
  Fig. 2. FP vs FN gait - physical dimensions needed for video capture

Fig. 1. Left, view of typical security camera monitoring access

point. Right, tracking multiple subjects
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Abstract — In surveillance applications, human gait data obtained

from video contains idiosyncratic tendencies which allows it to be

used as a biometric. This gait data has both time and image

information. Expertise in the domain of time series analysis can

be fruitfully employed in the image processing domain.  In this

paper, we consider the monocular frontal view of gait. In this

view we track body parts to obtain time information and in doing

so, complete occlusion of body parts may occur. To compensate

for this, we present a novel standpoint where occluded images of

objects may be considered as data missing from a time series.

Thus we can consider this as a new application of the “missing

data” problem studied in other fields dealing with time series data

applied to the classic computer vision problem of occlusion. Using

this approach, we consider three ways of compensating for

occlusion - namely polynomial interpolation, autoregressive

prediction and coupled time/frequency domain interpolation. We

propose an experimental instantiation using a gait dataset and

analyzing the motion of colored markers attached to body parts.

The actual and predicted positions are compared which show our

approach holds promise for complete occlusion compensation.

Keywords-occlusion, missing data, gait

I. INTRODUCTION

The proliferation of video devices brought about by global

security concerns and declining hardware costs makes readily

available vast amounts of video data. Human gait data can be

obtained from video and has enough idiosyncratic information

to be used as a biometric, to identify people. Thus gait is an

emerging biometric and is a quintessential multimedia signal,

in that both time and image data are available. Thus domain

knowledge, for example in time series analysis can be used to

solve problems in another field, in this case, computer vision.

Gait shows promise in its use, as it is nonintrusive and can be

used at a distance. Current methods use the fronto-parallel (FP)

view but Lee et al. [1] show that FN gait has several

advantages. Firstly, it uses less space and requires fewer

cameras. As a consequence, it is capable of unobstructed

multiple subject tracking. The FN view naturally allows

combined biometrics which allow for more robust recognition

tasks as shown in Fig. 1 where the face and eyes are clearly

seen. We also see that multiple subjects can be handled as

well. Finally FN gait yields dynamic features that are useful for

temporal analysis. However, the main challenges in FN

tracking are the looming effect due to the camera lens, which

causes the motion of the image to change in a deterministic

(using camera equations) but nonlinear way and the self

occlusion of body parts by the body itself as shown in Fig. 7.

Looming compensation has been discussed in an earlier paper

and here we focus on occlusion.

Rather than standard approaches which use body silhouettes as

ably described by Nixon et al.[2], we consider the motion of

individual body parts like hands and feet. These produce

biologically based spatiotemporal signal features which can be

used as a biometric. As monocular FN gait has to contend with

occlusion, we note that current approaches to occlusion
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compensation require a partial view of the object and can only

handle complete occlusion for very few video frames. Many

computer vision applications involve the tracking of moving

objects. In real life situations these objects may obstruct other

objects or themselves be obstructed from the field of view of

a camera. Monocular vision is especially prone to this effect of

occlusion as seen in Fig. 4. Multiple cameras can be set up to

mitigate this problem, but requires alignment, calibration and

synchronization among the cameras which is a significant

challenge. Video data provide continuous frames of image

data, from which we can track the location of an object, using

methods like contours and colors, assuming that an object is in

the frame. In occlusion, we have little a priori information

about the object’s location in the current image frame, but only

that the location has been determined in earlier frames of a

video stream.

In this paper, we describe the application of the “missing

data” theory in the domain of time series analysis to

compensate for the position of images of objects totally

obscured in FN gait by extrapolation. Section II covers prior

work in various fields. Section III describes the experimental

setup and the problem at hand. Section IV outlines the various

approaches to the problem and Section V presents the

experimental setting and results. Section VI concludes the

paper.

II. PRIOR WORKS

Video capture of human gait is done in various fields. In

computer graphics motion capture (mocap) and medical

applications, several cameras are used to accurately capture

motion. Occlusion is not a problem here as all the cameras will

keep all the body parts in view always. With several cameras,

the problems of aligning and synchronizing them are

significant. In monocular systems, occlusion is more common,

and refers to the blocking of view to an object. This implies

the tracking of its movement and in doing so, deciding whether

an object is in view or not. In the overview of occlusion

tracking by Gabriel et al. [3] most approaches for handling

occlusion are mainly interested when objects merge and/or

split so the object location is not important during occlusion.

But in our situation, we need to use the straight through

approach for occlusion handling as we need to determine the

position of the body part for every video frame. This is the

case if we are using the time series generated by gait data for

characterization purposes. When an object is occluded, we

have to estimate its motion. Some approaches to occlusion

treat it as an extension of the tracking problem. Thus, using

Kalman filters or particle filters, a probabilistic model of the

motion is created. In motion capture systems, the objective is

to analyze human motion with a view to synthesis. In order to

reliably compensate for occlusion, Liu et al. [4] use a training

set of representative motions with motion markers and build a

global linear model of motion. Using existing markers in a

video, they predict the position of missing markers using this

model. Other approaches use triangulation from other visible

objects which have a fixed inter-object distance which are

assumed to be constant as with Aristidou et al. [5] who also use

Kalman filtering to predict motion. Koller et al. [6] use depth

information to determine the order of occluding objects (cars)

to remove unwanted image data. Kalman filters are used to

estimate the object contour and its motion even in cases of

occlusion. Blake et al. [7] use particle filtering with partitioned

sampling to track multiple objects with various degrees of

occlusion. However, this kind of tracking cannot be sustained

for long if the object is completely occluded or the motion is

complex. 

In this paper, we provide a novel viewpoint to problem of

occlusion by considering that the points at which the object is

occluded are “missing” from the main set of data. In this

approach, we do not need training images or the position  of

other markers. A large body of work exists in various fields

which consider how to reconstruct missing or corrupted data

which become outliers. Indeed, the fields of application are

vast, whenever there is the need for automated data capture.

Depending on how one views the problem, this approach can

be used for interpolation or extrapolation, which is a more

difficult problem. From the early 1980’s signal reconstruction

started off with ad-hoc methods based on geometrical

considerations, using splines to bridge the gap between the

missing samples. Splines, by their smooth nature are a natural

choice for this. This led to prediction methods using AR

modeling. For example Esquef et al.[8] use Autoregressive

(AR) modelling to predict the gap in the data due to missing

samples. As AR modeling is so often used for prediction

purposes, here it is used to extrapolate from previous samples.

However if the gap is large, the AR prediction becomes less

effective and a backward prediction needs to be done from

samples after the gap. The earliest example of using both time

and frequency domain manipulation of data to obtain missing

samples is the Papoulis [9]-Gerchberg [10] method. The data

is alternately converted between the time and frequency

domains to reconstruct a time domain signal in a typical

projection onto convex sets (POCS) setting. In the frequency

domain, the signal is bandlimited whereas in the time domain,

the original data (existing, not missing) overwrites that

generated from the frequency domain information. Next we

look at our setup.

III. EXPERIMENTAL SETUP & PROBLEM STATEMENT

In frontal gait recognition, we use feature points that have

more motion in the image plane. This would be the hands, feet

and knees. In our experimental setup, the marker designations

are: lh/rh - left/right hand : lf/rf - left/right foot : lk/rk -

left/right knee. Two additional discs of the same colour are

attached at the waist and face level and are used for distance

normalization. They are: tm/bm, the top/bottom markers,

attached to the waist and neck and provide an origin for the

moving body parts. They are also used to normalize the

distances as the subjects will appear to grow in size as they
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Fig. 3. Increasing self-occlusion as subject nears a

camera

Fig. 6. 2D trajectories of markers in

FN gait

Fig. 7. Left coloured marker on hand being

occluded due to hand movement

approach the camera (i.e. the looming effect). The distance

between the centers of discs is used as a scale factor. To obtain

the actual coordinates, the values shown on the plots (cf. Fig.

4 for example) should be multiplied by this number. The

markers are tracked using the CAMSHIFT [11] algorithm.

Fig. 4 is the plot of the movement of the colored markers

for both x and y positions over time. Fig. 6 shows the trajectory

of the markers in a 2D plot. The looming effect expresses itself

as the amplitude of movement which increases, due to the

refractive effect of the camera lens. This causes the image size

on the focal plane to vary inversely with the distance of the

subject from the lens. This nonlinear variation makes the

analysis more challenging as we cannot make simplifying

assumptions based on linearity. 

As we see in Fig. 7, the left hand completely disappears

from the full frontal view of the camera. An interesting

observation is that as the subject approaches the camera, the

hand is occluded for longer periods as seen in Fig. 3, due to

the body filling a larger field of view.

In considering gait, a useful characteristic is the

availability of its temporal features which can be used as a

biometric. To derive these features, we need a continuous flow

of gait position data. So when occlusion occurs, we need to

compensate, in two basic ways. First is by waiting for the

occluded part to reappear and this becomes a problem of

interpolating to the last observed position, which introduces a

delay in processing. We prefer to compensate during the

period of occlusion, predicting the motion of the object based

on their previous motion, which makes this an extrapolation

approach, which is more challenging.

IV. THEORY OF MISSING DATA HANDLING

Although the waveform of a moving hand may seem

sinusoidal, tracking is inherently a noisy process and we may

not be able to justify assumptions of stationarity and linearity

of the motion. There is also the effect of looming as shown in

Fig. 9 where the amplitude of movement increases as it nears

the camera. We hope to mitigate this effect by compensating

for occlusion a segment at a time. That is, we only provide

compensation up to a period of occlusion and ignore previous

results due to nonlinearities.

We look at the left hand motion of subject s01 in our

dataset in Fig. 5 which shows the occluded motion of the

x-axis movement of a left hand. In order to have comparative

results, we use a sample sequence that does not have

occlusion. We have manually noted the positions where the

hand might have been occluded i.e. when the hand is fully

swung back. These are frames 40 to 43, 67 to 73, 96 to 100,

123 to 129 and 153 to159 which are marked by dotted lines. In

this case, there are five segments of data, corresponding to five

possible episodes of occlusion. In the following discussion, we

define the following terms for each segment of data n+m

samples long, where the 3rd segment is labeled in Fig. 9: 

Fig. 4.  Plot of all markers X and Y positions for FN walk 

Fig. 5. FN marker designations
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Fig. 8. Completely occluded X axis motion of LH marker (dotted

lines are actual positions)

xact(t) - data without missing samples: n+m samples. 

xorg(t) - original, available data: n samples. 

xmiss(t) - missing, or occluded data: m samples.

xdel(t) - data deleted from segment: d samples.

x^ (t) - data estimated from process: m+n-d samples.

x(t) - data actually used: n-d samples.

To be more concise, let the samples xy(t) be contained in

vectors xy where the subscript y refers to the data segments just

described. Note that these are all of length n+m. They have

entries where there are data, and zeros elsewhere. For example,

the vector xorg will have n elements of data and m zeros. When

required, we use matrices and vectors of size n+m-d instead.

Removing d samples of data from the beginning of the segment

can help by preventing overfitting. Then we have the identity

matrix I and a diagonal sampling matrix S both of size n+m.

The elements of S, sii are given by:

(1)

so that Sxact = xorg and (I !S)xact = xmiss 

Furthermore, the data in a segment are preprocessed to have

zero mean and a norm of 1. They are restored to the proper

scale and offset after processing. In this section, we consider

four different ways of compensating for missing data.

The simplest methods for handling missing data employ a

geometrical approach such as polynomial interpolation. That

is, we assume that:

(2)

where ai are coefficients that are determined by the curve

fitting software using a criterion like minimum least square

error. However, the order p needs to be set first. While the

entire segment may not fit a polynomial or by doing so cause

overfitting, a small portion of a segment for example the

segment (n-d) in Fig. 9 should fit a low order polynomial and

be able to extrapolate beyond.

The theory for Autoregressive prediction of data is based

on the fact that many natural processes can be modeled by a

stochastic linear time series and can be expressed as:

(3)

where a0 is a term to account for non zero mean data, ai are the

autoregressive coefficients and ,t is a white Gaussian noise

term. The order of the model is p, and this is known as an

AR(p) process. The ai terms and p can be found by a kind of

optimization process, using various types of criterion which

may be described in the ARFIT [12] software which also has

a simulation component. This software is widely used and is

capable of multivariate AR modeling.

Since our signal has a periodic appearance, it would make

sense to try some kind of sinusoidal fit, even if it is only for a

segment of the signal. So we have for (4):

(4)

where ai are coefficients that are determined by curve fitting

software. We have tried a few combinations of sinusoidal

waveforms but (4) seems to give the best results.

Papoulis proposed a method of data replacement that is a

type of POCS method and was designed from the outset to be

used for the filling of missing data. the current data vector x^ i+1

of length n+m-d at iteration i, is given by:

(5)

Recall that x is the original data vector with missing values and

with d elements removed. The bandlimited data x^ i
BL is obtained

by an Inverse Fourier Transform on the Fourier Transformed

x^ i data (which is fi(T)) bandlimited by B to give bi(T) as shown

in (6):

(6)

Here ö and ö-1 are the Fast Fourier Transform and its Inverse

respectively. Note that the Papoulis-Gerchberg algorithm re-

substitutes the values x(t) into x^ i(t) at each iteration (see (5))

for the sampling points where x(t) is known and available. In

an improvement, Sauer and Allebach[13] use the previous

estimated values of x^ i(t) and add the bandlimited differences in

interpolated terms with the original data x(t) in one variation

of the method This is done for better error control and shown

in (7) and (8).

(7)

where bi(T) is defined as in (6) and 
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TABLE 1 ERROR RATES OF EXTRAPOLATION SCHEMES  IN PERCENT (%)

Fig. 9. Polynomial - order 2 compensation of occluded X

axis motion of LH marker - dotted lines

(8)

where )x^ i(t) are the elements of (Sx^ i - x) + (I - S) ix^ i and ix^ i is

the vector formed by interpolating values for missing data by

the values of known data from the vector Sx^ i - x. The

interpolation can be Voronoi, Line or Spline.

To compare results, we use the percentage error which is

the average of all the errors for the number of segments s in the

data and the error erri for each segment i is given in (9).

(9)

where mean is the mean operator.

V. EXPERIMENTAL INSTANTIATION

In this section we describe our experimental setup, data set

and results.

A. Gait Dataset

To ease the job of video analysis, we track using colored

markers with the premise that this will aid in the effort for

conversion to markerless tracking. In this section we briefly

describe the selection and position of the colored markers used

in our experiments. Spheres are best suited for our tracking

purposes as it looks the same from any angle. A bright

phospherent colored surface is also useful. These spheres act

as markers, as described at the beginning of Section III. We

look at the x and y movements with respect to the camera. Our

dataset comprises video files of 12 subjects in a FN walk for

training. Three of these subjects had a second video recorded

a few minutes after the first to serve as a test set. For each

subject, we have a set of twelve one-dimensional time series,

each representing the coordinates of the movement of a body

part. Thus we have 15 videos of people in a FN walk.

B. Results

We show only the figures of the original and compensated

(dotted) signals from the lhx (left hand motion, x axis) of

subject s01, in the interests of space.  These correspond to the

results shown in the first line of Table 1.  Generally we see that

the compensation is better for the earlier parts of the signal.

This may be attributed to the smaller amplitudes of movement.

It may be effective to have some kind of compensation that

changes parameters according to the amplitude of the signal.

For the Autoregressive fit, we had to use a second order

process because higher orders caused instability. In Fig. ? we

see the rather poor fit. This is also borne out in practice, where

AR processes are not used for long term predictions.

In the polynomial fit, we used the curve fitting facilities in

MATLAB [14] the results are shown in Fig. 9. Again because

of instability, only a second order equation was used. It must

be noted that changing the value of deleted data, d affects the

accuracy as seen in the large errors in the later part of the

simulation. This points the way to a type of adaptive curve fit

strategy.

We use the IRSATOL [15] software which explicitly caters

for irregular sampling to perform time and frequency domain

interpolation to obtain missing samples (as mentioned in

section IV). Based on our setup, it provides the best results as

shown in Fig. 10 and summarized in Table 1. We summarise

the results from subjects s01, s10 and s08 in our gait dataset

and note that similar results are obtained from other subjects

in the time series.

Marker-

Method

AR Polynomial Allebach Sine

lhx/s01 15.40 5.10 4.00 9.85 

lhy/s01 24.7 17.3 13.30 8.50 

lhx/s10 5.64 3.04 2.43 2.90

lhy/s10 46.5 67.30 18.61 21.70

lhx/s08 12.7 7.83 2.64 11.22

lhy/s08 29.5 18.90 10.90 22.90

 VI. CONCLUSIONS AND ACKNOWLEDGMENTS

The experiments we performed demonstrate that using

coupled time and frequency domain interpolation allows us to

compensate for complete occlusion in FN gait, which to a

certain degree, shows periodicity. We have shown that a large

body of research in time series analyses exists which can be

applied to compensate for visual occlusion in looming motion.

We also see that a form of adaptive strategy may have to be

used for such modeling in future work.

The authors wish to thank the anonymous reviewers whose

comments have improved the quality of the paper.
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