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Abstract

Dynamics of developmental progress is commonly
reconstructed from imaging snapshots of chemical or
mechanical processes in fixed embryos. As a first step
in these reconstructions, snapshots must be spatially
registered and ordered in time. Currently, image
registration and ordering is often done manually,
requiring a significant amount of expertise with a specific
system. However, as the sizes of imaging data sets grow,
these tasks become increasingly difficult, especially when
the images are noisy and the examined developmental
changes are subtle. To address these challenges, we
present an automated approach to simultaneously register
and temporally order imaging data sets. The approach
is based on vector diffusion maps, a manifold learning
technique that does not require a priori knowledge
of image features or a parametric model of the
developmental dynamics. We illustrate this approach by
registering and ordering data from imaging studies of
pattern formation and morphogenesis in three different
model systems. We also provide software to aid in the
application of our methodology to other experimental
data sets.

KEY WORDS: temporal ordering, image registration,
vector diffusion maps

Introduction

In one of the common approaches to studies of
developmental dynamics, a group of embryos is fixed
and stained to visualize a particular biochemical or
morphological process within a developing tissue. The
developmental dynamics must then be reconstructed from
multiple embryos, each of which contributes only a
snapshot of the relevant process along its developmental
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Fig. 1: Caricature illustrating the tasks of image
registration and temporal ordering. (A) Images of
“samples”, each in a different orientation and a different
stage of development. (B) Registered and ordered
samples. For this caricature, the registration and ordering
is straightforward because the data set is small, the
landmarks are visually apparent, and the developmental
changes are easy to recognize.

trajectory (Jaeger et al., 2004; Peter and Davidson, 2011;
Fowlkes et al., 2008). Importantly, the “age” of any
given embryo arrested in its development is often only
approximately known. Typically, what is known is a
certain time window to which a collection of embryos
belongs (Ng et al., 2012; Richardson et al., 2014; Castro
et al., 2009). Furthermore, images are often collected
in different spatial orientations. In order to recover the
developmental dynamics from such data sets, snapshots
of different embryos must first be spatially aligned or
registered, and then ordered in time.

Temporal ordering and registration of images can be
done manually when the number of images is small
and the differences between them are visually apparent.
Fig. 1 shows a caricature of fish development which
illustrates the processes of growth and patterning. In
this case, temporal ordering can be accomplished by
arranging the fish by size, which is monotonic with the
developmental progress. Image registration is based on
obvious morphological landmarks, such as the positions
of the head and the fins. In contrast to this example,
real data pose nontrivial challenges for both registration
and temporal ordering. In general, the landmarks
needed for registration, as well as the attributes which
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can be used to order the data, are not known a
priori. Additional challenges arise from embryo-to-
embryo variability, sample size, and measurement noise.

We present a robust algorithmic approach to
simultaneous registration and temporal ordering. In
contrast to a number of previous methodologies (Zitova
and Flusser, 2003; Rowley et al., 1998; Hajnal and Hill,
2010; Greenspan et al., 1994; Zhao et al., 2003; Dubuis
et al., 2013), our methodology does not rely on the a
priori knowledge of landmarks for registration or markers
of developmental progression. The approach is based on
vector diffusion maps (Singer and Wu, 2012), a manifold
learning algorithm which simultaneously addresses the
problems of registration and temporal ordering. This
algorithm is one of several nonlinear dimensionality
reduction techniques that have been developed over the
past decade (Belkin and Niyogi, 2003; Coifman et al.,
2005; Coifman and Lafon, 2006; Tenenbaum et al., 2000;
Roweis and Saul, 2000), for applications ranging from
analysis of cryo-electron microscopy (cryo-EM) images
of individual molecules (Zhao and Singer, 2014; Singer
et al., 2011) to face recognition (Lafon et al., 2006) and
classification of CT scans (Fernández et al., 2014).

Here, the vector diffusion maps algorithm is adapted
for the analysis of images of developing tissues in studies
of developmental dynamics, with the main objective
of revealing stereotypic developmental trajectories from
fixed images. To illustrate our approach, we analyze
four experimental data sets. Our first two data sets
come from live imaging studies of Drosophila and
zebrafish embryogenesis. In both of these examples,
the correct rotational orientation and temporal order are
independently known, and these data sets will be used
to validate our approach. Our third data set consists of
images from fixed Drosophila embryos where the correct
orientation and order is unknown; here, we will show how
the algorithm can help uncover developmental dynamics
which are not readily apparent. Our final data set consists
of z-stacks of Drosophila wing discs, which we will use
to illustrate how our methods can be used to analyze
specific types of three-dimensional imaging data. We also
show how to compute an average trajectory from a set of
registered and ordered fixed images to remove noise due to
intersample variability and obtain a smooth description
of the underlying developmental dynamics.

Results

Vector diffusion maps for registration and
temporal ordering

Vector diffusion maps (Singer and Wu, 2012) is a manifold
learning technique developed for data sets which contain
two sources of variability: geometric symmetries, such as
rotations of the images, which one would like to factor
out, and “additional” directions of variability, such as

temporal dynamics, which one would like to uncover.
Vector diffusion maps combine two algorithms, angular
synchronization (Singer, 2011) for image registration and
diffusion maps (Coifman et al., 2005) for extracting
intrinsic low-dimensional structure in data, into a single
computation. We will use the algorithm to register images
of developing tissues with respect to planar rotations,
as well as uncover the main direction of variability
after removing rotational symmetries. Although in
general, images may contain variations due to rotations,
translations, and scaling, we will remove the relevant
translations and/or scaling via relatively simple image
preprocessing, and focus only on factoring out rotations
using the vector diffusion maps algorithm. In the
case that all relevant symmetries can be removed with
straightforward preprocessing, our algorithms can extract
the main direction of variability within the imaging data
set. We assume that this main direction of remaining
variability in these images is parameterized by the
developmental time of each embryo. As a consequence,
uncovering this direction should reveal the underlying
dynamics.

Angular synchronization uses pairwise alignment
information to register a set of images in a globally
consistent way. A schematic illustration of angular
synchronization is shown in Fig. 2A, where each image is
represented as a vector, and the goal is to align the entire
set of vectors given pairwise alignment measurements.
We first compute the angles needed to align pairs of
vectors (or images), which in general requires no notion
of a template function (Ahuja et al., 2007; Sonday et al.,
2013). In this work, we aligned pairs of images with
respect to rotations by exhaustively searching over a
discretized space of rotation angles to minimize the
Euclidean distance between the pixels. However, pairwise
alignments can also be computed by aligning appropriate
image landmarks or features (Dryden and Mardia, 1998).
When the data are noisy, these pairwise measurements
may by inaccurate, and so we utilize all pairwise
measurements to align the set of images robustly. Using
the alignment angles between all pairs of vectors, angular
synchronization finds the set of rotation angles (one angle
for each vector) that is most consistent with all pairwise
measurements (see supplementary material); this is
illustrated in Fig. 2B. In this schematic, registration
via angular synchronization is trivial, as the pairwise
measurements contain no noise. However, the algorithm
can register data sets even when many of the pairwise
measurements are inaccurate (Singer, 2011).

After removing variability due to rotations, the
developmental dynamics may be revealed by ordering the
data along the one-dimensional curve that parameterizes
most of the remaining variability in the data. Such a
curve can be discovered using diffusion maps (Coifman
et al., 2005), a nonlinear dimensionality reduction
technique that reveals a parametrization of data that
lies on a low-dimensional manifold in high-dimensional
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Fig. 2: Schematic illustrating angular synchronization
and diffusion maps. (A) Set of vectors, each in a
different orientation. The pairwise alignment angles
are indicated. (B) The vectors from A, each rotated
about their midpoint so that the set is globally aligned.
Note that the chosen rotation angles are consistent with
the pairwise alignments in A: the difference between a
pair of angles in B is the same as the pairwise angle
in A. (C) Data points (in black) which lie on a one-
dimensional nonlinear curve in two dimensions. Each
pair of points is connected by an edge, and the edge
weight is related to the Euclidean distance between the
points through a Gaussian kernel (see supplementary
material), so that pairs of data point which are close are
connected by darker (“stronger”) edges. (D) The data
in C, colored by the first (non-trivial) eigenvector from
the diffusion map computational procedure. The color
intensity is monotonic with the perceived curve arclength,
thus parametrizing the curve.

space. The idea is illustrated in Fig. 2C, where the
data are two-dimensional points which lie on a one-
dimensional (nonlinear) curve. We use local information
about the data to find a parametrization which respects
the underlying manifold geometry, so that points which
are close in high-dimensional space (e.g., images which
look similar) are close in our parametrization. This
idea of locality is denoted by the color of the edges
in Fig. 2C: data points which are close are connected
by dark edges, and clearly, the dark edges are more
“informative” about the low-dimensional structure of
the data. The color in Fig. 2D depicts the one-
dimensional parametrization or ordering of the data that
we can detect visually. A detailed example of using
vector diffusion maps to register and order synthetic
data is given in Fig. S2, and a step-by-step tutorial of
the diffusion maps implementation is included in the
supplementary material. In our working examples, each
data point will be of much higher dimension (e.g., a
pixelated image or three-dimensional voxel data), and

so we cannot extract this low-dimensional structure
visually. Instead, we will use diffusion maps which
automatically uncovers a parametrization of our high-
dimensional data from the eigenvectors of the appropriate
matrix (see supplementary material). Furthermore,
the corresponding eigenvalues will allow us to test our
assumption that our data approximately lie on a one-
dimensional manifold (see Fig. S3–S6).

Method validation using live imaging

Drosophila gastrulation

To validate the proposed approach, we first applied our
algorithm to a data set where the true temporal order and
rotational orientation of the images were known a priori.
This data set was obtained through live imaging near the
posterior pole of a vertically oriented Drosophila embryo
during the twenty minutes spanning the late stages of
cellularization through early gastrulation. During this
time window, the ventral furrow is formed, where the
ventral side buckles towards the center of the embryo,
internalizing the future muscle cells and forming a
characteristic “omega” shape. Germband extension then
causes cells from the ventral side to move towards the
posterior pole of the embryo, and then wrap around to
the dorsal side (Leptin, 2005). At the end of this process,
cells which were originally on the ventral and posterior
side of the embryo find themselves on the dorsal side,
causing a similar “omega” to appear on the dorsal side.

Fig. 3A shows selected images from this live imaging
data set, which contains 40 consecutive frames taken
at 30 second time intervals at a fixed position within a
single embryo. Each image shows an optical cross-section
near the posterior pole of a vertically oriented developing
embryo, with the nuclei labeled by Histone-RFP. Each
frame was arbitrarily rotated, and the order of the frames
was scrambled. The task is now to register these images
and order them in time to reconstruct the developmental
trajectory.

We used vector diffusion maps to register and order
the images. Fig. 3B shows the images from Fig. 3A,
now registered and ordered; the real time for each frame
is also indicated. With a small number of exceptions,
the recovered ordering is consistent with the real time
dynamics. Fig. 3C and Fig. 3D show the correlations
between the recovered and true angles and rank orders,
respectively, for the entire data set. Both the angles and
the ranks are recovered with a high degree of accuracy.
We note that determining which end of the trajectory
corresponds to early in the developmental progression
is a post-processing task that requires some a priori
information.

To assess the robustness of the proposed methodology,
we repeated this procedure with four additional data sets
extracted from independent live imaging studies spanning
the same developmental time period. The results are
shown in Fig. 3E. The errors in the recovered angles are
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Fig. 3: Method validation using live imaging of Drosophila embryos. (A) Selected images from a live imaging study
of a Drosophila embryo during gastrulation. Scale bar indicates 50µm. Each frame is in an arbitrary rotational
orientation, and the order of the frames has been shuffled. (B) Images from A registered and ordered by vector
diffusion maps. The dorsal side of each embryo now appears at the top of each image, and the ventral side appears
at the bottom. (C) The correlation between the recovered rotation angle (using vector diffusion maps) and the
true rotation angle. The average absolute error in the recovered angles is 8.37◦. (D) The correlation between the
recovered rank (using vector diffusion maps) and the true rank. The rank correlation coefficient is 0.9989. (E) The
average error in the recovered angle and the rank correlation coefficient for 5 independent live imaging studies.

all less than 10◦, and the rank correlation coefficients
are consistently greater than 95%, indicating that our
methodology can reproducibly order data of this type.

Zebrafish epiboly

As another validation for the proposed methodology,
we applied our algorithm to a time-lapse movie
of zebrafish embryogenesis. We used a publicly
available live imaging data of zebrafish embryogenesis
(https://zfin.org/zf info/movies/Zebrafish.mov,
Karlstrom and Kane (1996)). Taken with a differential
interference contrast (DIC) microscope, the movie
records the first 17 hours of zebrafish development, from
a single cell stage to a 16-somite stage. We selected
120 consecutive frames from this movie which capture
5.5 hours of epiboly (3.5–9 hours after fertilization). In
this experiment, embryos were immobilized for imaging
so that the position and orientation remained fixed (Kane
et al., 1996). At the start of the time window, cells have
divided 10–11 times and are accumulated in a cell mass
above the yolk. The cell mass is then compressed and
the animal-vegetal axis of the embryo (vertical axis in
Fig. 4) shortens to form a spherical embryo shape by
the end of the fourth hour of development. Then, the
yolk syncytial layer, which forms the boundary between
the yolk and the cell mass, moves upward, forming a
dome-shaped structure. During this stage, the cells

rearrange to form a uniform layer about four cells thick.
With time, this cell layer then spreads over across the
yolk and expands toward the vegetal pole. At the end of
epiboly, the blastoderm completely engulfs the yolk.

As in the example of Drosophila embryo live imaging,
the two-dimensional frames were randomly rotated and
shuffled (Fig. 4A). We then used vector diffusion maps to
register and order the frames. The results are shown in
Fig. 4B. The recovered rotations and order are consistent
with the expected developmental dynamics, as shown in
the correlations between the recovered and true ranks
(Fig. 4C). Quantitatively, the rank correlation coefficient
for this data set is 0.9954, and the average error in
the recovered angle is 4.14◦. Some errors in ordering
images of the early embryo result from slow cell movement
during the early developmental stage where cells divide
and accumulate above the yolk. During epiboly, cell
movement is more dynamic and the recovered ordering
is more consistent with the real dynamics.

In summary, we have shown that our approach to
temporal ordering performs very well on imaging data
of two different developmental processes (Drosophila
gastrulation and zebrafish epiboly), taken with two
different imaging methods (fluorescent microscopy and
DIC) where the true temporal order is known a priori.
Provided there exist significant dynamics within the data
set and that the developmental trajectory is well-sampled,
the developmental dynamics can be recovered.
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Fig. 4: Method validation using live imaging of a zebrafish embryo. (A) Selected images from a movie of zebrafish
epiboly. Scale bar indicates 200µm. Each frame is in an arbitrary rotational orientation, and the order of the frames
has been shuffled. (B) Images from A after registration and ordering using vector diffusion maps. The real time of
each frame is also indicated. (C) Correlation between the rank recovered using vector diffusion maps and the true
rank. The rank correlation coefficient is 0.9954. The larger errors in the recovered ranks towards the beginning of
the trajectory are due to the slow cell movement within that time window.

Data sets with intersample variability

Fixed images of Drosophila gastrulation

We have analyzed how our algorithm performs on two
model data sets where all images come from a single
embryo. In practice, we are interested in cases where
each image comes from a different embryo, and the largest
source of noise in the considered data set arises from
embryo-to-embryo variability. To demonstrate that our
methods are robust to such variations, we constructed
a synthetic time course data set by selecting a random
image from one of five Drosophila live imaging data sets
(those data sets used in Fig. 3) at each time point. The
resulting data set is spatially unregistered, scrambled
in time, and reflects embryo-to-embryo variability. The
median rank correlation coefficient when ordering such a
synthetic time course using our methodology was 0.77,
indicating that the algorithm can recover the temporal
order even under noisy conditions.

We then applied our approach to a data set where the
true rotational orientation and temporal order was not
known a priori. Fig. 5A shows selected images from
a set of 120 images of developing Drosophila embryos
which cover a thirty minute time interval spanning late
cellularization through gastrulation. This data set is
more complex than the live imaging data sets in that it
contains significantly more images, each of which provides
information about tissue morphology and the spatial
distribution of two regulatory proteins. Each image shows
an optical cross-section of the posterior view of a different
embryo at a different rotational orientation and fixed
at a different (and unknown) developmental time. The
nuclei (gray) were labeled with DAPI, a DNA stain.
Embryos were stained with the antibody that recognizes
Twist (Twi, shown in green), a transcription factor which
specifies the cells of the future muscle tissue. Another
signal is provided by the phosphorylated form of the
extracellular signal regulated kinase (dpERK, shown in
red), an enzyme that, in this context, specifies a subset
of neuronal cells (Lim et al., 2013).

Fig. 5B shows the selected images in Fig. 5A, now

registered and ordered using vector diffusion maps.
Registered and ordered images of individual embryos
can then be used to construct a representative average
trajectory. Each snapshot in the average trajectory is the
(weighted) average of a group of successive images from
the registered and ordered data set (see supplementary
material). Averaging successive images removes some of
the interembryo variability, so that sequential snapshots
of this averaged trajectory, shown in Fig. 5C, serve as a
summary of the stereotypic developmental dynamics.

From this average trajectory, we can now easily
see the developmental progression consistent with the
known dynamics: dpERK first appears as two lateral
peaks at the ventrolateral side of the embryo, and a
third dpERK peak then appears at the dorsal side of
the embryo. During mesoderm invagination, the two
ventrolateral dpERK peaks merge together, eventually
forming, together with Twi, the “omega” shape. The
dorsal dpERK peak then disappears during germband
extension as cells from the ventral side wrap around
to the dorsal side. At the end of this process, similar
“omegas” formed by Twi and dpERK appear on the
dorsal side of the embryo; these patterns are most readily
seen in the last image of Fig. 5C. Thus, vector diffusion
maps can accomplish the tasks presented in the caricature
in Fig. 1, even in the absence of information about
image landmarks and without a priori knowledge of
developmental features.

To evaluate the quality of our registration and ordering,
we can use prior knowledge about the developmental
system. The Twi signal is known to form a single peak at
the ventralmost point of the embryo. We found that the
standard deviation in the location of this peak in the set of
registered images was ∼8◦, indicating that the algorithm
successfully aligns the ventralmost points of the images.
Because the developmental time of each embryo cannot
be easily estimated, we have few options for evaluating
the quality of our temporal ordering. We compared
the ordering obtained from vector diffusion maps to
the ordering provided by a trained embryologist who
is knowledgeable about the developmental progression
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Fig. 5: Analysis of images of fixed Drosophila embryos. (A) Images of Drosophila embryos, stained for nuclei (gray),
Twi (green), and dpERK (red). Scale bar indicates approximately 50µm (images have been rescaled to remove slight
interembryo size variations). Each image is of a different embryo arrested at a different developmental time and in
a different rotational orientation. (B) Data from A, registered and ordered using vector diffusion maps. The expert
rank for each image is indicated. (C) A representative “developmental trajectory” obtained from local averaging of
the entire set of registered and ordered images (see supplementary material). (D) Correlation between the image
ranks calculated from the vector diffusion maps algorithm and the ranks obtained from ordering by an expert. The
rank correlation coefficient is 0.9716.

and the important image features. The ranks from the
ordering provided by the embryologist, which we will refer
to as the “expert rank”, are indicated for the images in
Fig. 5B , and the rank correlation (see Fig. 5D) shows
that our ordering is consistent with the expert ordering.

Fixed z-stacks of Drosophila wing discs

In this section we show that the approach can readily be
applied to three-dimensional data. We restrict ourselves
to the case where an obvious fixed axis exists, so that
only rotations of the three-dimensional data around
this axis need be taken into account. This does not
constitute an inherent limitation for vector diffusion
maps. While for simplicity here we will not discuss
the general case, incorporating general 3D symmetries is
possible (Arie-Nachimson et al., 2012; Wang and Singer,
2013; Cucuringu et al., 2012).

To demonstrate this approach, we used an existing
three-dimensional data set of fixed Drosophila wing
imaginal discs (Hamaratoglu et al., 2011). Imaginal
discs are groups of progenitor cells in fly larva that
will transform into specific organs during metamorphosis.
The wing disc is an imaginal disc that turns into a wing.
The data set is composed of 46 fixed wing discs whose
developmental times range from 72 to 112 hours after
fertilization. Each disc contains 21 z-slices taken at 1 µm
intervals. The discs were dissected from larvae expressing
the Dad-GFP reporter construct (green) and stained with
antibodies that recognize Spalt (red), Wingless (gray),
and Patched (gray), the factors that play important roles
in disc patterning and growth (Fig. 6A).

In the wing disc, the anterior-posterior and dorsal-
ventral axes are significantly larger than the third
principal axis (see Fig. 6A). Therefore, we need not
consider registration in all three dimensions, and can
instead focus on registering the wing discs with respect

to rotations only in the x-y plane. To register the data,
we first aligned the maximum intensity projections using
angular synchronization. We then used these rotations to
register the full three-dimensional data in the x-y plane.
Because the maximum intensity projections are two-
dimensional images, this step is no more computationally
intensive than the previous examples. Such an approach
is possible when there are distinct major and minor axes
within a three-dimensional sample, which reduces the
rotational degrees of freedom.

We then used diffusion maps to order the registered
three-dimensional data. Fig. 6B shows selected images
from the data set ordered by diffusion maps. In the
original data set, each disc was assigned to one of six
time classes (72–73 hr, 76.5–77.5 hr, 79–80 hr, 89–90 hr,
100–101 hr, and 110.5–111.5 hr after fertilization) by
an expert; these times are indicated in Fig. 6B. In
the ordered set, the size of wing disc grows, and the
intensity of the Dad-GFP signal increases as a function
of time. The rank correlation coefficient based on the
time class is 0.9436. The registration errors are primarily
due to some wing discs having extra tissue attached
to them (such as the image in Fig. 6A and the fourth
image in Fig. 6B). Even with such obstructions, we can
accurately order the images and extract a stereotypical
developmental trajectory, shown in Fig. 6C, by averaging
(see supplementary material). We can now clearly see the
growth of the wing disc, even though averaging somewhat
blurs some finer scale structures.

Computational requirements

The computational costs for our methodology are
outlined in Fig. 7. The computational time is a function
of the number of images in the data set, the number
of pixels in each point, and the angular resolution
to compute the pairwise rotations (see supplementary
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Fig. 6: Analysis of three-dimensional Drosophila wing disc z-stacks. (A) Maximum projections of an example three-
dimensional Drosophila wing disc z-stack. The anterior-posterior (A-P) and dorsal-ventral (D-V) axes are indicated.
Discs express the Dad-GFP reporter construct (green), and are stained for Spalt (red), Wingless (gray), and Patched
(gray). Projections along the x-, y-, and z-axes are shown. (B) Example three-dimensional images, ordered using
diffusion maps. The time cohort, as assessed by an expert, is indicated for each image, and the rank correlation
coefficient between the diffusion maps ordering and the expert timing is 0.9427. (C) The average developmental
trajectory for the registered and ordered images.

material). Furthermore, the computation of the pairwise
rotational alignments, which accounts for the majority
of the computational time, is trivially parallelizable, and
only a subsample of the pairwise alignments need to be
computed for larger data sets for accurate recovery of
the underlying rotations (Singer, 2011). Because the
computational cost increases with the image resolution,
we chose to subsample all of our data sets to 100 × 100
pixels. This resolution allowed us to rapidly analyze
our data sets while still retaining all of the relevant
developmental features. However, as can be seen from
the computational costs in Fig. 7, it is feasible to use our
algorithms to analyze higher-resolution images.

The requisite user intervention and parameter tuning
required for our method is relatively minor. As a
first step, images must be preprocessed so that the
Euclidean distance between the pixels is informative.
Our software provides several preprocessing options (such
as blurring, rescaling, and mean-centering), as well as
some guidance for what options to select depending on
the system of interest. Two algorithmic parameters,
the angular discretization to compute the pairwise
alignments and the diffusion maps kernel scale which
determines which data points are “close” (see Fig. 2
and supplementary material), must also be defined. We
also provide some guidance on selecting these parameters,

and found that the results are robust to both of these
parameters. Overall, the tasks of image preprocessing
and parameter selection are relatively simple compared
to manual registration and ordering of images, and so
this methodology is promising for much larger imaging
data sets which are impractical to evaluate manually.

Discussion

Temporal ordering of large-scale data was done in the
context of molecular profiling studies, in which data
points are vectors describing the expression levels of
different mRNA (Anavy et al., 2014; Trapnell et al.,
2014; Gupta and Bar-Joseph, 2008). At the same time,
temporal ordering of imaging data sets was done with
a significant amount of human supervision and using
registered images as a starting point (Yuan et al., 2014;
Surkova et al., 2008; Fowlkes et al., 2008), or using
some a priori knowledge of the relevant developmental
processes (Dubuis et al., 2013). In contrast to most
of the existing registration approaches which rely on
the knowledge of appropriate landmarks in the images
(Dryden and Mardia, 1998) (such as the eyes in face
recognition applications (Zhao et al., 2003)), algorithms
based on angular synchronization can register images

7



A

10
2

10
3

10
1

10
2

number of images

C
P

U
 ti

m
e 

(s
ec

on
ds

)

 

 

grayscale
color

B

100x100 1000x1000

10
1

10
2

10
3

number of pixels

C
P

U
 ti

m
e 

(s
ec

on
ds

)

 

 

grayscale
color

C

1° 10°

10
1

10
2

angular discretization

C
P

U
 ti

m
e 

(s
ec

on
ds

)

 

 

grayscale
color

D
Data Set Data Type

Number of
Channels

Number of
Images

Number of
Pixels

Angular
Discretization

CPU time

Drosophila
gastrulation
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Fig. 7: Computational requirements for the presented methodology. (A) CPU time as a function of the number of
images in the data set (for 100 × 100 pixel images, and 10◦ angular discretization). Empirically, the CPU time is
∼ O(n1.33) in number of images. (B) CPU time as a function of the number of pixels in the images (for 120 images,
and 10◦ angular discretization). Empirically, the CPU time is ∼ O(n1.83) in the number of pixels. (C) CPU time as
a function of the number of rotations (for 120 images of 100×100 pixels). Empirically, the CPU time is ∼ O(n−0.77)
in the angular discretization. (D) The algorithm settings and computational requirements for the data sets analyzed.
All times are reported for an Intel Core i7 2.93 GHz processor.

even in the absence of such information, making them
relevant for a wide variety of applications.

Angular synchronization and vector diffusion maps
have been used to reconstruct molecular shapes from
cryo-electron microscopy images (Singer and Wu, 2012;
Zhao and Singer, 2014; Singer et al., 2011). Because
of high levels of instrument noise in these data,
thousands of images were needed for successful shape
reconstruction. Based on the presented results, we
expect that much smaller data sets may be sufficient
for successful reconstruction of developmental trajectories
from snapshots of fixed tissues. In general, the size of the
data set required for accurate registration and ordering
is a function of the instrument noise, interembryo
variability, and the complexity of the developmental
dynamics.

The benefits of our approach to image data mining
are twofold. First, the algorithm can accomplish the
tasks of registration and ordering in a single step.
Furthermore, because our methodology is nonlinear, it
can successfully order data sets which contain complex

dynamics (see Fig. S7 for a comparison of ordering
using linear principal component analysis versus vector
diffusion maps for the data sets presented in this paper).
We expect nonlinear techniques to be necessary for larger
data sets which span a wider dynamic range. The
main utility of our proposed methodology lies in the
analysis of data sets containing hundreds of images from
systems which have not been well-studied. For such data
sets, manual ordering of the images can be nontrivial,
and our algorithms can clearly accelerate uncovering the
underlying developmental dynamics.

We acknowledge that our methods, though general, do
have limitations. The first is that we require enough
data to sufficiently sample the developmental trajectory.
Therefore, for very small and/or very noisy data sets,
our algorithms may fail. Second, the pertinent image
features need to be large compared to the noise and
the image resolution. In all of our examples, the
relevant expression patterns and morphological structures
span several pixels and are large compared to both
the instrument noise and embryo-to-embryo variability,

8



making the Euclidean distance between pixels a good
measure of images similarity.

Vector diffusion maps allow us to automatically
register images, an essential task for many applications.
Simultaneously, the algorithm provides us with
parameters to describe each image. In the examples
presented here, we have focused on ordering the images
in time using the first vector diffusion maps coordinate.
In general, we can recover several coordinates which
concisely and comprehensively describe the data set.
This parametrization can then be used for typical
data analysis tasks, such as outlier detection and model
fitting. Furthermore, images taken from different viewing
directions can be analyzed, as the vector diffusion maps
parametrization will organize the images according to
the viewing angle (Singer et al., 2011). Another direction
for future work is related to the joint analysis of data
sets provided by different imaging approaches, such as
merging live imaging data of tissue morphogenesis with
snapshots of cell signaling and gene expression from
fixed embryos (Krzic et al., 2012; Ichikawa et al., 2014;
Rübel et al., 2010; Dsilva et al., 2013). In the future,
it would also be interesting to explore the connections
between our proposed approach and recently developed
methods for ordering and classification of face images
(Kemelmacher-Shlizerman et al., 2011, 2014) Given
the rapidly increasing volumes of imaging data from
studies of multiple developmental systems, we expect
that dimensionality reduction approaches discussed in
this work will be increasingly useful for biologists and
motivate future applications and algorithmic advances.

Materials and Methods

Drosophila embryo experiments

Oregon-R was used as wild type Drosophila strains.
Embryos were collected and fixed at 22◦C. Monoclonal
rabbit anti-dpERK (1:100, Cell signaling) and rat
anti-Twist (1:500, a gift from Eric Wieschaus) were
used to stain proteins of interest. DAPI (1:10,000,
Vector Laboratories) was used to visualize nuclei, and
Alexa Fluors (1:500, Invitrogen) were used as secondary
antibodies. Histone-RFP strain was used to obtain
time-lapse movie of gastrulating embryos at 22◦C. Live
embryos were loaded to the microfluidic device with
PBST to keep them oxidized, and fixed embryos were
loaded with 90% glycerol.

Drosophila embryo microscopy

Nikon A1-RS scanning confocal microscope, and the
Nikon 60x Plan-Apo oil objective was used to image
Drosophila embryos. Embryos were collected, stained,
and imaged together under the same microscope setting.
End-on imaging was performed by using the microfluidics
device described previously (Chung et al., 2011). Images

were collected at the focal plane ∼90 µm from the
posterior pole of an embryo (see Fig. S1).

Image preprocessing

Images were subsampled, normalized, blurred, and
centered prior to diffusion maps analysis to remove
any variations due to the experimental and imaging
framework. Details about the specific preprocessing
operations applied to each imging data set are given in
supplementary material.

Software and imaging data

All algorithms and analysis were implemented in
MATLAB R© (R2013b, The MathWorks, Natick,
Massachusetts). Software, including documentation
and tutorials, along with the full imaging
data sets used in this paper are available at
genomics.princeton.edu/stas/publications.html

under “Codes and Data”.
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