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Quantum coherence of elastically scattered lattice fermions is studied. We calculate vertex corrections to the
electrical conductivity of electrons scattered either on thermally equilibrated or statically distributed random impu-
rities and we demonstrate that the sign of the vertex corrections to the Drude conductivity is in both cases negative.
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1. Model

The Coulomb interactions and disorder can individu-
ally result in a metal–insulator transitions (MIT). It is
not much known how this transition is modified when
both forces act simultaneously. It is the aim of this con-
tribution to investigate such a situation when only elastic
scatterings are taken into account.

We consider the disordered Falicov–Kimball model
(FKM) described by the following Hamiltonian:

H = t
∑

〈ij〉
c†i cj + U

∑

i

c†i cif
†
i fi +

∑

i

Vic
†
i ci, (1)

where c†i (ci) represents a creation (annihilation) opera-
tor of an itinerant electron on site i and f†i (fi) repre-
sents a creation (annihilation) operator for an electron
localised on site i. We denoted by t the nearest-neighbor
hopping amplitude for itinerant electrons, U is the inter-
action strength between the itinerant and localised elec-
trons and finally Vi is the on-site random atomic poten-
tial with a static site-independent probability distribu-
tion P(V ). For U = 0 the Hamiltonian (1) reduces to the
disordered Anderson model. For Vi = 0 we recover the
pure Falicov–Kimball model that can be interpreted as
a model of electrons scattered on thermally equilibrated
impurities where U represents the strength of a dynamic
(annealed) disorder.

The exact solution for the FKM is known in d = ∞
limit and the equilibrium thermodynamics as well as
transport properties were reviewed in [1]. There have
been also efforts to describe the effect of randomness on
the MIT in FKM by using a geometric mean of the local
density of states [2, 3]. However, little is known about
the electrical conductivity of FKM beyond the mean-field
Drude contribution.
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The method for calculating vertex corrections to the
one-electron Drude conductivity for models with elasti-
cally scattered electrons was recently developed by us [4].
It is based on a systematic expansion around the d = ∞
mean-field solution via the asymptotic limit to high spa-
tial dimensions [5]. We use the formulae for the averaged
mean-field (Drude) conductivity σ0 and the vertex cor-
rection to it ∆σ from Ref. [4].

2. Results and discussion

We evaluated numerically only the leading 1/d-order
vertex correction to the Drude zero-temperature conduc-
tivity from Ref. [4]. Its important feature is that it car-
ries information about the sign of the correction. That is,
whether elastic scatterings lead to increase or decrease of
the mean-field conductivity. We set t = 1 as the energy
unit. We resort here only to half-filling with a symmetric
binary-alloy distribution of the random atomic potential
P(V ) = 1

2
[δ(V −∆/2)+δ(V +∆/2)], where ∆ is the mea-

sure of disorder strength. For explicit calculations we
use a semi-elliptic density of states ρ(ε) = 2/π

√
1− ε2

and set the spatial dimension d = 3. We neglect the
chess-board long-range order of the pure model, since
the ground state is then insulating.

The Drude conductivity σ0, total conductivity σ0+∆σ
and the density of states at the Fermi energy ρF for
U = 0.5 are plotted in Fig. 1 as functions of disorder
strength ∆. Disorder decreases both the density of states
and the Drude conductivity down to the MIT which takes
place at ∆c ≈ 1.27. The total conductivity vanishes at
∆ ≈ 1.2 and becomes negative for larger ∆. This unphys-
ical behavior indicates breakdown of the decomposition
of the total conductivity into a mean-field and vertex cor-
rections in regions close to the MIT. Another approach
utilizing gauge invariance and the Einstein relation be-
tween the conductivity and diffusion from the density
response function should be used to avoid negative sign
of the conductivity [6].
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Fig. 1. Drude conductivity (solid line, left scale), total
conductivity (dashed line, left scale) and the density of
states at the Fermi energy (dashed-dotted line, right
scale) for U = 0.5.

Fig. 2. Ground state phase diagram for the disordered
FKM at half-filling. The dashed line indicates the bor-
der at which the vertex correction compensates the
Drude term. The mean-field conductivity between the
dashed and solid lines becomes unreliable.

The ground state phase diagram for the half-filled dis-
ordered FKM is shown in Fig. 2. Solid lines represent the
metal–insulator transition lines. The dashed lines indi-
cate vanishing of the total conductivity where |∆σ| = σ0.
We cannot rely on the mean-field conductivity and an
unrenormalized perturbation theory beyond these lines.

3. Conclusions

Vertex corrections to the zero-temperature one-
-electron Drude conductivity of the disordered FKM were
calculated. Numerical calculations prove that the ver-
tex correction ∆σ is always negative as shown in [4] and
almost everywhere at least one order smaller than the
Drude term. Only close to MIT the vertex correction is
of order of the Drude one and for ∆ > 0 its absolute
value can even become larger, leading to a negative total
conductivity σ0 + ∆σ. This indicates that one needs to
consider the full representation of the vertex correction
with a two-particle self-consistency to describe energy re-
gions close to MIT.
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