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Abstract
In this paper, we present a new integrated synthesis

and partitioning method for multiple-FPGA application-
s. This method �rst synthesizes a design speci�cation
in a �ne-grained way so that functional clusters can be
preserved based on the structural nature of the design
speci�cation. Then, it applies a hierarchical set-covering
partitioning method to form the �nal FPGA partition-
s. Our approach bridges the gap between HDL synthesis
and physical partitioning by fully exploiting the design
hierarchy. Experimental results on a number of bench-
marks and industrial designs demonstrate that I/O lim-
its are the bottleneck for CLB utilization when applying a
traditional multiple-FPGA synthesis method on attened
netlists. In contrast, by fully exploiting the design struc-
tural hierarchy during the multiple-FPGA partitioning,
our proposed method produces fewer FPGA partitions
with higher CLB and lower I/O-pin utilizations.

1 Introduction
Because of their reprogrammability, Field Pro-

grammable Gate Arrays (FPGAs) have become the most
popular Application-Speci�c Integrated Circuits (ASIC-
s) for rapid system prototyping. In addition, the de-
velopment of recon�gurable systems by integrating F-
PGAs and Field Programmable Interconnect Chips (F-
PICs) has become the new trend in design veri�cation,
rapid prototyping, and computation-intensive applica-
tions [1, 2, 3].

In general, the traditional design ow to map designs
onto a multiple-FPGA system consists of the following
two phases. In the �rst phase, a synthesizer is used to
transform a design speci�cation into a CLB-based netlist
by performing HDL compilation, RTL/logic synthesis,
and CLB-based technology mapping tasks. In the second
phase, a circuit-level partitioner is used to partition the
CLB netlist into FPGA chips. One of the crucial tasks
for the above design ow is to partition a design onto a
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set of FPGAs. The problem of FPGA-based partition-
ing is quite di�erent from the classical ASIC partitioning
problem. Because FPGA chips have �xed and limited
amounts of logic units (CLBs) and I/O pins, mapping
a design onto a set of FPGAs is usually predominate-
ly constrained by pin limitations. This often results in
FPGA partitions with very low logic utilizations.

In the past several years, many partitioning approach-
es and algorithms [4, 5, 6, 7] have been proposed to
solve the FPGA partitioning problem. All of the above
approaches perform circuit-level partitioning on at-
tened gate-level or CLB-level netlists. They do not
take into account design-hierarchy information. Further-
more, none of the above approaches exploit the inter-
relationship between design synthesis and partitioning
tasks. In a recent study [8], Schmit et al. experimented
with multiple FPGA partitioning methods at behavioral
and structural levels. In [9], a hierarchical functional
structuring and partitioning method was proposed for
multi-FPGA implementations. Both methods demon-
strated that better FPGA partitions can be achieved
when design structural information is considered during
the partitioning process.

In this paper, we present a new integrated synthe-
sis and partitioning method for multiple-FPGA applica-
tions. This method �rst synthesizes a design speci�ca-
tion in a �ne-grained way so that functional clusters can
be preserved based on the structural nature of the design
speci�cation. Then, it applies a hierarchical set-covering
partitioning method to form the �nal FPGA partitions.
Experimental results on a number of benchmarks and
industrial designs are reported to demonstrate the e�ec-
tiveness of the proposed approach.

2 Problem Description
One commonly used partitioning approach for large

designs is to �rst apply some clustering scheme to reduce
circuit complexity and then apply a set-covering method
to reduce the number of required chips. Based on this
approach, several algorithms [7] have been developed to
produce good results on large industrial designs. How-
ever, this approach performs partitioning on attened
circuits which does not take advantage of circuit hierar-
chy information to alleviate the IO-limitation problem.
Furthermore, the selection of cluster sizes may be very
sensitive to the complexity and quality of the partition-
ing procedure. This motivates us to investigate how to
use a synthesis technique to generate clusters based on
the structural nature of the design speci�cation and pre-
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Figure 1: Two synthesis approaches: (a) module-based, (b)
�ne-grained.

serve the circuit hierarchy so that the partitioning pro-
cedure can fully exploit the design hierarchy.

First we describe the relationship between the syn-
thesis and the partitioning design tasks as follows.
An industrial design is usually represented as a mixed
RTL/logic/gate-level description in High-level Descrip-
tive Languages (HDLs) such as Verilog and VHDL. The
HDL description of a design is described as a set of inter-
connected modules. During the synthesis process, each
module is synthesized into an independent circuit. The
�nal circuit of the design is the composite circuit of all
modules, as shown in Figure 1(a). This synthesis ap-
proach can preserve the circuit hierarchy between the
top-level design, its modules, and their corresponding
netlists. If all the modules are small enough, then each
module can be treated as a basic cluster. However, in
most industrial designs a module often contains a com-
plex function, such as an MPEG algorithm or a oating-
point multiplier, which may be too large to be covered
by a single FPGA chip. In this case, we have to ap-
ply circuit-level partitioning on the module to decom-
pose it into smaller clusters. However, the drawback of
this approach is that we will experience much the same
problem as determining the cluster size when performing
partitioning on attened circuits. Furthermore, a mod-
ule, itself, is too coarse to be used as the basic cluster
for partitioning. One possible solution to overcome the
above problem is to synthesize designs in a �ne-grained
way such that the circuit is generated in a multi-level hi-
erarchy, as shown in Figure 1(b). The sub-circuit of each
leaf node is small enough to be used as a basic cluster for
partitioning. In this case, the design hierarchy can be
fully preserved and the clusters are formed based on the
design hierarchy. Subsequently, we can directly apply a
set-covering algorithm to perform FPGA covering.

3 An integrated synthesis and partition-

ing approach
The proposed design ow consists of three steps: (1)

HDL synthesis, (2) functional-based clustering, and (3)
hierarchical set-covering partitioning. The input to the
system is a design speci�cation described in Verilog.
In the �rst step, a synthesizer [10] performs RTL and
FPGA synthesis tasks. The synthesizer uses a �ne-
grained synthesis method to generate a structural tree
for the design. In the second step, the system perform-
s a functional-based clustering procedure to form basic
clusters. In the third step, a partitioner uses a hier-
archical set-covering algorithm to perform FPGA-based

partitioning. Finally, the system outputs multi-FPGA
partitions in XNF and Verilog formats.

3.1 Functional-based clustering

We use the �ne-grained synthesis method [10] to syn-
thesize the design in a �ne-grained way so that a set of
clusters can be formed according to the structural na-
ture of the design. We use a structural tree to represent
the structural hierarchy of the HDL description of a de-
sign. In a structural tree, the root node represents the
top-level design, each intermediate node a higher-level
design such as modules, processes, and tasks, and each
leaf node a circuit cluster.

We �rst discuss how to synthesize an HDL-based de-
sign in a �ne-grained way as follows. A Verilog descrip-
tion of the design is usually described as a set of hi-
erarchical interconnected modules. Each module may
contain a set of concurrent processes. Each process is
de�ned as an always clause which can be activated by
an event control statement. The statements in the body
of an always statement are repeatedly executed in se-
quential order. From the hardware point of view, each
process can be implemented as an independent hard-
ware block. It seems most natural to use each process
as a basic cluster. However, in order to obtain clusters
with a �ner granularity, we should further decompose
the process-level circuit into smaller clusters. Consider
that a process consists of a set of statements with a set of
input and output signals. The outcomes of the outputs
are dependent on the executions of the statements em-
bedded in the process. It follows that, we can generate a
set of logic functions for each output such that each out-
put is a function of a set of inputs and internal signals
in the process. Furthermore, we can decompose multi-
bit logic functions into sets of bit-level logic functions to
produce clusters with �ner granularities.

The functional-based clustering procedure is shown as
follows.
Procedure Functional Based Clustering(Vdesign) begin

Import a Verilog HDL description;
Create a top-level structural tree;
for (each process node) begin

Determine the I/O ports of the process;
Perform RTL synthesis;
Generate logic functions for each output;
Bit-level functional decomposition;
Construct the leaf nodes;

endfor

Perform logic and FPGA synthesis on nodes;
Perform interconnect analysis;
Return the structural tree;

endProcedure

In the �rst step, a Verilog description is imported
and converted into a top-level structural tree accord-
ing to the hierarchy of the description. In the second
step, the synthesizer performs RTL synthesis tasks to
convert each process into sets of logic functions. In the
third step, a bit-level functional decomposer partitions
the logic functions into a set of bit-level functions to form
the leaf nodes of the structural tree. In the fourth step,
the synthesizer converts each leaf node into a structural
design in Berkeley Logic Interchange Format and EQN
(Boolean Equation) format. In the �fth step, each leaf n-
ode is converted into a CLB design by applying logic and
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Figure 2: A hierarchical connected graph:(a) the structural
tree, (b) the corresponding graph.

FPGA synthesis tasks After generating the CLB netlists
for all the leaf nodes, we can further generate the CLB
netlists for intermediate nodes of the structural tree by
applying a collapsing technique [11]. Consequently, the
required CLBs and IO pins of nodes in the structural
tree can be determined. Furthermore, the number of in-
terconnections between two nodes can be computed by
matching the IO pins of the two nodes. Finally, the pro-
cedure outputs a structural tree and its corresponding
CLB-based design.

3.2 Hierarchical set-covering partitioning
We formulate FPGA covering into a set-covering

problem which is de�ned: Given a hierarchical connect-
ed graph G and the CLB/IO-pin constraint of the FPGA
chips, �nd a minimumnumber of FPGAs to cover G. In
our approach, we use a hierarchical set-covering method
for FPGA covering. Our goal is to produce a coverage
by fully exploiting the structural nature of the design.

After constructing a structural tree and forming the
clusters, we next convert the structural tree into a hi-
erarchical connected graph. Figures 2(a) and (b) show
a structural tree and its corresponding hierarchical con-
nected graph. Each node vi has associated with two at-
tributes CLB(vi) and IO(vi) which represent the num-
ber of CLBs and IO pins contained in it. An edge con-
nects two nodes when there is a physical connection be-
tween them.

The basic idea of the hierarchical covering method is
to start the set-covering procedure from the top-level n-
odes (i.e., module nodes). If no more feasible covers can
be found in the top-level, then the set-covering process
continues on the nodes at the lower level. In short, the
covering process starts from the nodes with coarse gran-
ularities and then moves down to the nodes with �ner
granularities.

Let G = (V;E) be a connected hypergraph. V =Vm [

Vp [ Vf , where Vm is a set of module nodes, Vp a set of
process nodes, and Vf a set of functional nodes. Ccover

denotes a set of FPGA chips. For a node vi, clb(vi) and
io(vi) represent the number of CLBs and IO pins of vi.
CLB and IO denote the CLB and IO-pin constraints of
the FPGA chips.

The inputs to the algorithm include a connected hy-
pergraph G and the CLB and IO-pin constraints (CLB
and IO) of the FPGAs used. The output is the number
of FPGA chips required to cover the design. The algo-
rithm �rst computes the score after assigning the nodes
at the top level into a chip. If the number of CLBs and
IO pins by assigning a node vi into a chip ck satis�es
the CLB and IO-pin constraints of the chip, then the

score of the pair (ck; vi) is calculated as a function of
the closeness between the node and the nodes already
assigned to the chip and the ratio between the number
of CLBs and IO pins. � and � are two parameters set
by the user to express a preference of one term over the
other. Otherwise, the score of (ck; vi) is zero.

After computing the scores for all nodes, if none
of the nodes can be assigned to any chips (i.e.,
all score(ck; vj) = 0), then there are two possible solu-
tions. First, if none of the leaf nodes (i.e., the functional
nodes) can be covered by any of the allocated FPGA
chips, then a new chip cnew is allocated and the cover-
ing procedure is continued, starting from the nodes at
the top level (i.e., module nodes). Otherwise, procedure
Next Level() is invoked to expand the covering process
to the nodes in the next lower level so that the covering
process can be performed on nodes with a �ner gran-
ularity. Second, if there are several possible covering
solutions, then the one with the highest score will be
selected. The algorithm stops when all the nodes are
covered by FPGA chips.
Algorithm Hierarchical Set Covering(G; CLB; IO) begin

Ccover  cnew; Vcluster = V ; top level = Vm;
while (Vcluster 6= �) begin

for (all vi 2 Vcluster(top level))

for (all ck 2 Ccover)
if (clb(fck  vig) � CLB

and io(fck  vig) � IO) then

score(ck; vi) = � Conn(ck; vi) +
� clb(fck; vig)/io(fck; vig);

else score(ck; vi) = 0;

if (all score(ck; vi) = 0) then begin

if (top level = Vf ) then begin

Ccover = Ccover [ cnew;

top level = Vm;
endif

else top level = Next Level(top level);

endif

else begin

Select the pair of fck; vig with the highest score;

Vcluster = Vcluster - vi; ck = ck [ vi;
endelse

endwhile

endAlgorithm

Time complexity. Let n be the number of functional
nodes and m the number of chips used. It takes O(n �
m) time to compute the scores. Hence, the set-covering
procedure takes O(n2 �m) time.

4 Experiments
We have implemented the hierarchical set-covering al-

gorithm in the C programming language. Presently, the
algorithm is embedded in an interactive multiple-FPGA
synthesis system (ISyn) which consists of approximate-
ly 150,000 lines of C code and runs on SUN and HP
workstations.

We have tested our proposed algorithm on four de-
signs. The �rst design Design1 is a 32-bit �fth-
order elliptic �lter benchmark. Design2, Design3, and
Design4 are three industrial designs, a 32-bit oating-
point multiplier, a microcontroller, and a communica-
tion chip. The four designs are described in Verilog de-



Table 1: Comparisons between the MRFM and the FHSC
methods.

Design 1 (MRFM/FHSC)

Chip Type #CLBs IOU #Chips

XC4013 1,680/1,741 .92/.78 10/5
XC4010 1,680/1,799 .96/.81 12/7
XC4005 1,680/1,876 .97/.88 25/13

Design 2 (MRFM/FHSC)

Chip Type #CLBs IOU #Chips

XC4013 1,153/1,196 .93/.87 6/5
XC4010 1,153/1,228 .93/.82 10/6
XC4005 1,153/1,377 .98/.91 18/13

Design 3 (MRFM/FHSC)

Chip Type #CLBs IOU #Chips

XC4013 798/803 .90/.71 9/3
XC4010 798/829 .98/.79 12/4
XC4005 798/978 .96/.88 21/9

Design 4 (MRFM/FHSC)

Chip Type #CLBs IOU #Chips

XC4013 2,964/3,050 .96/.74 16/6

XC4010 2,964/3,247 .98/.89 23/13
XC4005 2,964/3,678 .99/.93 41/27

scriptions with 167, 404, 4,084, and 6,298 lines of code
containing 9, 1, 20, and 36 modules, respectively. Us-
ing the �ne-grained synthesis method, the hierarchical
structural trees contain 5, 7, 30, and 167 process nodes
and 595, 57, 1,095, and 5,148 functional leaf nodes, re-
spectively.

We have compared the partitioning results pro-
duced by our proposed Fine-grained synthesis and Hi-
er Set Covering partitioning method (FHSC) and the
results produced by the Module-based synthesis and
RFM partitioning method (MRFM ). For the latter,
we �rst performed module-based synthesis to generate a
attened CLB netlist. Then, we applied the RFM [12]
algorithm to partition the netlist into multiple-FPGA
chips. Table 1 shows the comparative results in which
Type, #CLBs, IOU , and #Chips represent chip types,
the number of CLBs, I/O utilization, and the number
of chips used, respectively. The results show that our
proposed method produced partitions using fewer chips
and lower I/O utilizations than that produced using the
traditional method.

From the experiments, the following observations can
be made. First, the results show that the �ne-grained
synthesis with hierarchical set-covering partitioning pro-
duced designs using in average of 10% more CLBs than
that produced by the module-based synthesis with RFM
partitioning. The additional design overhead resulting
from our method is explained as follows. Using the
module-based synthesis method, the synthesis system
can apply a global optimization procedure e�ectively on
each module of the designs, often resulting in smaller
circuits. On the other hand, using the �ne-grained syn-
thesis method, the synthesis system applies optimization
procedures on either module, process, or functional n-
odes depending on the partitioning decision. When the
functional nodes of a module are assigned to several par-
titions, each functional node will be synthesized into an
independent circuit. In this case, the synthesized cir-
cuits will be larger compared to that produced using the

module-based synthesis method. Hence, using the �ne-
grained synthesis method may result in a larger CLB
design. Nevertheless, the method can produce designs
with a �ner granularity which provides a much greater
degree of exibility for partitioning.

Second, when HDL synthesis and physical partition-
ing tasks are integrated for multiple-FPGA synthesis,
the quality of the synthesized results may depend on
the coding style of the HDL design descriptions. De-
signers can either describe a design as a single module
and a single process, or a description containing a set
of interconnected modules and processes. The latter ap-
proach should provide a much greater degree of exi-
bility for multiple-FPGA partitioning. From this study,
we have observed that our proposed method is very ef-
fective for communication-oriented and control-oriented
designs (e.g., Design3 and Design4) which are usually
described as a set of interconnected modules in HDLs
and do not contain a large data path.

5 Conclusions
In this paper, we have presented a new integrated

synthesis and partitioning method for multiple-FPGA
applications. We have tested the proposed method on
a number of benchmarks and industrial designs. Ex-
perimental results have shown that high-density FPGA
partitions can be achieved when the structural hierar-
chy of designs is fully exploited during the partitioning
process.

Future studies include developing di�erent integrat-
ed synthesis and partitioning methods targeted to de-
signs described in di�erent HDL coding styles and
performance-driven partitioning methods.
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