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Further Development of Sheet 
Metal Forming Analysis Method 
The finite element analysis procedure used to model the sheet metal forming process 
is further developed by incorporating a refined numerical procedure and an im­
proved metal-tool friction analysis method. The shell-type model is capable of close­
ly approximating the strain distribution of prescribed axisymmetric parts. Further 
refinements on the numerical procedure have resulted in the marked decrease of the 
time required to reach a convergence of solutions. At the same time, frictional con­
ditions at the metal-die and metal-punch interfaces have been closely characterized 
by applying equilibrium conditions in an iterative manner. Effects of these improved 
procedures have been examined in detail by making a systematic sensitivity analysis 
and by comparing the analytical results against experimental data. Based on these 
results, a critical assessment of the simplified analysis method is made. 

1 Introduction 

The computer simulation of complex manufacturing prob­
lems has the advantage of enabling the engineer to modify the 
design in the blue-print stage. Material deformation processes, 
due to their inherent complexity and large number of controll­
ing variables, are ideally suited for these types of applications. 
This is especially true for deformation processing operations 
such as sheet metal forming, where a considerable portion of 
material can be easily wasted when the conventional trial-and-
error procedure is used during the prototyping process. 

Deep drawing, which is a widely used sheet metal processing 
method, is frequently utilized as a means of examining the 
drawability of sheet materials. A number of investigators have 
studied the drawing process to obtain analytical and numerical 
solutions. One of the first successful analytical attempts was 
made by Chung and Swift [1] who developed a method of 
analyzing the radial drawing process. It was assumed, among 
other things, that the numerical value of the equivalent strain 
is equal to that of the circumferential strain. This assumption 
was shown to be true for the plane drawing in the flange 
region by Hill [2], and later by Woo [4]. Extensive work was 
done by Woo, who developed a method for analyzing the 
axisymmetric forming process based on the general theories of 
rigid-plastic material model and equilibrium equations, and 
the analysis was applied to hydrostatic bulging [3], stretch 
forming [4], and deep drawing processes [5, 6]. Yamada [7] 
employed both total and incremental strain theories of 
plasticity in the analysis and predicted the punch force for the 
radial drawing of an isotropic material. Budiansky and Wang 
[8] used a rigid-plastic orthotropic material model and utilized 
a finite deformation theory to analyze a cup drawing process. 

Availability of high-speed computers motivated a number 
of investigators to analyze the sheet metal forming process 
with the finite element method. Most of these efforts were 
concerned with the analysis of the axisymmetric problem using 
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a rigid-plastic material model and the incremental theory of 
plasticity [9, 10]. The process of nonaxisymmetric sheet metal 
forming has also been examined by several researchers. Toh 
and Kobayashi [11-13] modeled this process using a rigid-
plastic finite element analysis method based on membrane 
theory, and analyzed deep drawing of nonaxisymmetric 
geometries. Kim and Yang [14] also developed a general in­
cremental rigid-plastic finite element analysis formulation of 
large strains, and analyzed hydrostatic bulging of circular and 
rectangular sheet materials. 

When large deformation problems are examined, the results 
of the finite element analysis method based on the rigid-plastic 
formulation are in good agreement with experimental observa­
tions. Nevertheless, the method does not account for the 
elastic unloading, and therefore, such phenomena as spring-
back and development of residual stresses cannot be handled 
by the model. Development of the elasto-plastic finite element 
analyses has been accomplished partially on that account. 
Wifi [15] formulated an incremental variational method to 
analyze axisymmetric elastic-plastic solids, and applied the 
analysis to solve deep drawing of circular blanks. In a later 
study, the stamping process of an elastic-plastic sheet material 
was examined by Wang and Budiansky [16], where the effects 
associated with finite deformation and normal anisotropy 
were considered. As an alternative approach, Levy et al. ap­
plied the deformation theory of plasticity to approximate a 
cup-drawing analysis of an elastic-plastic material, and it was 
shown that considerable savings in computational time was 
achieved by using the deformation theory [17]. 

Other numerical techniques have also been used to model 
sheet metal forming processes. Kaftanoglu and Tekkaya [18] 
presented a finite difference method for analyzing the deep 
drawing process. Gerdeen and coworkers [19, 20] developed a 
"geometrical mapping" process in which the final configura­
tion of the part was mapped onto the initial blank sheet by 
assuming the areas of a finite number of surface elements re­
mained constant during deformation. 
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Fig. 1 Geometry of the problem, the associated coordinate system, 
and the nodal points along the meridian line in (a) deformed configura­
tion, (b) initial flat sheet 

Although a number of general purpose, finite element codes 
have been developed lately for analyzing nonlinear problems 
[21-23], they are not suitable for analyzing sheet metal form­
ing processes. Moreover, the prohibitive length of computa­
tion time has prevented the use of such programs as an interac­
tive tool at the design stage. The advantage of the use of mem­
brane type elements and deformation theory of plasticity is the 
simplicity. With such a simplified method, solutions may be 
obtained quickly, and they are yet within an acceptable range 
of engineering approximations. In the present work, an im­
proved numerical scheme is incorporated in which an elastic 
stress-strain relationship is used to initiate the solution. The 
converged solutions, which contain information about the 
history of deformation, are used as starting points to initiate 
the actual solution schemes. Furthermore, the frictional forces 
at the metal-tool interfaces are determined by considering the 
equilibrium of forces and are updated in each iteration until a 
satisfactory convergence is achieved. 

2 Analytical Background 

2.1 Description of the Simplified Finite Element 
Method. The analytical basis for the simplified finite ele­
ment analysis of the axisymmetric sheet metal forming process 
was described by Levy et al. [17]. It was assumed that the part 
is deformed from the blank sheet to its final shape in a single 
step. Lee and coworkers [24-26] have further developed pro­
cedures for predicting the success or failure of the particular 
sheet metal design by incorporating a modified strain analysis 
method. 

The symmetry condition in an axisymmetric part requires 
that the strain analysis be made only along a meridian line. 
Therefore, the analysis is carried out by dividing the meridian 
of the formed part into a finite number of one-dimensional 
curved elements. The coordinates of the nodes of elements 
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Fig. 2 Intial trial nodal locations on the blank sheet and their improved 
positions 

along the meridian of the final geometry are defined as shown 
in Fig. 1(a). This approach is somewhat different from the 
conventional finite element method where the blank material 
is subjected to prescribed loading or displacement boundary 
conditions. In the present work, the geometry of the formed 
part and the initial sheet thickness are given, and the coor­
dinates of elements are prescribed on the final shape. The 
unknowns are the initial locations of the nodes as well as the 
size of the initial blank sheet. These unknowns are determined 
by applying the principle of the minimum potential energy. 
Once the positions of the nodes on the undeformed sheet are 
determined, all the field variables can be calculated. 

The following two assumptions have been made. First, the 
deformation (total strain) theory of plasticity is assumed to be 
applicable. This assumption is examined in detail in a separate 
paper [28], where the strain distributions are computed for an 
axisymmetric cup formed in several steps. It has been observed 
that the principal strain components are proportional for the 
material points located under the punch and in the flange 
regions. As the material points are drawn into the die and 
form the wall section of the cup, some nonproportionality of 
the strains is observed. In a study of sheet necking Hutchinson 
and Neale [29] compared predictions based on a total and in­
cremental form of J2 deformation theory and the J2 flow 
theory. They concluded that where the forming histories do 
not deviate distinctly from proportional loading, a J2 defor­
mation theory is the better choice. Stdren and Rice [30] have 
also analyzed sheet necking and reported good agreement be­
tween predictions based on the J2 deformation theory and ex­
perimental observations. Second, the plane stress condition is 
assumed to be valid. The basis of the mathematical formula­
tion is summarized in the following section. 

The initial positions of all the nodes on the undeformed 
sheet, {X}, are first defined as shown in Fig. 1(b). These posi­
tions will be adjusted to [X+u] in the course of numerical 
iteration, where {u} denotes increments of small 
displacements of nodal positions (Fig. 2). Using the prescribed 
final location of nodes, [s], logarithmic strains in the hoop 
and tangential directions are calculated. Therefore, 

t = e(X,s) (1) 

The associated Cauchy stress, a, can be determined by utiliz­
ing the material constitutive equation, a=a{e), and the defor­
mation theory of plasticity. Therefore, 

a = aiX,s) (2) 

The potential energy, Mr, is then calculated by: 

* = ( ( f f / o d € ) d K - [ TwdS (3) 

where ef is final strain, T is surface tractions, w is boundary 
displacement, and Sr is the portion of the boundary where sur­
face tractions are prescribed. The first term in equation (3) 
corresponds to the strain energy of deformation and the sec­
ond term represents the work of external tractions. Any in­
cremental changes in the location of the nodes in the 
undeformed state, j u}, will give rise to a change in the poten-
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Fig. 3 Schematic presentation of the traction forces acting on a node 
before and after the improvement of the nodal position 

tial energy. In particular, if the nodal positions are displaced 
to their correct position, {X+u}, the equilibrium equation 
will be satisfied and potential energy reaches a minimum 
value. Minimization of the potential energy is achieved by the 
following equation, 

d* 

W 
= 0 (4) 

where (u j can be determined from the solution of equation 
(4). More specifically two quantities ^ x and ¥„ can be defined 
in the following manner, 

*> 
J v Jo 

oAt)AV- L TxwxAS, and 

¥„=[ (PffdOdK-f 7>„dS 
J V J e y J Sr 

(5) 

(6) 

where ¥x is the potential energy due to the deformation of the 
initially assumed (trial) nodal points to their final positions in 
the deformed configuration, and ^iu is the energy associated 
with the displacement of trial nodes to their modified loca­
tions in the undeformed geometry. The corresponding strain 
energy in equations (3), (5), and (6) are related by the follow­
ing equation: 

Pade=P 
Jo Jo 

<rde + oAt (7) 

Referring to Fig. 3, the work done by the normal component 
of traction 7",,, when the material point located at X is de­
formed to s, is the same as the work done by T„ when the 
material point is initially at (X+ u) and has deformed to the 
same point 5. The magnitude of this work is given by 
wn-\\T„°A\ = T„'h, where 1 denotes the displacement from 
the undeformed to the deformed configuration. Work done by 
the frictional force Tf, due to the above two sets of 
displacements are not the same and differ by_jthe quantity 
(Tf-u). This is due to the fact that Wf=\xff'A\ = Tf'Au or 
Wf = (Tf'U) + (Tf>A), where Wf is the frictional work due to 
deformation from (X+u) to s. The sum of W„ and (7}»d) 
constitutes the total work of tractions for the deformation 
from X to s, i.e., \s TwxAS. Similarly (Tf>u) is the work of 
tractions along displacement u, \sTwuAS. Therefore, the 
following equation can be written: 

lrTWAS=\SrTWxAS+l Tw„AS (8) 

The above equation was derived for the nodes located at the 
metal-punch interface shown in Fig. 3; the same relationship 

holds for the nodes at the metal-die interface. From equations 
(3) and (5)-(8), the potential energy can be decomposed into 
the two parts as follows, 

* = * * + *„ (9) 
Since Vx is constant with respect to j u}, equation (4) reduces 
to 

31"! 
= 0 (10) 

By expressing a and t as linear functions of displacement {u ], 
equation (10) yields a set of simultaneous linear equations in 
{u). The (u} values obtained from this set of equations are 
used to correct the position of the initial trial nodal points in 
the undeformed geometry to {X+u}. Due to the errors that 
may be introduced into the analysis by the linearization pro­
cess, the correct displacements, («) , have to be determined 
through an iteration procedure. 

2.2 Description of the Enhanced Numerical Scheme. The 
iterative procedure of finding the correct set of values of (u} 
utilizes a variant of the Newton-Raphson scheme. That 
scheme, however, has the inherent limitation of being too sen­
sitive to the initial assumed solution. In the early version of the 
analysis, nodal locations on the undeformed sheet were 
selected by assuming A",-=,?,•• scale, where s,-'s are the pre­
scribed positions of nodes on the deformed geometry and scale 
is an arbitrary factor which is less than unity. However, since 
initial {X} values are selected arbitrarily the program may 
diverge; in which case a new set of initial {X} values is defined 
and the process is started over again. The program has to 
search through [X] values and carry out 10 to 50 iterations 
before a set of suitable {X} values is obtained. The difficulty 
originates from the two sources of nonlinearities, i. e., the 
geometrical description and the stress-strain relationship. To 
overcome these difficulties, the following alternative scheme 
was employed. Initially, a completely elastic material which 
has the same Young's modulus as the actual material is as­
sumed. The iterative scheme is initiated using the stress-strain 
relationship of the elastic material with any arbitrary trial 
nodal locations, [X]. The convergence is achieved quickly in 
about 5 iterations, resulting in «,- values <10~7 for the last 
iteration. 

At the end of this cycle, the adjusted nodal values, [X+u], 
correspond to the equilibrium positions which are associated 
with the assumed elastic material. These new nodal positions, 
which contain information about the specific history of defor­
mation, constitute appropriate trial values for initiating the 
solution with the nonlinear material model. The rate of con­
vergence is improved and values of w, less than 10~7 are 
achieved within 5 to 10 iterations. Therefore, with the total 
number of iterations for elastic material and the real material 
model, a convergence is readily achieved and the lengthy 
search through {X} domain is avoided. Moreover, the con­
vergence is not sensitive to the assumed values of [X] and any 
set of initial nodal points leads to a unique solution. 

2.3 Description of Frictional Conditions. In sheet metal 
forming, most of the material is in continuous contact with the 
punch and dies during deformation. The role of friction on the 
deformation pattern and distribution of stresses and strains is 
especially important where the surface area to volume ratio is 
relatively large. Application of the total strain theory and 
hence disregarding the history of deformation prevents a 
rigorous modeling of the contact problem. Therefore, a 
simplified method of calculating frictional forces is developed 
which imposes the force equilibrium condition at the metal-
tool interfaces. 

2.3.1 Friction at Metal-Punch Interface From the 
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Fig. 4 Geometry and free body diagram of an infinitesimal element in 
the punch profile (a) side view, (b) top view, (c) side view 

physical description of the problem, it is concluded that fric-
tional force is applied to the metal largely by the edge of the 
punch and not by its flat section. Therefore, it has been asum-
ed that friction force is present wherever there is a curvature 
on the surface of the sheet. This argument is valid only for the 
case of relatively thin sheets. 

Figure 4 shows an infinitesimal surface element of the sheet 
in the corner radius of the punch. Figures 4(a) and 4(b) show 
the free body diagram of a surface element. The equilibrium 
of forces in directions normal and tangential to the element 
are then considered. It should be noted that hoop stresses, 
which act on the lateral edges of the element, as shown in Fig. 
4(b), are lying in the horizontal plane perpendicular to the axis 
of symmetry; therefore, their tangent components cancel out 
each other and leave only the normal components, ae sin 
d</>/2, to contribute to equilibrium [Fig. 4(c)]. Equilibrium of 
forces in the normal direction yields, 

PpNA8(r + Ar/2)A<j> - <jrtrA<j> sin d0/2 -

(11) 

(12) 

(ar + dar)(t + dt)(r + dr)d<t> sin d 0 / 2 -

2oeppA6 sin (0 + AB/2)(t + d//2)sin d</>/2 = 0 

and in tangential direction, 

lx.pNppdd(r + dr/2)d(j> + artrA(t> cos d 0 / 2 -

(crr + &or)(t + At)(r + Ar)A<j> cos d0/2 + 

2oePpA6 cos (0 + d0/2)(/ + d//2)sind<£/2 = O 

where Â  is normal reaction stress, \x.p is coefficient of friction 
at the metal-punch interface, t is current thickness, and pp is 
the radius of the punch corner. Simplifying equation (11) and 
neglecting third order infinitesimal values, it yields, 

PpNrA4>A6- artrA4>Ad- aetp psm 0d0d<£ = 0 (13) 

Since sin 0 = r—rp/pp from Fig. 4(c), equation (13) reduces to, 

/= 
pD

 L 
+ff„(i- (14) 

Fig. 5 Geometry and free body diagram of an infinitesimal element in 
the die profile (a) side view, (b) top view, (c) side view 

and the axis of symmetry. It should be noted that the quantity 
/ in equation (14) has the dimension of force per unit area, 
representing the frictional shear stress. The corresponding 
frictional force per unit length of the line elements is 
numerically identical to / , provided that this force is con­
sidered for a unit width in the circumferential direction. This 
is equivalent to assuming that line elements have a width of 
unity. Frictional forces at each nodal point are then deter­
mined by the following relationship: 

s [7V,.]r-/-dS= J _( W f ) ] ^ f ) . — . d { /= 1,2,3 

where S is length of the line element, A7 shape functions, and £ 
denotes the local coordinate system. The above integral is 
estimated by Gauss quadrature as, 

3 .a 

p, = £ mvwri-rr-h-wj i=1,2,3 
y=i d £ 

where vtj are weight functions andy refers to Gauss point. 
2.3.2 Friction at Metal-Die Interface. In sheet metal 

forming, the blank holder pressure is an independent variable 
and is specified as an input. The reaction forces at the die sur­
face, however, can be calculated using equilibrium equations 
in the same way as shown in section 2.3.1. Figure 5 shows an 
infinitesimal surface element of the material on the corner 
radius of the die. The free body diagram of this element is 
shown in Figs. 5(a) and 5(b). Hoop stress, <rg, is again lying in 
a horizontal plane and only its normal component, ffesin 
d</>/2, contributes to equilibrium of forces [Fig. 5(c)]. In nor­
mal and tangential directions, equilibrium of forces yields ex­
actly the same equations as equations (11) and (12), except 
that the sign of the last term in each equation is reversed and 
the subscripts p (for punch) are replaced by d(for die). Then 
by defining /-,, as shown in Fig. 5(c), sin 6 = rA—r/pA. 
Substituting this relationship into the equilibrium equation in 
the normal direction gives, 

where rp is the distance between the center of punch radius 
/=/WV= 

Pd 
[ffr + °e(l -- ^ ) (15) 
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CLAMPING FORCE 454 kg (1000 lb) 
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Note that equation (15) is similar to equation (14) of the 
previous section. Calculation of the equivalent nodal forces 
also follows the same method as previously described. 

2.3.3 Friction at Metal-Blank Holder Interface. Due to 
the assumption of plane stress, the general practice of assign­
ing frictional forces in the flange region is to concentrate all of 
the clamping force of the nodes located at the outer rim of 
flange [13]. This approach is reasonable because the flange 
region may become thicker during deformation with its 

Fig. 6 Diagram showing effects of changing friction coefficient in the 
(a) punch profile and (b) die profile regions; (c) shows effect of changing 
clamping force at the flange rim. Data obtained for a 41-noded High 
Strength Steep cup model. 

thickest section being the outer rim of the flange. Experimen­
tally, the bright edge of the flange section is observed after the 
cup is formed, indicating that higher normal and friction force 
are seen by the material at that location. The Coulomb fric­
tional force is then calculated and is assigned to the outmost 
node on the flange. 

It should be noted that directions of frictional forces are 
functions of the relative movement of the sheet metal with 
respect to the punch and die, and these directions are not 
known in advance. A brief description of an approach to 
determine these directions is given in the following section. 
The work of the friction over the displacement u is designated 
by Wj. Referring to Fig. 3, the following equation can be writ­
ten 

Wf=Tf.d , = -17)1 

but for the case shown in Fig. 3, Id, 

• Id, I 

= lul 

(16) 

+ Id I. Therefore, 
Wf=-\T,\. \u I - ITj I • I d I where the first term in the above 
equation is the frictional work due to the increments of u. It 
can be shown that equation (10) may be written as, 

d * 0 5 lul 

3(«) 5 lul 
u I f 

u} Jsr 
17} I lul dS = 0 

where ¥s represents the strain energy, and d \u \/d{u) = ± 1 . 
Therefore, 

3*„ 
dlu] — [ 

l u l Jsr 

17)1 lul dS = 0 

Examination of various possibilities of relative positions of X, 
X+ u, and s shows that the sign of the frictional force is the 
same as the sign of the vector d. This feature has been ac­
counted for in the program so that d for each nodal point /, is 
examined in each iteration and an appropriate sign for fric­
tional force of that node is assigned. 
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Table 1 Material constants

Naterial K. f. '.HPa
(ksi)

HSS
608.4 0.047 2.7BxlO-4

0.24 0.0078
(8130 23)

EIDQ 620.6 0.19 2.78xlO-4
0.5 0.0067

(90)

AKDQ 551.6 0.15 2.78xIO-4 0.48 0.0077 2.2
(80)

Fig. 7 Photographs of the EIDQ steel cup specimens formed under
lubricated (top row) and dry (boltom row) conditions

Punch 0.5
O,y Di, 0.1 1.2 10000 24000 30.7 J6.SB 4.83 12.7

n1lngeO.4 (0.046) (2250) (5400) (1.21) (1.44) (0.19) (0.5)

j'""'hO'12 1.2 10000 25800 30.7 36.58 lo.83 12.7
Lubricated Die 0.07 (0.Olo6) (2250) (5800) (1.21) (1.4lo) (0.19) (0.5)

Flange 0.005

--_..... --,. _._.,_.~~.

Forming Cla"'l'illg Punch Punch dill. Die opening Punch Die profile
speed force load min (in) dia. ll'.!lI (in) profile radius

mm/s (in/s) N (lb) N (Ib) radius Ilh'll (in)
mrn (in)

Table 2 Process variables

Test ICoefficient
Condition ,of Fderian

(d)(e)

3 Results and Discussion

3.1 Sensitivity of the Model to Friction. In order to iden­
tify the role of friction on the strain distribution, different
friction coefficients have been assigned to punch, die, and
blank holder areas. In the following cases, coefficient of fric­
tion at the flange rim was taken to be a constant value of 0.05
and variations of the frictional force at the rim were examined
by changing clamp force. A 41-noded High Strength Steel cup
model was first analyzed with friction varying at the punch
radius only. The cup geometry is shown in the inset of Fig.
8(a) and the material parameters are summarized in Table 1.

As a reference condition, the friction coefficient at the
punch and die profile regions was taken to be equal to 0.05,
and the clamping force to be 454 kg (1000 lb). Coefficient of
friction at the punch radius was then increased from 0.05 to
0.3, and 0.5. The strain distributions are depicted in Fig. 6(a).
A considerable change of the strain distribution is observed in
the flat as well as radius areas of the punch. By increasing fric­
tion of the punch region, the material lying on the punch is
more constrained, and therefore deforms less. However, since
the final configuration is fixed, the necessary deformation is
provided by other portions of the cup, resulting in an increase
of strain in the wall and flange regions.

Next, the friction coefficient at the die profile radius was in­
creased from 0.05 to 0.3 and 0.5, while that of the punch pro­
file and the clamping force were kept constant at 0.05 and 454
kg, respectively. The results are shown in Fig. 6(b). Friction in
the die radius has caused strain components of the die area to
decrease and those of the punch area increased.

Finally, the effect of frictional force in the flange rim was
examined. Clamping forces of 227 kg (500 lb), 454 kg (1000
lb), and 907 kg (2000 lb) were applied, while friction coeffi­
cients at the punch and die regions were kept at 0.05. It was
observed that when a low friction coefficient of 0.05 is used
for flange rim, variations of clamping force do not affect the
strain distribution. However, if a higher friction coefficient of
0.3 is used at the blank holder rim, an increase in the clamping
force causes the hoop strain to decrease outside the punch area
and both radial and hoop strain components to increase in the
punch region as shown in Fig. 6(c).

3.2 Comparison of Analytical and Experimental
Results. Two sets of axisymmetric cups were formed from
Enameling Iron Drawing Quality (EIDQ) steel sheet with
thickness of 0.69 mm (0.027 in.). The uniaxial test data of the
sheet is assumed to follow the equation shown below [24].

o-=Ko(E+EO)'I·[EEo]m (17)

where n is the strain hardening exponent and m is the strain-

12.52 77 .01 80 81.99
(0.493) (3.03) (3.15) (3.23)

5.31 68.28 70 73.36
(0.209) (2.69) (2.76) (2.89)

Dry

11.10 65.02 70 70.61
(0.437) (2.56) (2.76) (2.78)

Table 4 Process variables for dryer door
Forming speed Clamping Punch load Punch profile Die profile

~/, (in/s) force N (lb) radius radius
N (lb) IIUIl (in) mm (in)

211724
218.4 400084 229517 17.78 11.18
(8.6) (89947) (47600- (0.7) (0.44)

51600)

rate sensitivity of the flow stress. K o and EO are material con­
stants all defined from the results of a uniaxial tension test car­
ried out at a reference strain-rate, EO' Material constants are
listed in Table 1. It has been shown that the material exhibits
isotropy in all directions [17, 24]. One set of cups were made
under high frictional condition without a lubricant and the
other with low friction using a lubricant. In each set, two cups
of different depths were drawn. The process variables are
summarized in Table 2 and the actual cup dimensions are
listed in Table 3.

The coefficients of friction for both lubricated and dry con­
ditions were determined by a series of separately conducted
tests [27]. Circular grids of diameter 1.27 mm (0.05 in.) were
electrochemically etched on surfaces of the blank sheet. Figure
7 shows the specimens with the grids. Analytical and ex­
perimental radial and hoop strain distributions are compared
in Figs. 8(a) and 8(b) for the results obtained under the dry
condition. A similar trend is observed for the
lubricated tests.

The results of a separately conducted eXIJer:im(:ntial
analysis are also presented [25]. The experiment was UUllvUll

Clothes Dryer Inner Door made from Aluminum
ing Quality (AKDQ) steel sheet with thickness of
(0.023 in.). Material constants and process val'iatlles
marized in Tables 1 and 4, respectively.
around one of the edges of the part which
imated as an axisymmetric shape was analyzed.
and measured strain distributions are compared

General agreement between predicted and m(:asillred
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Fig. 9 A comparison of computed major and minor strains along the 
final generator with experimental data of AKDQ steel dryer door 

(a) 
Fig. 8 A comparison of the computed major and minor strains along 
the final generator with experimental data of (a) 5.31 mm deep and, (b) 
11.10 mm deep cup, made in dry condition. Inset of (a) shows geometry 
of the formed cup. 

observed in all cases. The major discrepancy observed is in the 
punch profile area where the measured data exceed those 
predicted by the model. It is worth noting that the predicted 
constant values of strain components in the flat portion of the 
punch is a consequence of the assumption of zero frictional 

force in that region. There is good agreement between actual 
and predicted blank diameter (Table 3) where the discrepan­
cies are less than 5 percent. 

Some of the major sources of error which have been in­
troduced into the analysis and possibly contributed to the 
discrepancies observed between predicted and measured data 
are as follows: (1) the fact that the history dependence of 
plastic deformation is ignored by using total strain theory may 
cause errors in those regions of the part where strain com­
ponents are not proportional; (2) errors are introduced when 
stress and strain are expressed as linear functions of in­
crements, u. Linear approximation of the strain energy may 
also introduce errors unless a sufficiently small increment of 
s t r a in is used ; (3) the bend ing and unbend­
ing of the material over the die profile is neglected. This 
simplification has been made in the majority of the analyses, 
and it is well known that the extra straining of the material due 
to bending and unbending causes the failure location to be 
situated closer to the punch profile; (4) there is an uncertainty 
about the distribution of the coefficient of friction at the 
metal-tool interfaces. 

4 Summary and Conclusions 

Some of the numerical enhancements introduced to the 
original model for one-step forming finite element analysis 
method were described. Magnitudes and directions of the fric­
tional forces at the metal-tool interfaces have been determined 
and incorporated into the analysis. The model exhibits 
cosiderable sensitivity to the coefficient of friction in the 
punch area. On the other hand, friction at the die-metal inter­
face does not markedly affect the strain distribution. Assign­
ment of friction to the outer rim of the blank holder does not 
have appreciable effect on the maximum value of tangential 
strain but increases both tangential and hoop strain in the 
punch region. In all cases, strain distributions in the punch 
area and upper portion of the wall section are far more af­
fected by friction than other segments of the cup. 

The application of the deformation theory of plasticity in 
this analysis may contribute some errors, and the effect of 
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loading history has to be further examined. Moreover, the 
severity of nonproportionality of strain should also be deter­
mined. Such a study has been made in a separate paper [28]. 

It should be noted that the volume integration of equation 
(6) is carried out over the initial (undeformed) configuration 
of the cup, whereas calculations of frictional forces are based 
on the equilibrium of forces in the final (deformed) geometry. 
This inconsistency may cause errors at large strain. Dividing 
the deformation path into several consecutive small steps 
seems to be a solution to this problem and is discussed in the 
separate paper [28]. 
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