
     

An Evolutionary Approach to the Synthesis of Combinational Circuits 
 

Cecília Reis J. A. Tenreiro Machado 
Institute of Engineering of Porto Institute of Engineering of Porto 

Polytechnic Institute of Porto Polytechnic Institute of Porto 
Rua Dr. António Bernardino de Almeida, 4200-072 Porto Rua Dr. António Bernardino de Almeida, 4200-072 Porto 

Portugal Portugal 
cecilia@dee.isep.ipp.pt jtm@dee.isep.ipp.pt 

 
 
Abstract – This paper proposes a genetic algorithm for 
designing combinational logic circuits and studies four 
different case examples: 2-to-1 multiplexer, one-bit full adder, 
four-bit parity checker and a two-bit multiplier. The 
objective of this work is to generate a functional circuit with 
the minimum number of gates. 
 

I.INTRODUCTION 
 

In the last decade genetic algorithms (GAs) have been 
applied in the design of electronic circuits, leading to a 
novel area of research called Evolutionary Electronics (EE) 
or Evolvable Hardware (EH) [1]. 

EE considers the concept for automatic design of 
electronic systems. Instead of using human conceived 
models, abstractions and techniques, EE employs search 
algorithms to develop good designs [2]. 

One decade ago Sushil and Rawlins (1991) applied GAs 
to the combinational circuit design problem. They 
combined knowledge-based systems with the GA and 
defined a genetic operator called masked crossover. This 
scheme leads to other kinds of children that can not be 
achieved by classical crossover operators [3]. 

John Koza (1992) adopted genetic programming to 
design combinational circuits. His goal was the design of 
functional circuits through AND, OR and NOT logic gates 
[4]. 

In the sequence of this work, Coello, Christiansen and 
Aguirre (1996) presented a computer program that 
automatically generates high-quality circuit designs [5]. 
They use five possible types of gates (AND, NOT, OR, 
XOR and WIRE) with the objective of finding a functional 
design that minimizes the use of gates other than WIRE 
(essentially a logical no-operation). 

Miller, Thompson and Fogarty (1997) applied 
evolutionary algorithms for the design of arithmetic 
circuits. The technique was based on evolving the 
functionality and connectivity of a rectangular array of 
logic cells, with a model of the resources available on the 
Xilinx 6216 FPGA device [6]. 

Kalganova, Miller and Lipnitskaya (1998) proposed 
another technique for designing multiple-valued circuits. 
The EH is easily adapted to the distinct types of multiple-
valued gates, associated with operations corresponding to 
different types of algebra, and can include other logical 
expressions [7]. This approach is an extension of EH 
method for binary logic circuits proposed in [6]. 

In order to solve complex systems, Torresen (1998) 
proposed the method of increased complexity evolution. 
The idea is to evolve a system gradually as a kind of 
divide-and-conquer method. Evolution is first undertaken 
individually on a large number of simple cells. The 
evolved functions are the basic blocks adopted in further 

evolution or assembly of a larger and more complex 
system [8]. 

More recently Hollingworth, Smith and Tyrrell (2000) 
describe the first attempts to evolve circuits using the 
Virtex Family of devices. They implemented a simple 2-bit 
adder, where the inputs to the circuit are the two 2-bit 
numbers and the expected output is the sum of the two 
input values [9]. 

A major bottleneck in the evolutionary design of 
electronic circuits is the problem of scale. This refers to the 
very fast growth of the number of gates, used in the target 
circuit, as the number of inputs of the evolved logic 
function increases. This results in a huge search space that 
is difficult to explore even with evolutionary techniques. 
Another related obstacle is the time required to calculate 
the fitness value of a circuit [10]. A possible method to 
solve this problem is to use building blocks either than 
simple gates. Nevertheless, this technique leads to another 
difficulty, which is how to define building blocks that are 
suitable for evolution.  

Timothy Gordon (2002) suggests an approach that 
allows evolution to search for good inductive bases for 
solving large-scale complex problems. This scheme 
generates, inherently, modular and iterative structures, that 
exist in many real-world circuit designs but, at the same 
time, allows evolution to search innovative areas of space 
[11]. 

Following this line of research, this paper proposes a 
GA for the design of combinational logic circuits. This 
paper is organized as follows. Section 2 introduces the 
problem and the adopted GA, as well as the encoding of 
the circuit as a chromosome, the genetic operators and the 
fitness function. Sections 3 and 4 present the simulation 
results and their comparison, respectively. The scalability 
problem is also analyzed. Finally, section 6 presents the 
main conclusions.   
 

II. PROBLEM AND ALGORITHM FORMULATION 
 
A. Problem definition  
 

In this work are considered combinational logic circuits 
specified by a truth table. These circuits can have multiple 
inputs and multiple outputs and the goal is to implement a 
functional circuit with the least possible complexity. For 
that purpose, it is defined a set of logic gates and are 
generated circuits with components of that specific set. 

In this study we define four gate sets, each one with 
different types of logic gates, as presented in Table 1. Gset 
6 is the most complex set, Gset 4 and Gset 3 are medium 
complexity sets and Gset 2 is the simplest one. 
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Table 1 Gate sets 
 

Gate Set Logic gates 
Gset 6 {AND,OR,XOR,NOT,NAND,NOR,WIRE} 
Gset 4 {AND,OR,XOR,NOT,WIRE} 
Gset 3 {AND,OR,XOR,WIRE} 
Gset 2 {AND,XOR,WIRE} 

 
For each gate set the GA searches the solution space of a 

function through a simulated evolution aiming the survival 
of the fittest strategy. In general, the best individuals of 
any population tend to reproduce and survive, thus 
improving successive generations. However, inferior 
individuals can, by chance, survive and also reproduce 
[12]. In our case, the individuals are digital circuits, which 
can evolve until the solution is reached (in terms of 
functionality and complexity). 
 
B. Circuit enconding 
 

EH systems develop chromosomes that encode the 
functional description of a given circuit. As with many GA 
applications, the resulting circuit is the phenotype as it 
comprises several smaller logic cells or genotypes. The 
adopted terminology reflects the conceptual similarity 
between EH, natural evolution and genetics [13]. 

In the GA scheme the circuits are encoded as a 
rectangular matrix (row × column = r × c) of logic cells as 
represented in figure.1  

 

Fig. 1. Example of a matrix 3 × 3 to represent a circuit. 

 
Each cell is represented by three genes: 

<input1><input2><gate type>, where input1 and input2 
are one of the circuit inputs, if they are in the first column, 
or one of the previous outputs, if they are in other columns. 
The gate type is one of the elements adopted in the gate 
set. The chromosome is constituted by as many triplets of 
this kind as the matrix size demands. For example, the 
chromosome that represents a 3 × 3 matrix is depicted in 
figure 2. 
 

0   …   26 
Input Input Gate … Input Input Gate 

A … I 
 
Fig. 2. Chromosome for the example of figure. 
 
C. The genetic operators 
 

The initial population of circuits (strings) is generated at 
random. The search is then carried out among this 

population. The three different operators used are 
reproduction, crossover and mutation, as described in the 
sequel. 

In what concern the reproduction operator, the 
successive generations of new strings are reproduced on 
the basis of their fitness function. In this case, it is used a 
tournament selection [12] to select the strings from the old 
population, up to the new population. 

For the crossover operator, the strings in the new 
population are grouped together into pairs at random. 
Single point crossover is then performed among pairs. The 
crossover point is only allowed between cells to maintain 
the chromosome integrity. 

The mutation operator changes the characteristics of a 
given cell in the matrix. Therefore, it modifies the gate 
type and the two inputs, meaning that a completely new 
cell can appear in the chromosome. Moreover, it is applied 
an elitist algorithm and, consequently, the best solutions 
are always kept for the next generation. 

To run the GA we have to define the number of 
individuals to create the initial population P. This 
population is always the same size across the generations, 
until the solution is reached. 

The crossover rate CR represents the percentage of the 
population P that reproduces in each generation. Likewise 
MR is the percentage of the population P that mutates in 
each generation. 

Usually, in order to achieve the population evolution, 
CR is high (e.g., 80%-95%) and, to prevent population 
diversity, MR is low (e.g., 1%-5%). In our case, to evolve 
the circuits, we adopt P = 3000 individuals, CR = 95% and 
MR = 5%. 
 
D. The fitness function 
 

The calculation of the fitness function F is divided in 
two parts f1 and f2 that measure the functionality and the 
simplicity, respectively. Firstly, we compare the output 
produced by the GA-generated circuit with the expected 
values, according with the truth table, on a bit-per-bit basis 
(i.e., f1). Once the circuit is functional, the GA tries to 
generate circuits with the least number of gates. Therefore, 
the index f2, that measures the simplicity, is increased by 
one (zero) for each wire (gate) of the generated circuit, 
yielding: 
 

f10 = 2ni × no (1) 
f2 = f2 + 1 if gate type = wire (2) 
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where ni and no represent the number of inputs and outputs 
of the circuit. 
 

III. SIMULATION RESULTS 
 

This section shows the implementation of four different 
combinational logic circuits, namely, a 2-to-1 multiplexer, 
a one-bit full adder, a four-bit parity checker and a two-bit 
multiplier. 
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A. 2-to-1 multiplexer  
 

The first case study is a 2-to-1 multiplexer circuit, with a 
truth table with 3 inputs { S0, I1, I0}  and 1 output { O} . In 
this case, the matrix has a size of r × c = 3 × 3, and the 
length of each string representing a circuit (i.e., the 
chromosome length) is CL = 27. 

Due to the stochastic nature of the GAs, for each gate set 
we performed several simulations. Figure 3 shows the 
fitness function F versus the number of generations N to 
achieve the solution.  

The best gate set is the one that presents the solution 
after the least number of generations N with the higher 
final fitness function F. Since the 2-to-1 multiplexer has 
ni = 3 and no = 1, it results f10 = 8 and F ≥ 12. 
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Fig. 3. Fitness function F versus number of generations N 

to achieve the solution. 
 

Table 2 shows the average number of generation Nav and 
the average fitness function Fav, after performing twenty 
simulation experiments for each gate set. 

We can see that, in this case, the best gate set is Gset 2, 
because it leads to a smaller average number of generations 
Nav and the best average final fitness function Fav. The best 
resulting circuits have final fitness function F = 12 as 
shown in figure 4. 

 
Table 2 GA results for the 2-to-1 multiplexer 

 

Gate Set Nav Fav 
Gset 6 27.15 10.25 
Gset 4 19.75 10.35 
Gset 3 13.55 10.65 
Gset 2 12.05 11.15 
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Fig. 4. GA generated 2-to-1 mulpiplexer 
 

B. One-bit full adder  
 

The second case study is a one-bit full adder circuit, 
with a truth table with 3 inputs { A, B, Cin}  and 2 outputs 
{ S, Cout} . In this case, the matrix has a size of r × c = 3 × 3, 
and the length of each string representing a circuit (i.e., the 
chromosome length) is CL = 27. 

Due to the stochastic nature of the GAs, for each gate set 
we performed several simulations. Figure 5 shows the 
fitness function F versus the number of generations N to 
achieve the solution.  

The best gate set is the one that presents the solution 
after the least number of generations N with the higher 
final fitness function F. Since the one-bit full adder has 
ni = 3 and no = 2, it results f10 = 16 and F ≥ 20. 
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Fig. 5. Fitness function F versus number of generations 

N to achieve the solution. 
 
Table 3 shows the average number of generation Nav and 

the average fitness function Fav, after performing twenty 
simulation experiments for each gate set. 

We can see that, in this case, the best gate sets are Gsets 
3 and 2, because they lead to a smaller average number of 
generations Nav and the best average final fitness function 
Fav. The best resulting circuits have final fitness function 
F = 19 as shown in figure 6. 

 
Table 3 GA results for the one-bit full adder 

 

Gate Set Nav Fav 
Gset 6 72.45 18.15 
Gset 4 53.65 18.35 
Gset 3 32.40 18.45 
Gset 2 34.86 18.57 
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Fig. 6. GA generated One-bit Full Adder circuit 



     

C. Four-bit parity checker  
 

The third case study is a four-bit parity (even) checker 
circuit, with a truth table having 4 inputs { A3, A2, A1, A0}  
and 1 output { P} . The size of the matrix is r × c = 4 × 4 
and the chromosome length is CL = 48. 

Figure 7 shows the fitness function F versus the number 
of generations N to achieve the solution. 

In this case ni = 4 and no = 1, resulting f10 = 16 and 
F ≥ 24.  
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Fig. 7. Fitness function F versus number of generations 

N to achieve the solution. 
 

Table 4 shows the average number of generation Nav and 
the average fitness function Fav, after performing twenty 
simulation experiments for each gate set.  

Once again we conclude that Gset 2 is the best gate set 
for generating the combinational logic circuits. Figure 8 
illustrates the schematic of the best circuit with an F = 25. 

 
Table 4 GA results for the four-bit parity checker 

 
Gate Set Nav Fav 
Gset 6 32.55 21.70 
Gset 4 20.40 21.95 
Gset 3 13.754 22.65 
Gset 2 7.95 23.95 
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Fig. 8. GA generated Four-bit Parity Checker circuit 

 
 
 
 
 
 
 

D. Two-bit multiplier  
 

The fourth case study is a two-bit multiplier. Therefore 
the truth table has 4 inputs { A1, A0, B1, B0}  and 4 outputs 
{ C3, C2, C1, C0} . The matrix, for this example, is 
r × c = 4 × 4 dimensional, and the chromosome as size 
CL = 48. 

Figure 9 shows the fitness function F versus the number 
of generations N to achieve the solution. 

For the two-bit multiplier we have ni = 4 and no = 4, 
leading to f10 = 64 and F ≥ 72. 
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Fig. 9. Fitness function F versus number of generations 

N to achieve the solution. 
 
Table 5 shows the average number of generation Nav and 

the average fitness function Fav, after performing twenty 
simulation experiments for each gate set.  

The best results are obtained with Gset 2 and the 
schematic of the best resulting circuit, with F = 7, is 
showed in figure 10. 

 
Table 5 GA results for the two-bit multiplier 

 
Gate Set Nav Fav 
Gset 6 1699.00 69.15 
Gset 4 1183.05 69.50 
Gset 3 432.40 70.25 
Gset 2 362.35 70.45 

 

 
 

Fig. 10. GA generated Two-bit Multiplier circuit. 
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IV. COMPARISON OF THE RESULTS 
 

In this section we compare the four case studies through 
the required average number of generations Nav and the 
resulting average fitness function Fav (figures 11 and 12). 
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Fig. 11. Average number of generations to achieve the 

solution, for the Gsets under evaluation 
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Fig. 12. Average fitness function for the Gsets under 
evaluation 

 
We conclude that, independently of the circuit 

complexity, the best results occur for a reduced Gset. This 
conclusion has similarities with the RISC vs CISC 
processor dilemma but, before establishing a final 
conclusion, more extensive experiments with other circuits 
are required. 

Another issue that emerges with the increasing number 
of circuit inputs and outputs is the scalability problem. 
Since the truth table grows exponentially, the GA 
computational burden to achieve the solution increases 
dramatically.  

Figures 13 - 16 show the evolution of Nav and Fav for the 
parity checker and the full adder circuits, as the number of 
bits increases. 
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Fig. 13. Average number of generations for the 2-bit, 4-bit 

and 6-bit parity checker for the Gsets under evaluation. 
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Fig. 14. Average final fitness function for the 2-bit, 4-bit 
and 6-bit parity checker for the Gsets under evaluation. 
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Fig. 15. Average number of generations for the 1-bit and 2-

bit full adder for the Gsets under evaluation. 
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Fig. 16. Average final fitness function for the 1-bit and 2-

bit full adder for the Gsets under evaluation. 
 

The scalability problem lies on the gate-based strategy 
for Boolean implementation. Consequently, more efficient 
implementation alternatives (e.g., binary decision 
diagrams) are currently under evaluation. 
 

VI. CONCLUSIONS 
 

This paper proposed a GA for designing combinational 
logic circuits given a set of logic gates. The final circuit is 
optimized in terms of complexity (with the minimum 
number of gates).  

For all the case studies the GA has proved to be 
efficient, even when the number of outputs in the truth 
table increases. It is also visible that the performance of the 
GA increases as the complexity of the gate set decreases. 
Experiments show that we have better results with Gset 2, 
that is, the simplest set that we have adopted in this study. 

Motivated by the results future investigation will address 
the design of sequential logic circuits and the feasibility 
versus complexity versus convergence of the resulting 
circuits. 
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