males 88 82 75 60 305 
Fl female: 38 34 30 21 123 

Repulsion 
F ,  males 115 93 80 130 418 
Fl females 96 88 95 79 354 

Total 337 297 280 290 1204 

seen that  only the 5 or 6 smallest P-values seem to deviate from a straight line 
behaviour. When one looks a t  the 2 x 2 tables giving these P-values, it is seen that  they 
all include the observation 130 for F1 males in the repulsion phase for the cross Brown 
Piebald. This is obviously an outlying observation. The rest of the table does not show 
any deviation from homogeneity. 

5.3. The variance of N, 

In  this case it takes more labour to determine the variance of NP.We assume the 
multinomial model with E ( X i j )= npi j ,  C i j p i j  = 1, and n large. To facilitate the notation 
let ri = C j p i j ,  cj = Z i p i j  such that  the independence assumption, under which we will 
work, reads pij = ri cj. 
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By linearizing the chi-squared test statistic for a 2 x 2 table and performing a fairly 
tedious calculation, the following asymptotic variance is found: 

where the index set 

cij= { ( i l > i 2 ,ji, j2)1 i + i l  + i2,j =+ jl + j2} 

refers to the pairs of 2 x 2 subtables with the (i,j ) th  cell in common, 

refers to the pairs of subtables with cells from the i th  row in common, and corre-
spondingly 

The term B(p ,p )  occurring in the variance formula denotes the binormal quadrat 
probability (2). 

When the marginal probabilities are equiprobable ri = l l r ,  cj = l/c and the variance 
simplifies to 

+4(r-2) (c- 2) B(p,b) + (2r+2c-8) B(p, +)I. (6) 

Since B(p,  p) for fixed p is convex in p, we may take (6) as a lower bound for (5) since 
for one group of summands in ( 5 )we have B-terms with correlations scattered around 4 
and for another group the correlations scatter around b. From numerical work, however, 
our impression is that  inhomogeneity in the marginals seldom increases var (N, ) by more 
than 20% relative to (6). 

Returning to the example with intelligence and clothing where r = 4 and c = 6, we find 
var (N,) = 74.4 a t  1 -p = 0.7 in the null case. This, however, is not quite relevant when 
estimating var (Po)because the null case does not hold. The estimate of To is about 40, 
corresponding approximately to the number of 2 x 2 subtables obtained from a 3 x 6 
table. At 1 - p  = 0.7 the null variance of N, from such a table is 29.6 = 3 x 15 x 0.66. A 
relatively conservative estimate of the variance of N, is then 

var (N, )  = 40 x 0.66 x 1.2 = 31.7 

and we obtain Jvar (Po)-- J31.7/0.7 = 8. 
This high value is due to the strong positive correlation among the P-values. If these 

correlations erroneously had been disregarded, the estimated standard deviation of Po 
would have been 4.5 instead of 8. This illustrates the importance of taking the correlation 
of the P-values into account in order not to draw too strong conclusions on the basis of 
the P-value plot. 



We have studied in some detail three general situations where P-value plots may be 
applied. Other cases are easily imagined. For example, in a medical study one may want 
to examine a large number of binomial or Poisson parameters. For a two-factor analysis 
of variance experiment one may study interactions by looking a t  all 2 x 2 tables. And in a 
multifactor experiment one may want to test a large number of interactions. Also in 
cluster analysis the P-value plot based on pairwise comparisons of individuals may be of 
help. Even in less structured situations where a number of tests have been done, say in a 
larger social science study, one may benefit from the overall view obtained by the P -  
value plot. 

Let us finish by mentioning a situation where the plot cannot be used. As mentioned in 
5 4 the P-value plot may in some cases be considered as a probability transform of a half- 
normal or a normal plot. However, it cannot be used in cases where the half-normal plot 
or a variant of it is used both for estimating an unknown variance and detecting 
significant effects (Daniel, 1959; Gnanadesikan & Wilk, 1970; Schweder, 1981). 
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