

An Evolutionary Approach to the Synthesis of Combinational Circuits

Cecília Reis J. A. Tenreiro Machado
Institute of Engineering of Porto Institute of Engineering of Porto

Polytechnic Institute of Porto Polytechnic Institute of Porto
Rua Dr. António Bernardino de Almeida, 4200-072 Porto Rua Dr. António Bernardino de Almeida, 4200-072 Porto

Portugal Portugal
cecilia@dee.isep.ipp.pt jtm@dee.isep.ipp.pt

Abstract – This paper proposes a genetic algorithm for
designing combinational logic circuits and studies four
different case examples: 2-to-1 multiplexer, one-bit full adder,
four-bit parity checker and a two-bit multiplier. The
objective of this work is to generate a functional circuit with
the minimum number of gates.

I.INTRODUCTION

In the last decade genetic algorithms (GAs) have been
applied in the design of electronic circuits, leading to a
novel area of research called Evolutionary Electronics (EE)
or Evolvable Hardware (EH) [1].

EE considers the concept for automatic design of
electronic systems. Instead of using human conceived
models, abstractions and techniques, EE employs search
algorithms to develop good designs [2].

One decade ago Sushil and Rawlins (1991) applied GAs
to the combinational circuit design problem. They
combined knowledge-based systems with the GA and
defined a genetic operator called masked crossover. This
scheme leads to other kinds of children that can not be
achieved by classical crossover operators [3].

John Koza (1992) adopted genetic programming to
design combinational circuits. His goal was the design of
functional circuits through AND, OR and NOT logic gates
[4].

In the sequence of this work, Coello, Christiansen and
Aguirre (1996) presented a computer program that
automatically generates high-quality circuit designs [5].
They use five possible types of gates (AND, NOT, OR,
XOR and WIRE) with the objective of finding a functional
design that minimizes the use of gates other than WIRE
(essentially a logical no-operation).

Miller, Thompson and Fogarty (1997) applied
evolutionary algorithms for the design of arithmetic
circuits. The technique was based on evolving the
functionality and connectivity of a rectangular array of
logic cells, with a model of the resources available on the
Xilinx 6216 FPGA device [6].

Kalganova, Miller and Lipnitskaya (1998) proposed
another technique for designing multiple-valued circuits.
The EH is easily adapted to the distinct types of multiple-
valued gates, associated with operations corresponding to
different types of algebra, and can include other logical
expressions [7]. This approach is an extension of EH
method for binary logic circuits proposed in [6].

In order to solve complex systems, Torresen (1998)
proposed the method of increased complexity evolution.
The idea is to evolve a system gradually as a kind of
divide-and-conquer method. Evolution is first undertaken
individually on a large number of simple cells. The
evolved functions are the basic blocks adopted in further

evolution or assembly of a larger and more complex
system [8].

More recently Hollingworth, Smith and Tyrrell (2000)
describe the first attempts to evolve circuits using the
Virtex Family of devices. They implemented a simple 2-bit
adder, where the inputs to the circuit are the two 2-bit
numbers and the expected output is the sum of the two
input values [9].

A major bottleneck in the evolutionary design of
electronic circuits is the problem of scale. This refers to the
very fast growth of the number of gates, used in the target
circuit, as the number of inputs of the evolved logic
function increases. This results in a huge search space that
is difficult to explore even with evolutionary techniques.
Another related obstacle is the time required to calculate
the fitness value of a circuit [10]. A possible method to
solve this problem is to use building blocks either than
simple gates. Nevertheless, this technique leads to another
difficulty, which is how to define building blocks that are
suitable for evolution.

Timothy Gordon (2002) suggests an approach that
allows evolution to search for good inductive bases for
solving large-scale complex problems. This scheme
generates, inherently, modular and iterative structures, that
exist in many real-world circuit designs but, at the same
time, allows evolution to search innovative areas of space
[11].

Following this line of research, this paper proposes a
GA for the design of combinational logic circuits. This
paper is organized as follows. Section 2 introduces the
problem and the adopted GA, as well as the encoding of
the circuit as a chromosome, the genetic operators and the
fitness function. Sections 3 and 4 present the simulation
results and their comparison, respectively. The scalability
problem is also analyzed. Finally, section 6 presents the
main conclusions.

II. PROBLEM AND ALGORITHM FORMULATION

A. Problem definition

In this work are considered combinational logic circuits
specified by a truth table. These circuits can have multiple
inputs and multiple outputs and the goal is to implement a
functional circuit with the least possible complexity. For
that purpose, it is defined a set of logic gates and are
generated circuits with components of that specific set.

In this study we define four gate sets, each one with
different types of logic gates, as presented in Table 1. Gset
6 is the most complex set, Gset 4 and Gset 3 are medium
complexity sets and Gset 2 is the simplest one.

cecilia
Proceedings of ICCC 2003
IEEE International Conference on Computational Cybernetics
Siófok, Hungary, August 29 – 31, 2003

Table 1 Gate sets

Gate Set Logic gates
Gset 6 {AND,OR,XOR,NOT,NAND,NOR,WIRE}
Gset 4 {AND,OR,XOR,NOT,WIRE}
Gset 3 {AND,OR,XOR,WIRE}
Gset 2 {AND,XOR,WIRE}

For each gate set the GA searches the solution space of a

function through a simulated evolution aiming the survival
of the fittest strategy. In general, the best individuals of
any population tend to reproduce and survive, thus
improving successive generations. However, inferior
individuals can, by chance, survive and also reproduce
[12]. In our case, the individuals are digital circuits, which
can evolve until the solution is reached (in terms of
functionality and complexity).

B. Circuit enconding

EH systems develop chromosomes that encode the
functional description of a given circuit. As with many GA
applications, the resulting circuit is the phenotype as it
comprises several smaller logic cells or genotypes. The
adopted terminology reflects the conceptual similarity
between EH, natural evolution and genetics [13].

In the GA scheme the circuits are encoded as a
rectangular matrix (row × column = r × c) of logic cells as
represented in figure.1

Fig. 1. Example of a matrix 3 × 3 to represent a circuit.

Each cell is represented by three genes:

<input1><input2><gate type>, where input1 and input2
are one of the circuit inputs, if they are in the first column,
or one of the previous outputs, if they are in other columns.
The gate type is one of the elements adopted in the gate
set. The chromosome is constituted by as many triplets of
this kind as the matrix size demands. For example, the
chromosome that represents a 3 × 3 matrix is depicted in
figure 2.

0 … 26
Input Input Gate … Input Input Gate

A … I

Fig. 2. Chromosome for the example of figure.

C. The genetic operators

The initial population of circuits (strings) is generated at
random. The search is then carried out among this

population. The three different operators used are
reproduction, crossover and mutation, as described in the
sequel.

In what concern the reproduction operator, the
successive generations of new strings are reproduced on
the basis of their fitness function. In this case, it is used a
tournament selection [12] to select the strings from the old
population, up to the new population.

For the crossover operator, the strings in the new
population are grouped together into pairs at random.
Single point crossover is then performed among pairs. The
crossover point is only allowed between cells to maintain
the chromosome integrity.

The mutation operator changes the characteristics of a
given cell in the matrix. Therefore, it modifies the gate
type and the two inputs, meaning that a completely new
cell can appear in the chromosome. Moreover, it is applied
an elitist algorithm and, consequently, the best solutions
are always kept for the next generation.

To run the GA we have to define the number of
individuals to create the initial population P. This
population is always the same size across the generations,
until the solution is reached.

The crossover rate CR represents the percentage of the
population P that reproduces in each generation. Likewise
MR is the percentage of the population P that mutates in
each generation.

Usually, in order to achieve the population evolution,
CR is high (e.g., 80%-95%) and, to prevent population
diversity, MR is low (e.g., 1%-5%). In our case, to evolve
the circuits, we adopt P = 3000 individuals, CR = 95% and
MR = 5%.

D. The fitness function

The calculation of the fitness function F is divided in
two parts f1 and f2 that measure the functionality and the
simplicity, respectively. Firstly, we compare the output
produced by the GA-generated circuit with the expected
values, according with the truth table, on a bit-per-bit basis
(i.e., f1). Once the circuit is functional, the GA tries to
generate circuits with the least number of gates. Therefore,
the index f2, that measures the simplicity, is increased by
one (zero) for each wire (gate) of the generated circuit,
yielding:

f10 = 2ni × no (1)
f2 = f2 + 1 if gate type = wire (2)

1 10

1 2 10

,

,

f F f
F

f f F f

<
=  + ≥

 (3)

where ni and no represent the number of inputs and outputs
of the circuit.

III. SIMULATION RESULTS

This section shows the implementation of four different
combinational logic circuits, namely, a 2-to-1 multiplexer,
a one-bit full adder, a four-bit parity checker and a two-bit
multiplier.

A

B

C

D

E

F

G

H

I

Inputs Outputs

A. 2-to-1 multiplexer

The first case study is a 2-to-1 multiplexer circuit, with a
truth table with 3 inputs { S0, I1, I0} and 1 output { O} . In
this case, the matrix has a size of r × c = 3 × 3, and the
length of each string representing a circuit (i.e., the
chromosome length) is CL = 27.

Due to the stochastic nature of the GAs, for each gate set
we performed several simulations. Figure 3 shows the
fitness function F versus the number of generations N to
achieve the solution.

The best gate set is the one that presents the solution
after the least number of generations N with the higher
final fitness function F. Since the 2-to-1 multiplexer has
ni = 3 and no = 1, it results f10 = 8 and F ≥ 12.

9

10

11

12

13

10 100

Number of Generations (N)

Fi
tn

es
s

Fu
nc

tio
n

(F
)

Gset 6 Gset 4 Gset 3 Gset 2

Fig. 3. Fitness function F versus number of generations N

to achieve the solution.

Table 2 shows the average number of generation Nav and
the average fitness function Fav, after performing twenty
simulation experiments for each gate set.

We can see that, in this case, the best gate set is Gset 2,
because it leads to a smaller average number of generations
Nav and the best average final fitness function Fav. The best
resulting circuits have final fitness function F = 12 as
shown in figure 4.

Table 2 GA results for the 2-to-1 multiplexer

Gate Set Nav Fav
Gset 6 27.15 10.25
Gset 4 19.75 10.35
Gset 3 13.55 10.65
Gset 2 12.05 11.15

S

0

I1
O

I
0

Fig. 4. GA generated 2-to-1 mulpiplexer

B. One-bit full adder

The second case study is a one-bit full adder circuit,
with a truth table with 3 inputs { A, B, Cin} and 2 outputs
{ S, Cout} . In this case, the matrix has a size of r × c = 3 × 3,
and the length of each string representing a circuit (i.e., the
chromosome length) is CL = 27.

Due to the stochastic nature of the GAs, for each gate set
we performed several simulations. Figure 5 shows the
fitness function F versus the number of generations N to
achieve the solution.

The best gate set is the one that presents the solution
after the least number of generations N with the higher
final fitness function F. Since the one-bit full adder has
ni = 3 and no = 2, it results f10 = 16 and F ≥ 20.

17

18

19

20

10 100

Number of Generations (N)

Fi
tn

es
s

Fu
nc

tio
n

(F
)

Gset 6 Gset 4 Gset 3 Gset 2

Fig. 5. Fitness function F versus number of generations

N to achieve the solution.

Table 3 shows the average number of generation Nav and

the average fitness function Fav, after performing twenty
simulation experiments for each gate set.

We can see that, in this case, the best gate sets are Gsets
3 and 2, because they lead to a smaller average number of
generations Nav and the best average final fitness function
Fav. The best resulting circuits have final fitness function
F = 19 as shown in figure 6.

Table 3 GA results for the one-bit full adder

Gate Set Nav Fav
Gset 6 72.45 18.15
Gset 4 53.65 18.35
Gset 3 32.40 18.45
Gset 2 34.86 18.57

A

B
S

Cout

Cin

Fig. 6. GA generated One-bit Full Adder circuit

C. Four-bit parity checker

The third case study is a four-bit parity (even) checker
circuit, with a truth table having 4 inputs { A3, A2, A1, A0}
and 1 output { P} . The size of the matrix is r × c = 4 × 4
and the chromosome length is CL = 48.

Figure 7 shows the fitness function F versus the number
of generations N to achieve the solution.

In this case ni = 4 and no = 1, resulting f10 = 16 and
F ≥ 24.

20

21

22

23

24

25

26

10 100

Number of Generations (N)

Fi
tn

es
s

Fu
nc

tio
n

(F
)

Gset 6 Gset 4 Gset 3 Gset 2

Fig. 7. Fitness function F versus number of generations

N to achieve the solution.

Table 4 shows the average number of generation Nav and
the average fitness function Fav, after performing twenty
simulation experiments for each gate set.

Once again we conclude that Gset 2 is the best gate set
for generating the combinational logic circuits. Figure 8
illustrates the schematic of the best circuit with an F = 25.

Table 4 GA results for the four-bit parity checker

Gate Set Nav Fav
Gset 6 32.55 21.70
Gset 4 20.40 21.95
Gset 3 13.754 22.65
Gset 2 7.95 23.95

A3

A0

P

A2

A1

Fig. 8. GA generated Four-bit Parity Checker circuit

D. Two-bit multiplier

The fourth case study is a two-bit multiplier. Therefore
the truth table has 4 inputs { A1, A0, B1, B0} and 4 outputs
{ C3, C2, C1, C0} . The matrix, for this example, is
r × c = 4 × 4 dimensional, and the chromosome as size
CL = 48.

Figure 9 shows the fitness function F versus the number
of generations N to achieve the solution.

For the two-bit multiplier we have ni = 4 and no = 4,
leading to f10 = 64 and F ≥ 72.

68

69

70

71

72

73

100 1000 10000

Number of Generations (N)

Fi
tn

es
s

Fu
nc

tio
n

(F
)

Gset 6 Gset 4 Gset 3 Gset 2

Fig. 9. Fitness function F versus number of generations

N to achieve the solution.

Table 5 shows the average number of generation Nav and

the average fitness function Fav, after performing twenty
simulation experiments for each gate set.

The best results are obtained with Gset 2 and the
schematic of the best resulting circuit, with F = 7, is
showed in figure 10.

Table 5 GA results for the two-bit multiplier

Gate Set Nav Fav
Gset 6 1699.00 69.15
Gset 4 1183.05 69.50
Gset 3 432.40 70.25
Gset 2 362.35 70.45

Fig. 10. GA generated Two-bit Multiplier circuit.

A1

B1

A0

B0

C3

C2

C1

C0

IV. COMPARISON OF THE RESULTS

In this section we compare the four case studies through
the required average number of generations Nav and the
resulting average fitness function Fav (figures 11 and 12).

1.00

10.00

100.00

1000.00

10000.00

Gset 6 Gset 4 Gset 3 Gset 2

Gate Sets
Aver

2-to-1 multiplexer One-bit adder

Four-bit parity checker Two-bit multiplier

Fig. 11. Average number of generations to achieve the

solution, for the Gsets under evaluation

10.00

100.00

Gset 6 Gset 4 Gset 3 Gset 2

Gate Sets

A
ve

ra
ge

 F
itn

es
s

fu
nc

tio
n

(F
av

)

2-to1 multiplexer One-bit adder

Four-bit parity checker Two-bit multiplier

Fig. 12. Average fitness function for the Gsets under
evaluation

We conclude that, independently of the circuit

complexity, the best results occur for a reduced Gset. This
conclusion has similarities with the RISC vs CISC
processor dilemma but, before establishing a final
conclusion, more extensive experiments with other circuits
are required.

Another issue that emerges with the increasing number
of circuit inputs and outputs is the scalability problem.
Since the truth table grows exponentially, the GA
computational burden to achieve the solution increases
dramatically.

Figures 13 - 16 show the evolution of Nav and Fav for the
parity checker and the full adder circuits, as the number of
bits increases.

Gset 6 Gset 4 Gset 3 Gset 2

2-bit

4-bit

6-bit

1

10

100

Nav

Fig. 13. Average number of generations for the 2-bit, 4-bit

and 6-bit parity checker for the Gsets under evaluation.

Gset 6 Gset 4 Gset 3 Gset 2

2-bit

4-bit

6-bit

1

10

100

Fav

Fig. 14. Average final fitness function for the 2-bit, 4-bit
and 6-bit parity checker for the Gsets under evaluation.

Gset 6 Gset 4 Gset 3 Gset 2

1-bit
2-bit1

10

100

1000

10000

Nav

Fig. 15. Average number of generations for the 1-bit and 2-

bit full adder for the Gsets under evaluation.

Gset 6 Gset 4 Gset 3 Gset 2

1-bit
2-bit1

10

100

Fav

Fig. 16. Average final fitness function for the 1-bit and 2-

bit full adder for the Gsets under evaluation.

The scalability problem lies on the gate-based strategy
for Boolean implementation. Consequently, more efficient
implementation alternatives (e.g., binary decision
diagrams) are currently under evaluation.

VI. CONCLUSIONS

This paper proposed a GA for designing combinational
logic circuits given a set of logic gates. The final circuit is
optimized in terms of complexity (with the minimum
number of gates).

For all the case studies the GA has proved to be
efficient, even when the number of outputs in the truth
table increases. It is also visible that the performance of the
GA increases as the complexity of the gate set decreases.
Experiments show that we have better results with Gset 2,
that is, the simplest set that we have adopted in this study.

Motivated by the results future investigation will address
the design of sequential logic circuits and the feasibility
versus complexity versus convergence of the resulting
circuits.

V. REFERENCES

[1] Zebulum, R. S., Pacheco, M. A. and Vellasco, M.

M., Evolutionary Electronics: Automatic Design of
Electronic Circuits and Systems by Genetic
Algorithms, CRC Press, 2001.

[2] Thompson, A. and Layzell, P. “Analysis of
unconventional evolved electronics,”
Communications of the ACM, Vol. 42, 1999, pp. 71-
79.

[3] Louis, S.J. and Rawlins, G. J., “Designer Genetic
Algorithms: Genetic Algorithms in Structure
Design,” in Proceedings of the Fourth International
Conference on Genetic Algorithms, 1991.

[4] Koza, J. R., Genetic Programming. On the
Programming of Computers by means of Natural
Selection, MIT Press, 1992.

[5] Coello, C. A., Christiansen, A. D. and Aguirre, A.
H., “Using Genetic Algorithms to Design
Combinational Logic Circuits”, Intelligent
Engineering through Artificial Neural Networks.
Vol. 6, 1996, pp. 391-396.

[6] Miller, J. F., Thompson, P. and Fogarty, T,
Algorithms and Evolution Strategies in Engineering
and Computer Science: Recent Advancements and
Industrial Applications. Chapter 6, 1997, Wiley.

[7] Kalganova, T., Miller, J. F. and Lipnitskaya, N.,
“Multiple_Valued Combinational Circuits
Synthesised using Evolvable Hardware,” in
Proceedings of the 7th Workshop on Post-Binary
Ultra Large Scale Integration Systems, 1998.

[8] Torresen, J., “A Divide-and-Conquer Approach to
Evolvable Hardware,” in Proceedings of the Second
International Conference on Evolvable Hardware.
Vol. 1478, 1998, pp. 57-65.

[9] Hollingworth, G. S., Smith, S. L. and Tyrrell, A. M.,
“The Intrinsic Evolution of Virtex Devices Through
Internet Reconfigurable Logic,” in Proceedings of
the Third International Conference on Evolvable
Systems. Vol. 1801, 2000, pp. 72-79.

[10] Vassilev, V. K. and Miller, J. F., “Scalability
Problems of Digital Circuit Evolution,” in
Proceedings of the Second NASA/DOD Workshop
on Evolvable Hardware, 2000, pp. 55-64.

[11] Gordon, T. G. and Bentley, P., “Towards
Development in Evolvable Hardware,” in
Proceedings of the 2002 NASA/DOD Conference on
Evolvable Hardware, 2002. pp. 241-250.

[12] Goldberg, D. E., Genetic Algorithms in Search
Optimization and Machine Learning, 1989,
Addison-Wesley.

[13] Hounsell, B. and Arslan, T., “A Novel Evolvable
Hardware Framework for the Evolution of High
Performance Digital Circuits,” in Proceedings of the
Genetic and Evolutionary Computation Conference,
2000, pp. 525-532.

