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ABSTRACT: The J-integral is an important concept in 

the elastic-plastic fracture mechanics, and serves as a critical 

material parameter to quantify the toughness or resistance of 

ductile materials against fracture. The relation between the J-

integral and crack extension has been widely used as the 

resistance curve of ductile materials in fracture mechanics 

design and in structural integrity assessment. Experimental 

testing and evaluation have played a central role in providing 

reliable fracture toughness properties to fracture mechanics 

analysis. Since the J-integral concept was proposed, extensive 

efforts of investigations have been made to develop its 

experimental estimation method, testing technique and 

standardization, as evident in the ASTM E1820 - a commonly 

used fracture toughness testing standard.  In recent years, 

significant progresses of the J-integral fracture testing and 

experimental estimation have been achieved, and a part of them 

was accepted and updated in ASTM E1820.  To better 

understand and use this fracture testing standard, the present 

paper gives a brief review of historical efforts and recent 

advances in the development of the J-integral experimental 

estimation and standard testing. 
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INTRODUCTION 

Fracture resistance is a measure of fracture toughness to 

describe the increasing resistance of ductile materials against 

fracture or crack growth, and is often characterized by the 

relation between a fracture parameter such as the J-integral and 

crack extension. This fracture resistance property of ductile 

materials is often simply referred to as a J-R curve. The 

concept of J-integral was proposed by Rice [1] in the late 

1960s for describing the intensity of singularity of an elastic-

plastic crack-tip stress field. In the early 1970s, Begley and 

Landes [2, 3] conducted the pioneering fracture tests and first 

measured the J-integral using multiple specimens. Since then, 

the J-integral became a measurable material parameter, and has 

been used to quantify the fracture resistance of metals or other 

ductile materials. As an important elastic-plastic fracture 

mechanics parameter, the critical J-integral or J-R curve has 

been extensively applied to material selection, material 

performance evaluation, damage analysis, fitness-for-service 

analysis and structural integrity assessment for various 

engineering structures, including nuclear pressure vessels and 

piping, oil and gas pipelines, and petrochemical storage tanks. 

 

Over the years, to obtain reliable fracture toughness, a 

large number of experimental investigations have been 

performed. This includes development of experimental testing 

technique, test devices and specimens, testing procedures, 

experimental evaluation and estimation method, and test 
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standardization as well. In recent years, significant progresses 

of the J-integral fracture testing and experimental estimation 

have been made, as evident in the fracture toughness testing 

standard ASTM E1820 [4] that is updated annually or regularly. 

ASTM E1820 is a commonly combined fracture toughness test 

standard that was developed by ASTM (American Society for 

Testing and Materials). This standard has been used worldwide 

for measuring the critical value of J-integral at the onset of 

ductile fracture and J-R curves during fracture tearing. To 

better understand and use this fracture toughness testing 

standard, this paper will overview the historical efforts and 

recent advances in the development of the J-integral 

experimental estimation and standard testing. 

 

 

EARLY EXPERIMENTAL ESTIMATION METHODS 

 

J-integral estimation for stationary cracks 

Originally, Rice [1] proposed the J-integral as a path 

independent mechanics parameter based on the deformation 

theory of plasticity. This parameter was used to measure the 

intensity of HRR singular crack-tip field (Hutchinson [5], Rice 

and Rosengren [6]) for elastic-plastic hardening materials. 

Finite element analysis showed that the J-integral can well 

describe the stresses, strains and other mechanics behaviors at 

the crack tip for ductile metals. This encouraged the early 

experimental investigations on the J-integral testing to develop 

a viable test method for evaluating its critical value. Among the 

pioneers, Begley and Landes [2] and Landes and Begley [3] 

first successfully measured the J-integral and its critical value 

at the onset of ductile fracture tearing using multiple 

laboratory-scale specimens in mode-I loading. Since then, the 

J-integral has become a measurable material parameter and 

obtained extensive applications in characterizing the fracture 

toughness of ductile materials.  

 

In the earliest experimental evaluation, the J-integral was 

interpreted as a strain energy release rate, or work done to the 

specimen per unit fracture surface area in a material given by: 

 

 
Bda

dU
J   (1) 

 

where U is strain energy, a is crack length and B is specimen 

thickness. Begley and Landes [2] tested a series of fracture 

specimens of the same geometry with different crack sizes and 

instrumented load-displacement data. From the test data, the 

energy absorbed by each specimen was determined, and then 

the J-integral was calculated using Eq (1). However, this 

rudimentary approach has obvious disadvantages: multiple 

specimen tests and complicated experimental analysis in 

determination of a critical Jc. Therefore, a simple experimental 

technique was sought for estimating the J-integral simply from 

a single-specimen test. 

 

Among others, Rice et al. [7] showed that the J-integral 

can be simply determined directly from a load-displacement 

curve obtained in a single-specimen test using an approximate 

evaluation formula. They proposed several simple J evaluation 

equations for different specimens they considered. However, 

only the single-edge notched bend (SENB) specimen and 

compact tension (CT) specimen in mode-I loading are mostly 

often used, and thus these two specimens are discussed only in 

the present review.  Through further investigations by Landes 

et al. [8] and Merkle and Corten [9], a more general equation 

for estimating the J-integral in a single-specimen fracture test 

for the SENB and CT specimens was developed as: 
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where b=W-a with b the ligament, a the crack length and W the 

specimen width. A is the total area under a load versus load-line 

displacement (LLD) that represents the work done to the 

specimen or the energy absorbed by the specimen as a result of 

the presence of a crack.  is a dimensionless geometry factor 

that is a function of crack length to specimen width ratio, a/W. 

Clarke and Landes [10] and Sumpter [11] obtained expressions 

of the  factor using the limit analysis method, respectively for 

CT and SENB specimens. 

 

For convenience, a total load-line displacement is often 

separated into an elastic component and a plastic component. 

Similarly, the total J-integral has been split into elastic and 

plastic components that are determined separately: 

 

 
plel JJJ   (3) 

 

The objective of the separation in Eq. (3) is to improve the 

accuracy of J-integral estimation, and to obtain the consistent 

value of J-integral when near linear elastic conditions are 

applied.  In Eq. (3), the elastic component Jel can be calculated 

directly and accurately from the stress intensity factor K for a 

plane strain crack:  

 

 
E
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where E is Young’s modulus and  is Poisson’s ratio. For a 

stationary crack, the plastic Jpl is determined from Eq. (2) as: 
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where BN is a net thickness for the specimen with side grooves, 

 denotes a plastic geometry factor, and Apl is the plastic area 

under the load-LLD curve obtained in a fracture test. Equations 

(3)–(5) were adopted in the first ASTM fracture toughness 

testing standard E813-81 [12], and now are used in the basic 

procedure of the current version E1820-09 [4] to evaluate the 

plain strain initiation toughness JIc, when a crack growth 

resistance is not desired. 

 

J-integral estimation for growing cracks 

The J-integral estimation equation (2) or (5) is valid only 

for stationary cracks in an experimental evaluation of the J-

integral to obtain its critical value at ductile fracture initiation. 

However, the earliest J-R curves were constructed simply using 

the J-integral values that were calculated by Eq. (2) in terms of 

the original crack size and crack extension that was measured 

using an unloading compliance technology proposed by Clark 

et al. [13]. The resulting resistance curve tends to overestimate 

J for a growing crack because the crack growth correction was 

not taken into account. To allow crack growth, Equation (2) or 

(5) has been extended in different ways, and several approaches 

were then developed historically to obtain a crack growth 

corrected J as needed in an accurate J-R curve evaluation. Two 

typical improved equations for considering the crack growth 

correction are of incremental functions, where test data are 

spaced at small intervals of crack extension and the J is 

evaluated from the previous step. The first J-integral 

incremental equation was proposed by Garwood et al. [14] and 

improved by Etemad and Turner [15] for a single edge bending 

specimen with a deep crack. At the n
th

 step of crack growth, the 

total J-integral was estimated by: 
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The second J-integral incremental equation was proposed 

by Ernst et al. [16] based on the principle of variable separation. 

Since the J-integral was developed in reference to the 

deformation theory of plasticity, it was shown that J is 

independent of the loading path leading to the current values of 

load-line displacement and crack size in the J-controlled crack 

growth conditions. As a result, the deformation theory based J-

integral is a unique function of two independent variables: 

load-line displacement and crack length. With these bases, 

Ernst et al. [16] obtained an incremental equation to evaluate 

the total J-integral at the i
th

 step of crack growth in the form of: 
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where  is a geometry factor related to the plastic  factor, Ai-1,i 

is the incremental area under an actual load-displacement 

record from step i-1 to i. Both incremental equations in Eqs (6) 

and (7) consider the crack growth correction on the J-integral 

from the last step. Equation (7) also makes the correction on 

the incremental work done to the specimen, but Eq. (6) does 

not. Consequently, a larger estimated J is likely to be obtained 

from Eq. (6) than from Eq. (7), as shown by the experimental 

results in Ernst et al. [16].  In general, these two typical 

incremental formations of the J-integral equation are applicable 

to any specimens, provided that the two geometry factors are 

known for each specimen. 

 

In the first J-R curve testing standard ASTM E1152-87 

[17], the J-integral was separated into elastic and plastic 

components as shown in Eq. (3), and determined incrementally 

at each loading step. The elastic component of J is calculated 

directly from the stress intensity factor using Eq. (4), and the 

plastic component of J is determined from Eq. (7) that was 

proposed by Ernst et al. [16]: 
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where the incremental plastic area ii

plA ,1 is calculated by: 
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where pl is the plastic component of load-line displacement. 

Accurate estimation of the plastic component Jpl(i) at each 

loading step using Eq. (8) requires small and uniform crack 

growth increments. Accordingly, a loading increment between 

the two loading-unloading cycles must be small, and usually 30 

to 60 loading-unloading cycles are sufficient if the elastic 

compliance method is used. Equally, a crack growth increment 

is required less than 1% of the crack ligament size. With the 

calculated values of Ji and the measured values of crack 

extension (ai-a0), where a0 is an original crack length, a J-R 

curve is obtained by applying Eqs. (3), (4) and (8) to successive 

increments of crack growth from a single-specimen test. 
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CMOD-based J estimation for stationary cracks 

Experiments showed that an accurate measurement of 

load-line displacement (LLD) is more difficult than that of 

crack-mouth opening displacement (CMOD) for the SENB 

specimens in three-point bending, particularly for a shallow 

crack. Sumpter [11] first used load-CMOD data directly in a J-

integral evaluation using a bending specimen. Following the 

basic idea of Sumpter, Kirk and Dodds [18] studied several 

possible J-integral estimation approaches for shallow cracked 

SENB specimens using detailed elastic-plastic finite element 

analyses (FEA). They found that the LLD-based J estimation 

equation could give inaccurate results for hardening materials 

because the LLD-based plastic  factor is very sensitive to the 

strain hardening exponent for SENB specimens with shallow 

cracks of a/W<0.3. In contrast, for the same geometry, the 

CMOD-based plastic  factor is nearly insensitive to the strain 

hardening exponent, when a similar -factor equation was used 

with the plastic area being obtained under a load-CMOD curve. 

Thus, Kirk and Dodds [18] concluded that the CMOD-based J 

estimation is the most reliable, and suggested use the following 

equation in a J-integral evaluation for SENB specimens: 
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where the CMOD-based plastic geometry factor was obtained 

in Reference [18] from their FEA results. 

 

 

ADVANCES OF J EXPERIMENTAL ESTIMATIONS 

 

More accurate J-integral incremental equations 

In the experimental evaluation of J-R curves, the LLD 

based J-integral incremental equation (8) has been used widely 

as an “accurate” expression for more than 30 years because it 

considers crack growth correction and was adopted by ASTM 

E1820. In contrast, the other incremental equation (6) did not 

receive much attention until 2008 when two similar equations 

were proposed by Neimitz [19] and Kroon et al. [20]. However, 

Zhu and Joyce [21] revealed that the two “new” equations are 

similar and equivalent to the Garwood-type equation (6). In 

addition, Tyson and Park [22] proposed a modified ASTM 

E1820 incremental J-integral equation in order to allow larger 

crack growth increments between any two unloading-reloading 

cycles in a fracture test using the elastic compliance method. In 

comparison to Eq. (8), it is seen that their expression is too 

complicated to be used in practice.  

 

To obtain a more accurate J-integral incremental equation 

for a growing crack, Zhu and Joyce [21] developed different 

mathematical models and physical models, and obtained the 

corresponding incremental J-integral equations. In which, three 

physical models were assumed to approximate the integration 

path of a differential of the J-integral along the actual load-

displacement curve obtained in a fracture test for a growing 

crack. For convenience, these physical models are referred to 

as the upper step line approximation (USLA), the lower step 

line approximation (LSLA) and the means step line 

approximation (MSLA). For each physical model, they 

developed an incremental equation for estimating the J-integral 

with considering the crack growth correction. 

 

For the USLA model, the J-integral incremental equation is: 
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For the LSLA model, the J-integral incremental equation is: 
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For the MSLA model, the J-integral incremental equation is: 
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Comparison of Eq. (11) with Eq. (8) and Eq. (12) with Eq. 

(6) shows that the J-integral incremental equation for the 

USLA model is the same as the Ernst-type equation, and the 

incremental equation for the LSLA model is identical to the 

Garwood-type equation.  Equation (13) for the MSLA model is 

a new incremental equation that is equivalent to the average of 

Eqs (11) and (12).  Furthermore, Zhu and Joyce [21] and Zhu 

and Leis [23] showed using SENB and CT specimens that the 

Garwood-type incremental equation (12) could overestimate a 

theoretical J-R curve, the Ernst-type incremental equation (11) 

always underestimates the theoretical J-R curve, and the new 

equation (13) determines a J-R curve that match well the 

theoretical one with much higher accuracy than the two 

existing incremental J-integral equation. 
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Normalization method 

The two conventional techniques, i.e., the elastic unloading 

compliance method and the electric potential drop method, are 

frequently used for instantaneous crack size measurements. It 

can be difficult or impractical to implement these two test 

methods under severe test conditions, such as high loading rate, 

high temperature, or aggressive environments. An alternative 

approach, i.e., normalization method, was thus developed for 

directly estimating instantaneous crack lengths from a load 

versus load-line displacement curve in conjunction with the use 

of initial and final measurements of physical crack sizes. This 

method does not require any test devices for online monitoring 

crack growth, and thus the test costs are reduced. 

 

Herrera and Landes [24] first proposed the concept of the 

normalization method in determining a J-R curve directly from 

a load-displacement record obtained from a single-specimen 

test. Basically, the normalization method requires an adequate 

calibration function to fit the relation between the normalized 

load versus the normalized plastic displacement. Different 

calibration functions were investigated, including a power-law 

function, a combined function of power law and straight line 

and other functions. A three-parameter LMN function proposed 

by Landes et al. [25] was found to be good. Joyce [26] 

improved the LMN function as a four parameter normalization 

function, and the corresponding normalization method was 

finally accepted by ASTM E1820-01 and its later versions in 

Annex 15 “Normalization Data Reduction Technique”. 

 

Typically, to obtain an adequate normalization function, a 

blunted crack size is used, and measured loads are normalized: 
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where i refers to the i-th loading point, PNi is a normalized load 

and 
bia  is the blunting corrected crack length. In the same time, 

the measured plastic displacement 
pli is normalized: 
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where Ci is the specimen load-line compliance using the 

blunting corrected crack length abi. Using Eqs (14) and (15), 

the measured load and displacement data up to but not 

including the maximum load are normalized. The final load-

displacement pair is normalized using the same equations 

except for the final crack length which is used without blunting 

correction. From the final normalized point, a tangent line is 

drawn to the normalized load-displacement curve to define a 

tangent point.  Using the normalized load-displacement pair 

(PNi, pli ), a normalization function can be fitted using the least 

squares regression in the form of: 
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where c1, c2, c3 and c4 are the fitting coefficients. With this 

normalization function, an iterative procedure is further used to 

force all PNi, pli  and ai data at each loading point to lie on the 

fitted function expressed in Eq. (16) by adjusting ai. In this way, 

crack lengths at all data points can be determined, and then the 

J-integral is calculated from Eqs (3), (4) and (8), and thus a J-R 

curve is obtained. 

 

For the SENB specimens in three-point bending, 

successful applications of the normalization method were 

demonstrated by the present author and his coauthors: Zhu and 

Joyce [27] for HY80 steel, Zhu and Leis [28] for X80 pipeline 

steel, and Zhu et al. [29] for A285 carbon steel. All 

experimental J-R curves obtained using the normalization 

method were then compared with those obtained using the 

conventional unloading compliance method or the electrical 

potential method. Combined with other applications, these 

comparisons showed that the normalization method is 

equivalent to the unloading compliance method and the 

potential drop method in a J-R curve evaluation from a single-

specimen test.  

 

Modified basic method 

To unify the different fracture testing standards developed 

in Europe and in USA, Wallin and Laukkanen [30] proposed a 

new evaluation procedure to correct ductile crack growth in a 

J-R curve evaluation. This procedure is regarded as an 

improved basic method of ASTM E1820, and so is simply 

referred to as a modified basic method. In this evaluation 

method, four steps are needed to determine a final crack growth 

corrected J-R curve: 
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where =1 for SENB specimens and =0.9 for CT specimens. 

m is a curve-fitting parameter from experimental data.  
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The new correction procedures have been developed for 

standard CT and SENB specimens, and are generally valid for 

both LLD-based and CMOD-based J-integral calculations. The 

procedures are applicable to both single-specimen tests and 

multiple-specimen tests, and have the same or better accuracy 

as the crack growth correction used in the present ASTM 

E1820. Therefore, this modified basic method was adopted by 

ASTM E1820-05 and its later versions in Annex A16 

“Evaluation of crack growth corrected J-integral values”.  

 

CMOD-based J-integral incremental equations 

Since CMOD measurements are generally more accurate 

than LLD measurements, a fracture test using SENB specimen 

favors CMOD gages for measuring displacement and specimen 

compliance. Using load-CMOD data, a crack growth corrected 

J-R curve can be determined using the modified basic method 

outlined above. However, the suggested correction procedure is 

indirect and involves multiple steps in determining a crack 

growth corrected J-R curve. A direct CMOD method is desired 

for long time in determination of a crack growth corrected J-R 

curve. To this end, Zhu et al. [31] developed a CMOD-based J-

integral incremental equation similar to ASTM E1820 LLD-

based J-integral incremental equation: 
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for determining the plastic component of the J-integral. In this 

equation,
 CMOD

 
and

 CMOD  are two CMOD-based plastic 

geometry factors, ii

Vpl
A ,1  denotes the incremental area under the 

P-Vpl curve (where Vpl is plastic CMOD), and is calculated by:  
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The elastic component and total value of the J-integral are 

still calculated by Eqs (3) and (4), respectively. Note that an 

equation similar to Eq. (18) was recently proposed by Cravero 

and Ruggieri [32] in a different analysis for a single edge 

notched tension (SENT) specimen. For a special case with 

equal LLD and CMOD, such as for compact-type specimens 

where LLD could be estimated directly from CMOD gages, the 

two incremental equations (8) and (18) become identical to 

each other. In general, Equation (18) can be used for any 

specimen, provided that the corresponding geometry factors 

CMOD  and 
CMOD  are known a priori for that specimen.  

 

Due to the more accurate CMOD data are used in Eqs (18) 

and (19), this new J-integral incremental equation is able to 

determine more accurate J-R curve in a single-specimen test.  

Moreover, because LLD data are not needed in the CMOD-

based J-integral estimation, LLD gages are not required. Thus, 

the test costs are reduced. 

 

Determination of the plastic geometry factors for SENB 

specimens 

In both LLD- and CMOD-based J-integral incremental 

equations (8) and (18), two plastic geometry factors  and  are 

involved.  Apparently, an accurate J-R curve evaluation needs 

accurate functions of these geometry factors, and thus their 

determination become greatly important. A brief review of 

determining these geometry factors were given by Zhu and his 

coworkers [27, 31]. The slip-line solution and the elastic-plastic 

finite element calculation have been used to determine these 

geometry factors for the conventional fracture specimens. 

However, some inconsistent or inaccurate functions of  and   

were found in the available solutions for the SENB specimens 

in both LLD- and CMOD-based formulations. More accurate 

functions of these geometry factors were thus determined by 

the present author.  Zhu and Joyce [27] obtained more accurate 

functions of LLD-based  and  factors for SENB specimens 

with a wide range of crack lengths in pure bending conditions. 

Zhu et al. [31] obtained more accurate functions of both LLD- 

and CMOD-based  and  factors for SENB specimens with 

deep and shallow cracks in three-point bending conditions. The 

latter newer functions of the plastic geometry factors have been 

used in the current version of ASTM E1820-09 [4]. 

 

DEVELOPMENT OF J-INTEGRAL BASED FRACTURE 

TESTING STANDARD 

With the development of experimental estimation method 

and experimental testing technique, many efforts have been 

contributed to standardize the J-integral based fracture testing 

method. Landes [33] presented an interesting review of 

historical development of J-integral fracture mechanics and 

experimental testing at ASTM that involved important events, 

places and people. It is found that the process of ASTM 

standardization for the first JIc testing method was very long 

and about 10 years was taken from drafting to publication. The 

first fracture toughness testing standard is ASTM E813-81 [12] 

in which the only experimental result of the critical J-integral 

was accepted as the fracture toughness of materials. This 

standard became the sample for all subsequent fracture 
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toughness testing standards in ASTM.  Similarly, the first J-R 

curve testing standard ASTM E1152-87 [17] also took another 

10 year to be developed from drafting to publication. Again, 

about another 10 years later, ASTM E1737-96 [34] merged 

E813 for the initiation toughness JIc testing and E1152 for the 

J-R curve testing. In parallel to this effort, a commonly 

combined fracture testing standard ASTM E1820-96 [35] was 

published for measuring the critical values of all three fracture 

parameters J, K, and  (crack-tip opening displacement) as well 

as J-R curve and -R curve. The latest version of J-integral 

testing standard is ASTM E1820-09 [4] that has incorporated 

the normalization method, the modified basic method, the 

CMOD-based simple equation for basic procedure, the CMOD-

based incremental equation for the resistance curve procedure 

and the more accurate functions for the plastic  and  factors. 

The different versions of ASTM E1820 overviewed here reflect 

the improvement and update of this fracture toughness testing 

standard made by ASTM over the past 40 years.   

 

The experimental testing technique and development for 

the J-integral testing are not described here, but can be found in 

an ASTM manual by Joyce [36]. A more detailed review of the 

J-integral testing and evaluation was recently given by the 

present author in Reference [37].  

 

CONCLUSIONS 

This paper reviewed the historical efforts and recent 

advances in development of the J-integral based fracture testing, 

experimental estimation and standardization at ASTM in USA. 

Traditional J-R curve evaluation was LLD-based, and has been 

used for more than 30 years. A more accurate J-R curve 

estimation method was recently developed by use of CMOD 

only. In addition, this review described the normalization 

method, modified basic method, more accurate J-integral 

incremental equations, more accurate functions of the plastic 

geometry factors, and the progresses of ASTM fracture 

toughness testing standard E1820. It is anticipated that this 

review will help users to better understand and use ASTM 

E1820. 
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