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We prove that Fan’s theorem is true for discontinuous increasing mappings 𝑓 in a real partially ordered reflexive, strictly convex,
and smooth Banach space𝑋. The main tools of analysis are the variational characterizations of the generalized projection operator
and order-theoretic fixed point theory. Moreover, we get some properties of the generalized projection operator in Banach spaces.
As applications of our best approximation theorems, the fixed point theorems for non-self-maps are established and proved under
some conditions. Our results are generalizations and improvements of the recent results obtained by many authors.

1. Introduction

Let𝑋 be a real Banach space with the dual space𝑋∗ and 𝐶 ⊂
𝑋 a nonempty subset of𝑋.The set-valuedmapping𝑃

𝐶
: 𝑋 →

𝐶,

𝑃
𝐶
(𝑥) = {𝑧 ∈ 𝐶 : ‖𝑥 − 𝑧‖ = inf

𝑦∈𝐶

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩} , (1)

is called the metric projection operator from 𝑋 onto 𝐶. It is
well known that the metric projection operator 𝑃

𝐶
plays an

important role in nonlinear functional analysis, optimization
theory, fixed point theory, nonlinear programming, game
theory, variational inequality, complementarity problems,
and so forth.

In 1994, Alber [1] introduced the generalized projections
𝜋
𝐶
: 𝑋∗ → 𝐶 and Π

𝐶
: 𝑋 → 𝐶 from Hilbert spaces

to uniformly convex and uniformly smooth Banach spaces
and studied their properties in detail. In [2], Li extended the
generalized projection operator 𝜋

𝐶
from uniformly convex

and uniformly smooth Banach spaces to reflexive Banach
spaces and studied some properties of the generalized pro-
jection operator with applications to solving the variational
inequality in Banach spaces. Recently, Isac [3] andNishimura
and Ok [4] studied the order-theoretic approach towards

establishing the solvability of variational inequality on a
Hilbert lattice 𝑋 which is based on the fact that the metric
projection operator 𝑃

𝐶
is order-preserving if only if 𝐶 is a

sublattice of 𝑋. Very recently, Li and Ok [5] obtained the
generalized projection operator 𝜋

𝐶
is order-preserving in

partially ordered Banach spaces.
Motivated and inspired by the above mentioned work,

in this paper, we get the continuous property of generalized
projection operator Π

𝐶
and increasing characterizations

of Π
𝐶
in a partially ordered reflexive, strict convex, and

smooth Banach space. Further, we consider the following
Fan’s approximation theorem (Theorem 2 in [6]) through the
variational characterization ofΠ

𝐶
.The normed space version

of the theorem is as follows.

Theorem 1. Let 𝐶 be a nonempty compact convex set in a
normed linear space 𝑋. If 𝑓 is a continuous map from 𝐶 into
𝑋, then there exists a point 𝑢 in 𝐶 such that

󵄩󵄩󵄩󵄩𝑢 − 𝑓 (𝑢)
󵄩󵄩󵄩󵄩 = 𝑑 (𝑓 (𝑢) , 𝐶) . (2)

The point 𝑢 is called a best approximation point of 𝑓 in 𝐶.

Fan’s theorem has been of great importance in nonlinear
analysis, approximation theory, game theory, and minimax
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theorems. Various aspects of this theorem have been studied
by many authors under different assumptions. For some
related works, refer to [7–21] and the references therein.

In this paper, we obtain the existence of minimum
best approximation point and maximum best approximation
point in order interval. As an applications of our best
approximation theorems, the fixed point theorems for non-
self-maps are established under some conditions which do
not need to require any continuous and compact conditions
on 𝑓.

The content of the present work can be summarized
as follows. In Section 2, we review the definition of the
generalized projection operator in Banach spaces and its basic
properties. We also show some definitions in the partially
ordered Banach space and some fundamental results for
our theorems. In Section 3, we obtain the properties of
the generalized projection operator in the partially ordered
Banach space under some assumption. And we combine
these results with an order-theoretic fixed point theorem to
provide some of the best approximation theorems. Section 4
provides an application of these best approximation theorems
to fixed point theory.

2. Preliminaries

2.1. The Partial Order. Suppose that𝑋 is a real Banach space
and 𝑃 is a nonempty closed convex cone of𝑋. By 𝜃we denote
the zero element of𝑋.We define a partial order⪯with respect
to 𝑃 by 𝑥 ⪯ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃. We will write 𝑥 ≺ 𝑦 if
𝑥 ⪯ 𝑦 and 𝑥 ̸= 𝑦.

The cone 𝑃 is called normal if there is a number 𝐾 > 0,
such that for all𝑥, 𝑦 ∈ 𝑋, 0 ⪯ 𝑥 ⪯ 𝑦 implies ‖𝑥‖ ≤ 𝐾 ‖𝑦‖.The
cone 𝑃 is called regular if every increasing sequence which
is bounded from above is convergent. That is, if {𝑥

𝑛
} is a

sequence such that 𝑥
1
⪯ 𝑥
2
⪯ ⋅ ⋅ ⋅ ⪯ 𝑦 for some 𝑦 ∈ 𝑋, then

there is 𝑥 ∈ 𝑋 such that lim
𝑛→∞

‖𝑥
𝑛
− 𝑥‖ = 0. Equivalently,

the cone 𝑃 is regular if and only if every decreasing sequence
which is bounded from below is convergent. It has been
proved in Theorem 1.2.1 in [22] that every regular cone is
normal.

A cone 𝑃 is called minihedral, if each two-element set
{𝑥, 𝑦} has a least upper bound sup{𝑥, 𝑦}. Equivalently, the
cone𝑃 is minihedral if and only if each two-element set {𝑥, 𝑦}
has a greatest lower bound inf{𝑥, 𝑦}. As is convenient, we
denote sup{𝑥, 𝑦} as 𝑥∨𝑦 and inf{𝑥, 𝑦} as 𝑥∧𝑦. And if sup𝑀
exists for every nonempty and bounded from above𝑀 ⊂ 𝑋,
we say the cone 𝑃 is a strongly minihedral cone. If 𝑀 is a
nonempty subset of 𝑋 which contains 𝑥 ∨ 𝑦 and 𝑥 ∧ 𝑦 for
every 𝑥, 𝑦 ∈ 𝑀, then𝑀 is said to be subminihedral.

Let (𝑋, ⪯) be a real partially ordered Banach space. Given
𝑢
0
, V
0
∈ 𝑋 such that 𝑢

0
≺ V
0
, the set [𝑢

0
, V
0
] = {𝑧 ∈ 𝑋 : 𝑢

0
⪯

𝑧 ⪯ V
0
} is called ordered interval. If the cone 𝑃 is minihedral,

it is easy to see that [𝑢
0
, V
0
] is a subminihedral set of𝑋.

Definition 2 (see [5]). For any partially ordered spaces
(𝑋, ⪯
𝑋
) and (𝑌, ⪯

𝑌
), we say that a map 𝐹 : 𝑋 → 𝑌 is order-

preserving if

𝑥⪯
𝑋
𝑦 implies 𝐹 (𝑥) ⪯

𝑌
𝐹 (𝑦) . (3)

Definition 3 (see [23]). Let (𝑋, ⪯) be a partially ordered space
and𝐷 ⊂ 𝑋 is convex; we say that amap𝐹 : 𝐷 → 𝑋 is convex
if

𝐹 (𝑡𝑥 + (1 − 𝑡) 𝑦) ⪯ 𝑡𝐹 (𝑥) + (1 − 𝑡) 𝐹 (𝑦) ,

∀𝑥, 𝑦 ∈ 𝐷, 𝑥 ⪯ 𝑦, 0 ≤ 𝑡 ≤ 1.
(4)

2.2. Order-Dual. Let (𝑋, ⪯) be a real partially ordered Banach
space whose (topological) dual we denote by𝑋∗ and𝑃 a cone
in 𝑋. Recall that 𝑃∗ = {𝜙 ∈ 𝑋∗ : 𝜙(𝑥) ≥ 0, ∀𝑥 ∈ 𝑃} is called
the dual cone of 𝑃.The dual of ⪯ is the partial order ⪯∗ on𝑋∗
defined as follows:

𝜙⪯∗𝜑 iff 𝜑 − 𝜙 ∈ 𝑃∗. (5)

If 𝑃 is a minihedral cone, it is well known that 𝑃∗ is a
minihedral cone in 𝑋∗. We now show that 𝑥 ∈ 𝑃 if and only
if ⟨𝜑, 𝑥⟩ ≥ 0 for every 𝜑 ∈ 𝑃∗ (see [24, Proposition 1.4.2]).

We denote by (𝐻, ‖ ⋅ ‖
1
) a Hilbert space 𝐻 whose norm

‖ ⋅ ‖
1
satisfies

|𝑥| ⪯
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 implies ‖𝑥‖

1
≤
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩1 , ∀𝑥, 𝑦 ∈ 𝐻, (6)

where |𝑥| is defined by |𝑥| = 𝑥 ∨ (−𝑥) for each 𝑥 ∈ 𝐻.

2.3. The Generalized Projection Operator. Let 𝑋 be a real
Banach space with the dual 𝑋∗. We denote by 𝐽 the normal-
ized duality mapping from𝑋 to 2𝑋

∗

defined by

𝐽𝑥 = {𝑥∗ ∈ 𝑋∗ : ⟨𝑥∗, 𝑥⟩ =
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩 ‖𝑥‖ , ‖𝑥‖ =

󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩} , (7)

for all 𝑥 ∈ 𝑋, where ⟨⋅, ⋅⟩ denotes the generalized duality
pairing between𝑋∗ and𝑋. See [1] for basic characterizations
of the normalized duality mapping.

Recall that a Banach space𝑋has theKadec-Klee property,
if for any sequence {𝑥

𝑛
} ⊂ 𝑋 and 𝑥 ∈ 𝑋 with 𝑥

𝑛
⇀ 𝑥 (weak

convergence) and ‖𝑥
𝑛
‖ → ‖𝑥‖, then ‖𝑥

𝑛
− 𝑥‖ → 0, as 𝑛 →

∞. It is well known that if 𝑋 is a uniformly convex Banach
space, then𝑋 has the Kadec-Klee property.

Let 𝑋 be a reflexive, strictly convex, and smooth Banach
space and𝐶 a nonempty closed convex subset of𝑋. Consider
the Lyapunov functional defined by

𝑊(𝑥, 𝑦) = ‖𝑥‖
2 − 2 ⟨𝐽𝑥, 𝑦⟩ +

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2

, ∀𝑥, 𝑦 ∈ 𝑋. (8)

Following Alber [1], the generalized projectionΠ
𝐶
: 𝑋 → 𝐶

is amap that assigns to an arbitrary point𝑥 ∈ 𝑋 theminimum
point of the functional 𝑊(𝑥, 𝑦); that is, Π

𝐶
(𝑥) = 𝑥, where

𝑥 ∈ 𝐶 is the solution to the minimization problem:

𝑊(𝑥, 𝑥) = inf
𝑦∈𝐶

𝑊(𝑥, 𝑦) ; (9)

existence and uniqueness of the operatorΠ
𝐶
follow from the

properties of the functional𝑊(𝑥, 𝑦) and strict monotonicity
of the mapping 𝐽. It is obvious from the definition of
functional𝑊 that

(‖𝑥‖ −
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩)
2

≤ 𝑊(𝑥, 𝑦) ≤ (‖𝑥‖ +
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩)
2

,

∀𝑥, 𝑦 ∈ 𝑋.
(10)

If𝑋 is aHilbert space, then𝑊(𝑥, 𝑦) = (‖𝑥−𝑦‖)2 andΠ
𝐶
= 𝑃
𝐶
.
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If 𝑋 is a reflexive, strictly convex, and smooth Banach
space, then for 𝑥, 𝑦 ∈ 𝑋,𝑊(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦. It is
sufficient to show that if𝑊(𝑥, 𝑦) = 0 then 𝑥 = 𝑦. From (10),
we have ‖𝑥‖ = ‖𝑦‖. This implies that ⟨𝐽𝑥, 𝑦⟩ = ‖𝑦‖2 = ‖𝐽𝑥‖2.
From the definition of 𝐽, one has 𝐽𝑥 = 𝐽𝑦. Therefore, we have
𝑥 = 𝑦. See [25, 26] for more details.

In [1], the generalized projection operators on arbitrary
convex closed sets 𝐶 satisfy the following property.

The point Π
𝐶
(𝑥) = 𝑥 is a generalized projection of 𝑥 on

𝐶 ⊂ 𝑋 if and only if the following inequality is satisfied:

⟨𝐽𝑥 − 𝐽𝑥, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (11)

We denote 𝑑
𝑊
(𝑥, 𝐶) = inf{𝑊(𝑥, 𝑦) : 𝑦 ∈ 𝐶}, where 𝑥 ∈

𝑋 and𝑊 is Lyapunov functional in𝑋.

3. Best Approximation Theorems

First we give the following properties of the generalized
projection operators.

Lemma 4 (see [27]). Let (𝑋, ⪯) be a real partially ordered
reflexive, strictly convex, and smooth Banach space with respect
to a minihedral cone 𝑃. Suppose 𝑃∗ is the dual cone of 𝑃. The
following statements are equivalent:

(𝐻
1
) the normalized duality mapping 𝐽 is order-preserving;

(𝐻
2
) ‖𝐽𝑥 ∧ 𝐽𝑦‖2 + ‖𝐽𝑥 ∨ 𝐽𝑦‖2 ≤ ‖𝑥‖2 + ‖𝑦‖2, ∀𝑥, 𝑦 ∈ 𝑋, 𝑥 ⪯
𝑦.

Lemma 5 (see [27]). Let (𝑋, ⪯) be a real partially ordered
reflexive, strictly convex, and smooth Banach space with respect
to aminihedral cone𝑃 and satisfy condition (𝐻

2
). Suppose that

𝐶 is closed convex subminihedral set of𝑋. Moreover,𝐶 satisfies
the condition:

(𝐻
3
) ‖𝑥 ∧ 𝑦‖2 + ‖𝑥 ∨ 𝑦‖2 ≤ ‖𝑥‖2 + ‖𝑦‖2, ∀𝑥, 𝑦 ∈ 𝐶.

Then, Π
𝐶
is increasing.

Remark 6. The minihedral cones of many Banach spaces
satisfy (𝐻

3
). For example, if 𝑝 ≥ 2, every subminihedral set

𝑀 of (ℓ𝑝, ⪯) (here partial order ⪯ is defined coordinatewise)
such that 𝑥 ⪰ 𝜃, ∀𝑥 ∈ 𝑀, then 𝑀 satisfies (𝐻

3
); if 𝑝 ≥ 2,

every subminihedral set𝑀 of (𝑅𝑛,𝑝, ⪯) (here ⪯ stands again
for the coordinatewise ordering), such that 𝑥 ⪰ 𝜃, ∀𝑥 ∈ 𝑀,
then𝑀 satisfies (𝐻

3
). See [5] for more details.

Lemma 7. If 𝑋 is a uniformly convex and smooth Banach
space and 𝐶 is a nonempty, closed, and convex subset of 𝑋,
then the generalized projection operator Π

𝐶
: 𝑋 → 𝐶 is

continuous.

Proof. Since 𝑋 is a uniformly convex and smooth Banach
space, Π

𝐶
is single valued. Suppose 𝑥

𝑛
→ 𝑥, as 𝑛 → ∞,

and suppose Π
𝐶
(𝑥
𝑛
) = 𝑥

𝑛
(𝑛 = 1, 2, 3, . . .), and Π

𝐶
(𝑥) = 𝑥.

From the inequalities

(
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩)
2

≤ 𝑊(𝑥
𝑛
, 𝑥
𝑛
)

≤ 𝑊(𝑥
𝑛
, 𝑥)

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 + ‖𝑥‖)
2

(12)

and the hypothesis that 𝑥
𝑛
→ 𝑥, as 𝑛 → ∞, it yields

{𝑥
𝑛
} is a bounded subset of 𝑋. Since 𝑋 is reflexive, there

exists a subsequence of {𝑥
𝑛
}; without loss of the generality,

we may assume it is itself, such that {𝑥
𝑛
} converges weakly

to 𝑥󸀠. From the properties of weakly convergence, we have
‖𝑥󸀠‖ ≤ lim inf

𝑛→∞
‖𝑥
𝑛
‖. Moreover,𝑊(𝑥, 𝑥) ≤ 𝑊(𝑥, 𝑥

𝑛
) and

𝑊(𝑥
𝑛
, 𝑥
𝑛
) ≤ 𝑊(𝑥

𝑛
, 𝑥), which implies𝑊(𝑥, 𝑥

𝑛
) → 𝑊(𝑥, 𝑥),

as 𝑛 → ∞. Now we have

𝑊(𝑥, 𝑥󸀠) = ‖𝑥‖
2 − 2 ⟨𝐽𝑥, 𝑥󸀠⟩ +

󵄩󵄩󵄩󵄩󵄩𝑥
󸀠
󵄩󵄩󵄩󵄩󵄩
2

= lim
𝑛→∞

(‖𝑥‖
2 − 2 ⟨𝐽𝑥, 𝑥

𝑛
⟩ +

󵄩󵄩󵄩󵄩󵄩𝑥
󸀠
󵄩󵄩󵄩󵄩󵄩
2

)

≤ lim inf
𝑛→∞

(‖𝑥‖
2 − 2 ⟨𝐽𝑥, 𝑥

𝑛
⟩ +

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩
2

)

= lim inf
𝑛→∞

𝑊(𝑥, 𝑥
𝑛
)

= lim
𝑛→∞

𝑊(𝑥, 𝑥
𝑛
)

= inf
𝑦∈𝐶

𝑊(𝑥, 𝑦) .

(13)

Thus we have 𝑥󸀠 = 𝑥.
For any 𝜆 ∈ [0, 1], one has 𝜆𝑥 + (1 − 𝜆)𝑥

𝑛
∈ 𝐶. From the

inequality𝑊(𝑥, 𝑥) ≤ 𝑊(𝑥, 𝜆𝑥 + (1 − 𝜆)𝑥
𝑛
), we have

‖𝑥‖
2 − 2 ⟨𝐽𝑥, 𝑥⟩ + ‖𝑥‖

2 ≤ ‖𝑥‖
2

≤ ‖𝑥‖
2 − 2 ⟨𝐽𝑥, 𝜆𝑥 + (1 − 𝜆) 𝑥

𝑛
⟩ +

󵄩󵄩󵄩󵄩𝜆𝑥 + (1 − 𝜆) 𝑥𝑛
󵄩󵄩󵄩󵄩
2

.

(14)

Therefore,

2 ⟨𝐽𝑥, (1 − 𝜆) (𝑥
𝑛
− 𝑥)⟩ ≤

󵄩󵄩󵄩󵄩𝜆𝑥 + (1 − 𝜆) 𝑥𝑛
󵄩󵄩󵄩󵄩
2

− ‖𝑥‖
2 . (15)

Similar to the above argument, from inequality𝑊(𝑥
𝑛
, 𝑥
𝑛
) ≤

𝑊(𝑥
𝑛
, 𝑥), we obtain

2 ⟨𝐽𝑥
𝑛
, 𝑥 − 𝑥

𝑛
⟩ ≤ ‖𝑥‖

2 −
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
2

. (16)

Adding the above two inequalities side by side, we obtain

2 ⟨𝐽𝑥 − 𝐽𝑥
𝑛
, 𝑥
𝑛
− 𝑥⟩

≤
󵄩󵄩󵄩󵄩𝜆𝑥 + (1 − 𝜆) 𝑥𝑛

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝜆 ⟨𝐽𝑥, 𝑥
𝑛
− 𝑥⟩

≤ 𝜆2 ‖𝑥‖
2

+ 2𝜆 (1 − 𝜆) ‖𝑥‖
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 + (1 − 𝜆)
2 󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
2
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−
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝜆 ⟨𝐽𝑥, 𝑥
𝑛
− 𝑥⟩

≤ 𝜆2 ‖𝑥‖
2 + 𝜆 (1 − 𝜆) (‖𝑥‖

2 +
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
2

)

+ (1 − 𝜆)
2 󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝜆 ⟨𝐽𝑥, 𝑥
𝑛
− 𝑥⟩

= 𝜆 (‖𝑥‖
2 −

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩
2

) + 2𝜆 ⟨𝐽𝑥, 𝑥
𝑛
− 𝑥⟩ .

(17)

So

2 ⟨𝐽𝑥 − 𝐽𝑥
𝑛
, 𝑥 − 𝑥

𝑛
⟩ ≥ 𝜆 (

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩
2

− ‖𝑥‖
2) + 2𝜆 ⟨𝐽𝑥, 𝑥 − 𝑥

𝑛
⟩ .

(18)

If we use the inequalities 𝑊(𝑥, 𝑥) ≤ 𝑊(𝑥, 𝑥
𝑛
) and

𝑊(𝑥
𝑛
, 𝑥
𝑛
) ≤ 𝑊(𝑥

𝑛
, 𝜆𝑥 + (1 − 𝜆)𝑥

𝑛
), similar to the above

argument, we obtain

2 ⟨𝐽𝑥 − 𝐽𝑥
𝑛
, 𝑥 − 𝑥

𝑛
⟩ ≥ (1 − 𝜆) (‖𝑥‖

2 −
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
2

)

+ 2 (1 − 𝜆) ⟨𝐽𝑥
𝑛
, 𝑥
𝑛
− 𝑥⟩ .

(19)

In (18) and (19), taking 𝜆 = 1/2, we have

4 ⟨𝐽𝑥 − 𝐽𝑥
𝑛
, 𝑥 − 𝑥

𝑛
⟩ ≥ (

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩
2

− ‖𝑥‖
2) + 2 ⟨𝐽𝑥, 𝑥 − 𝑥

𝑛
⟩ ,

4 ⟨𝐽𝑥 − 𝐽𝑥
𝑛
, 𝑥 − 𝑥

𝑛
⟩ ≥ (‖𝑥‖

2 −
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
2

) + 2 ⟨𝐽𝑥
𝑛
, 𝑥
𝑛
− 𝑥⟩ .

(20)

From the conditions that 𝑥
𝑛
→ 𝑥, as 𝑛 → ∞ and 𝑋 is a

smooth Banach space, we have 𝐽𝑥
𝑛
→ 𝐽𝑥, as 𝑛 → ∞. Using

𝑥
𝑛
⇀ 𝑥, as 𝑛 → ∞ and combining (20), it yields ‖𝑥

𝑛
‖ →

‖𝑥‖, as 𝑛 → ∞. Since𝑋 is a uniformly convex Banach space,
then 𝑋 has the Kadec-Klee property. Therefore, we obtain
𝑥
𝑛
→ 𝑥, as 𝑛 → ∞. Thus this lemma is proved.

Lemma 8. Let (𝑋, ⪯) be a real partially ordered reflexive,
strictly convex, and smooth Banach space with respect to 𝑃 and
satisfy condition (𝐻

2
). Suppose that 𝑃 is a minihedral cone and

satisfies the condition:

(𝐻
4
) ‖𝑥 ∧ 𝑦‖2 + ‖𝑥 ∨ 𝑦‖2 ≤ ‖𝑥‖2 + ‖𝑦‖2, ∀𝑥 ∈ 𝑋, 𝑦 ∈ 𝑃.

Then, Π
𝑃
is increasing, and Π

𝑃
(𝑥 + 𝑦) ⪯ Π

𝑃
(𝑥) + Π

𝑃
(𝑦),

∀𝑥, 𝑦 ∈ 𝑋.

Proof. Since (𝐻
4
) implies (𝐻

3
) and 𝑃 is subminihedral, from

Lemma 5, Π
𝑃
is increasing. Next, we prove 𝑥 ⪯ Π

𝑃
(𝑥), ∀𝑥 ∈

𝑋. To derive a contradiction, assume that there exists 𝑥
0

which does not satisfy 𝑥
0
⪯ Π
𝑃
(𝑥
0
); that is, 𝑥

0
∧Π
𝑃
(𝑥
0
) ̸= 𝑥
0

and 𝑥
0
∨ Π
𝑃
(𝑥
0
) ̸= Π
𝑃
(𝑥
0
). Then we have

𝑊(𝑥
0
, Π
𝑃
(𝑥
0
)) < 𝑊(𝑥

0
, 𝑥
0
∨ Π
𝑃
(𝑥
0
)) ; (21)

that is,

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩
2

− 2 ⟨𝐽𝑥
0
, Π
𝑃
(𝑥
0
)⟩ +

󵄩󵄩󵄩󵄩Π𝑃 (𝑥0)
󵄩󵄩󵄩󵄩
2

<
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩
2

− 2 ⟨𝐽𝑥
0
, 𝑥
0
∨ Π
𝑃
(𝑥
0
)⟩ +

󵄩󵄩󵄩󵄩𝑥0 ∨ Π𝑃 (𝑥0)
󵄩󵄩󵄩󵄩
2

.

(22)

Hence,

2 ⟨𝐽𝑥
0
, 𝑥
0
∨ Π
𝑃
(𝑥
0
) − Π
𝑃
(𝑥
0
)⟩

<
󵄩󵄩󵄩󵄩𝑥0 ∨ Π𝑃 (𝑥0)

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩Π𝑃 (𝑥0)

󵄩󵄩󵄩󵄩
2

.
(23)

As 𝑥
0
∧ Π
𝑃
(𝑥
0
) ̸= 𝑥
0
, we have

𝑊(𝑥
0
, 𝑥
0
∧ Π
𝑃
(𝑥
0
)) =

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩
2

− 2 ⟨𝐽𝑥
0
, 𝑥
0
∧ Π
𝑃
(𝑥
0
)⟩

+
󵄩󵄩󵄩󵄩𝑥0 ∧ Π𝑃(𝑥0)

󵄩󵄩󵄩󵄩
2

> 0,
(24)

and then,

2 ⟨𝐽𝑥
0
, 𝑥
0
∧ Π
𝑃
(𝑥
0
)⟩ <

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑥0 ∧ Π𝑃(𝑥0)

󵄩󵄩󵄩󵄩
2

. (25)

Since 𝑥
0
∧ Π
𝑃
(𝑥
0
) + 𝑥
0
∨ Π
𝑃
(𝑥
0
) = 𝑥

0
+ Π
𝑃
(𝑥
0
), from (23)

and (25), we have

2 ⟨𝐽𝑥
0
, 𝑥
0
⟩ <

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑥0 ∧ Π𝑃 (𝑥0)

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑥0 ∨ Π𝑃 (𝑥0)

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩Π𝑃 (𝑥0)

󵄩󵄩󵄩󵄩
2

.
(26)

And hence ‖𝑥
0
∧ Π
𝑃
(𝑥
0
)‖2 + ‖𝑥

0
∨ Π
𝑃
(𝑥
0
)‖2 − ‖Π

𝑃
(𝑥
0
)‖2 −

‖𝑥
0
‖2 > 0. This contradicts (𝐻

4
). Thus, 𝑥 ⪯ Π

𝑃
(𝑥), ∀𝑥 ∈ 𝑋.

And hence,

𝑥 + 𝑦 ⪯ Π
𝑃
(𝑥) + Π

𝑃
(𝑦) , ∀𝑥, 𝑦 ∈ 𝑋. (27)

As Π
𝑃
is increasing, we have

Π
𝑃
(𝑥 + 𝑦) ⪯ Π

𝑃
(𝑥) + Π

𝑃
(𝑦) , ∀𝑥, 𝑦 ∈ 𝑋. (28)

The assertion is proved.

Lemma 9. Let (𝑋, ⪯) be a real partially ordered reflexive,
strictly convex, and smooth Banach space with respect to a
minihedral cone 𝑃 and satisfy condition (𝐻

2
). Suppose 𝑢

0
, V
0
∈

𝑋 with 𝑢
0
≺ V
0
and the following condition is satisfied:

(𝐻
5
) ‖𝑥 ∧ 𝑦‖2 + ‖𝑥 ∨ 𝑦‖2 ≤ ‖𝑥‖2 + ‖𝑦‖2, ∀𝑥 ∈ 𝑋, 𝑦 ∈
[𝑢
0
, V
0
].

Then, Π
[𝑢
0
,V
0
]
is increasing, and

Π
[𝑢
0
,V
0
]
(𝑡𝑥 + (1 − 𝑡) 𝑦) ⪯ 𝑡Π

[𝑢
0
,V
0
]
(𝑥) + (1 − 𝑡)Π

[𝑢
0
,V
0
]
(𝑦)

∀𝑡 ∈ [0, 1] , ∀𝑥, 𝑦 ⪯ V
0
.

(29)

Proof. Following a similar argument as in the proof of
Lemma 8, we obtain that Π

[𝑢
0
,V
0
]
is increasing and 𝑥 ⪯

Π
[𝑢
0
,V
0
]
(𝑥), ∀𝑥 ⪯ V

0
. And hence,

𝑡𝑥 + (1 − 𝑡) 𝑦 ⪯ 𝑡Π
[𝑢
0
,V
0
]
(𝑥) + (1 − 𝑡)Π

[𝑢
0
,V
0
]
(𝑦) ,

∀𝑡 ∈ [0, 1] , 𝑥, 𝑦 ⪯ V
0
.

(30)

As Π
[𝑢
0
,V
0
]
is increasing and 𝑡Π

[𝑢
0
,V
0
]
(𝑥) + (1 − 𝑡)Π

[𝑢
0
,V
0
]
(𝑦) ∈

[𝑢
0
, V
0
], we have

Π
[𝑢
0
,V
0
]
(𝑡𝑥 + (1 − 𝑡) 𝑦) ⪯ 𝑡Π

[𝑢
0
,V
0
]
(𝑥) + (1 − 𝑡)Π

[𝑢
0
,V
0
]
(𝑦) .

(31)

The proof is completed.
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Remark 10. If (𝐻, ‖ ⋅ ‖
1
) is a partially ordered Hilbert space

with respect to 𝑃 and 𝑃 a minihedral cone, (𝐻
4
) and (𝐻

5
) are

satisfied.

From the above properties of the generalized projection
operators and order-theoretic fixed point theorems, we can
obtain the following best approximation theorems.

Theorem 11. Let (𝑋, ⪯) be a real partially ordered uniformly
convex and smooth Banach space with respect to a minihedral
cone 𝑃 and satisfy condition (𝐻

2
). Suppose that 𝑓 : [𝑢

0
, V
0
] →

𝑋 is an increasing map. Moreover, [𝑢
0
, V
0
] satisfies the condi-

tion (𝐻
3
) and 𝑓([𝑢

0
, V
0
]) is relatively compact. Then, 𝑓 has a

minimum best approximation point 𝑥
∗
and a maximum best

approximation point 𝑥∗ with respect to 𝑊(𝑥, 𝑦) in [𝑢
0
, V
0
],

such that
𝑢
0
⪯ 𝑢
1
⪯ ⋅ ⋅ ⋅ ⪯ 𝑢

𝑛
⪯ ⋅ ⋅ ⋅ ⪯ 𝑥

∗
⪯ 𝑥∗

⪯ ⋅ ⋅ ⋅ ⪯ V
𝑛
⪯ ⋅ ⋅ ⋅ ⪯ V

1
⪯ V
0
,

(32)

where 𝑢
𝑛
= Π
[𝑢
0
,V
0
]
(𝑓(𝑢
𝑛−1
)), V
𝑛
= Π
[𝑢
0
,V
0
]
(𝑓(V
𝑛−1
)) (𝑛 = 1, 2,

3, . . .).

Proof. Define 𝐹 : [𝑢
0
, V
0
] → [𝑢

0
, V
0
] by 𝐹(𝑥) =

Π
[𝑢
0
,V
0
]
(𝑓(𝑥)). FromLemma 5, we get𝐹 is increasing. It is easy

to see 𝑢
0
⪯ 𝐹(𝑢

0
) and 𝐹(V

0
) ⪯ V

0
. By Lemma 7, we know

Π
[𝑢
0
,V
0
]
is continuous and 𝐹([𝑢

0
, V
0
]) is relatively compact.

Thus 𝐹 satisfies all conditions ofTheorem 2.1.4 in [22]. Then,
𝐹 has a minimum fixed point 𝑥

∗
and a maximum fixed point

𝑥∗ and satisfies (32). Now we consider 𝐹(𝑥
∗
) = 𝑥
∗
, 𝐹(𝑥∗) =

𝑥∗; that is, Π
[𝑢
0
,V
0
]
(𝑓(𝑥
∗
)) = 𝑥

∗
and Π

[𝑢
0
,V
0
]
(𝑓(𝑥∗)) = 𝑥∗. By

the definition of Π
[𝑢
0
,V
0
]
, we get

𝑊(𝑓 (𝑥
∗
) , 𝑥
∗
) = inf
𝑦∈[𝑢
0
,V
0
]

𝑊(𝑓 (𝑥
∗
) , 𝑦)

= 𝑑
𝑊
(𝑓 (𝑥
∗
) , [𝑢
0
, V
0
]) ,

𝑊 (𝑓 (𝑥∗) , 𝑥∗) = inf
𝑦∈[𝑢
0
,V
0
]

𝑊(𝑓 (𝑥∗) , 𝑦)

= 𝑑
𝑊
(𝑓 (𝑥∗) , [𝑢

0
, V
0
]) .

(33)

The assertion is proved.

Theorem 12. Let (𝑋, ⪯) be a real partially ordered reflexive,
strictly convex, and smooth Banach space with respect to a nor-
mal andminihedral cone𝑃 and satisfy condition (𝐻

2
). Suppose

that 𝑓 : [𝑢
0
, V
0
] → 𝑋 is an increasing map. Moreover, [𝑢

0
, V
0
]

satisfies the condition (𝐻
3
). Then, 𝑓 has a minimum best

approximation point 𝑥
∗
and a maximum best approximation

point 𝑥∗ with respect to𝑊(𝑥, 𝑦) in [𝑢
0
, V
0
]. Moreover, if 𝑢

𝑛
=

Π
[𝑢
0
,V
0
]
(𝑓(𝑢
𝑛−1
)), V
𝑛
= Π
[𝑢
0
,V
0
]
(𝑓(V
𝑛−1
)) (𝑛 = 1, 2, 3, . . .), (32)

holds.

Proof. Define 𝐹 : [𝑢
0
, V
0
] → [𝑢

0
, V
0
] by 𝐹(𝑥) =

Π
[𝑢
0
,V
0
]
(𝑓(𝑥)). From Lemma 5, we get 𝐹 is increasing. It is

easy to see 𝑢
0
⪯ 𝐹(𝑢

0
) and 𝐹(V

0
) ⪯ V

0
. Since 𝑋 is reflexive

and 𝑃 is normal, 𝑃 is regular. Thus 𝐹 satisfies all conditions
of Theorem 3.1.4 in [23]. Then, 𝐹 has a minimum fixed point
𝑥
∗
and a maximum fixed point 𝑥∗ and satisfies (32). By the

definition of Π
[𝑢
0
,V
0
]
, the assertion is proved.

Remark 13. In the aboveTheorem 11,𝑓 is discontinuousmap.
And in Theorem 12, 𝑓 is discontinuous map and has no
compact conditions.

Example 14. Let (𝑋, ⪯) = (ℓ2, ⪯). Here ⪯ stands for the
coordinatewise ordering. It is easy to prove that all conditions
in Theorem 12 hold. Given 𝑢

0
, V
0
∈ ℓ2 such that 𝑢

0
≺ V
0
.

Then, every increasing𝑓 : [𝑢
0
, V
0
] → ℓ2 has aminimumbest

approximation point and a maximum best approximation
point with respect to𝑊(𝑥, 𝑦) in [𝑢

0
, V
0
].

Theorem 15. Let (𝑋, ⪯) be a real partially ordered reflexive,
strictly convex, and smooth Banach space with respect to 𝑃. If
𝑢
0
≺ V
0
and the following conditions are satisfied,

(i) 𝑃 is a normal,minihedral conewith satisfying (𝐻
2
) and

(𝐻
5
);

(ii) 𝑓 : [𝑢
0
, V
0
] → 𝑋 is an increasing and convex map;

(iii) there exists a 0 < 𝜀 < 1 such that𝑓(V
0
) ⪯ 𝜀𝑢

0
+(1−𝜀)V

0
,

then, 𝑓 has a unique approximation point 𝑥 with
respect to 𝑊(𝑥, 𝑦) in [𝑢

0
, V
0
]. Moreover, if we take

𝑥
𝑛
= Π
[𝑢
0
,V
0
]
(𝑓(𝑥
𝑛−1
)) (𝑛 = 1, 2, 3, . . .) for ∀𝑥

0
∈ [𝑢
0
, V
0
],

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 󳨀→ 0 (𝑛 󳨀→ ∞) , (34)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 ≤ 𝑀 (1 − 𝜀)

𝑛

(𝑛 = 1, 2, 3, . . .) , (35)

where𝑀 > 0 has nothing to do with 𝑥
0
.

Proof. Define 𝐹 : [𝑢
0
, V
0
] → [𝑢

0
, V
0
] by 𝐹(𝑥) =

Π
[𝑢
0
,V
0
]
(𝑓(𝑥)). Since 𝑓 is convex andΠ

[𝑢
0
,V
0
]
is increasing, for

∀𝑡 ∈ [0, 1], we have
𝐹 (𝑡𝑥 + (1 − 𝑡) 𝑦) = Π

[𝑢
0
,V
0
]
(𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦))

⪯ Π
[𝑢
0
,V
0
]
(𝑡𝑓 (𝑥) + (1 − 𝑡) 𝑓 (𝑦)) .

(36)

Using Lemma 9 and 𝑓(𝑥) ⪯ 𝑓(V
0
) ⪯ V
0
, we obtain

𝐹 (𝑡𝑥 + (1 − 𝑡) 𝑦) ⪯ 𝑡Π
[𝑢
0
,V
0
]
(𝑓 (𝑥)) + (1 − 𝑡)Π

[𝑢
0
,V
0
]
(𝑓 (𝑦))

= 𝑡𝐹 (𝑥) + (1 − 𝑡) 𝐹 (𝑦) .

(37)

Thus 𝐹 is convex. And 𝐹(V
0
) ⪯ 𝜀𝑢

0
+(1−𝜀)V

0
.Thus 𝐹 satisfies

all conditions of Theorem 3.1.6 in [23]. Then, 𝐹 has a unique
fixed point 𝑥 and satisfies (35). By the definition of Π

[𝑢
0
,V
0
]
,

the assertion is proved.

4. Fixed Point Theorems

In this section, we will prove some new fixed point theorems
for non-self-maps by using results of Section 3.

Theorem 16. Let (𝑋, ⪯) be a real partially ordered uniformly
convex and smooth Banach space with respect to a minihedral
cone 𝑃 and satisfy condition (𝐻

2
). Suppose that 𝑓 : [𝑢

0
, V
0
] →

𝑋 is an increasing map and 𝑓([𝑢
0
, V
0
]) is relative compact.

Moreover, [𝑢
0
, V
0
] satisfies the condition (𝐻

3
) and

󵄨󵄨󵄨󵄨co {𝑥, 𝑓 (𝑥)} ∩ [𝑢0, V0]
󵄨󵄨󵄨󵄨 ≥ 2, ∀𝑥 ∈ [𝑢

0
, V
0
] . (38)

Then, 𝑓 has at least one fixed point in [𝑢
0
, V
0
].
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Proof. By Theorem 11, 𝑓 has at least one best approximation
point 𝑥 in [𝑢

0
, V
0
]; that is, Π

[𝑢
0
,V
0
]
(𝑓(𝑥)) = 𝑥. From (11), we

have

⟨𝐽 (𝑓 (𝑥)) − 𝐽𝑥, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑦 ∈ [𝑢
0
, V
0
] . (39)

Wemayuse (38) to find a𝜆 ∈ (0, 1] such that (1−𝜆)𝑥+𝜆𝑓(𝑥) ∈
[𝑢
0
, V
0
], and hence

⟨𝐽 (𝑓 (𝑥)) − 𝐽𝑥, 𝑥 − [(1 − 𝜆) 𝑥 + 𝜆𝑓 (𝑥)]⟩ ≥ 0; (40)

that is,

⟨𝐽 (𝑓 (𝑥)) − 𝐽𝑥, 𝑥 − 𝑓 (𝑥)⟩ ≥ 0. (41)

Moreover,

⟨𝐽 (𝑓 (𝑥)) − 𝐽𝑥, 𝑓 (𝑥) − 𝑥⟩

=
󵄩󵄩󵄩󵄩𝑓 (𝑥)

󵄩󵄩󵄩󵄩
2

− ⟨𝐽 (𝑓 (𝑥)) , 𝑥⟩ − ⟨𝐽𝑥, 𝑓 (𝑥)⟩ + ‖𝑥‖
2

≥
󵄩󵄩󵄩󵄩𝑓 (𝑥)

󵄩󵄩󵄩󵄩
2

− 2
󵄩󵄩󵄩󵄩𝑓 (𝑥)

󵄩󵄩󵄩󵄩 ‖𝑥‖ + ‖𝑥‖
2

= (
󵄩󵄩󵄩󵄩𝑓 (𝑥)

󵄩󵄩󵄩󵄩 − ‖𝑥‖)
2

≥ 0.

(42)

So we conclude that ⟨𝐽(𝑓(𝑥)) − 𝐽𝑥, 𝑓(𝑥) − 𝑥⟩ = 0. It follows
that ‖𝑓(𝑥)‖ = ‖𝑥‖. Moreover, as ⟨𝐽(𝑓(𝑥)), 𝑥⟩ ≤ ‖𝑓(𝑥)‖‖𝑥‖,
and the inequality above must hold as an equality. We have
⟨𝐽(𝑓(𝑥)), 𝑥⟩ = ‖𝑓(𝑥)‖‖𝑥‖. Therefore, 𝐽(𝑓(𝑥)) = 𝐽𝑥. And thus
𝑓(𝑥) = 𝑥. The assertion is proved.

Following a similar argument as in the proof of
Theorem 16, we can obtain the following fixed point theo-
rems.

Theorem 17. Let (𝑋, ⪯) be a real partially ordered uniformly
convex and smooth Banach space with respect to 𝑃 and satisfy
condition (𝐻

2
). Suppose that 𝑃 is a normal, minihedral cone

and 𝑓 : [𝑢
0
, V
0
] → 𝑋 is an increasing map. Moreover, [𝑢

0
, V
0
]

satisfies the condition (𝐻
3
) and (38). Then, 𝑓 has at least one

fixed point in [𝑢
0
, V
0
].

Example 18. Let (𝑋, ⪯) = (𝐿2(Ω), ⪯), the space of measurable
functions which are the 2nd power summable on Ω. Endow
𝐿2(Ω) with the following norm and the cone 𝑃:

‖𝑥‖ = (∫
Ω

|𝑥 (𝑡)|
2 𝑑𝜇)
1/2

,

𝑃 = {𝑥 ∈ 𝐿2 (Ω) : 𝑥 (𝑡) ≥ 0, ∀a.e. 𝑡 ∈ Ω} .
(43)

Given 𝑢
0
, V
0
∈ 𝐿2(Ω) such that 𝑢

0
≺ V
0
. It is easy to see that

(𝐿2(Ω), ⪯) satisfies (𝐻
2
) and (𝐻

3
) holds in [𝑢

0
, V
0
]. Thus, by

Theorem 17, every increasing 𝑓 : [𝑢
0
, V
0
] → 𝐿2(Ω) satisfying

(38) has at least one fixed point in [𝑢
0
, V
0
].

Theorem 19. Let (𝑋, ⪯) be a real partially ordered reflexive,
strictly convex, and smooth Banach space with respect to 𝑃. If
𝑢
0
≺ V
0
and the following conditions are satisfied,

(i) 𝑃 is a normal, minihedral cone with satisfying (𝐻
2
),

(𝐻
5
) and (38);

(ii) 𝑓 : [𝑢
0
, V
0
] → 𝑋 is an increasing and convex map;

(iii) there exists 0 < 𝜀 < 1 such that 𝑓(V
0
) ⪯ 𝜀𝑢

0
+ (1− 𝜀)V

0
,

then, 𝑓 has a unique fixed point 𝑥 in [𝑢
0
, V
0
]. Moreover, if we

take 𝑥
𝑛
= Π
[𝑢
0
,V
0
]
(𝑓(𝑥
𝑛−1
)) (𝑛 = 1, 2, 3, . . .) for ∀𝑥

0
∈ [𝑢
0
, V
0
],

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 󳨀→ 0 (𝑛 󳨀→ ∞) ,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 ≤ 𝑀 (1 − 𝜀)

𝑛

(𝑛 = 1, 2, 3, . . .) ,
(44)

where𝑀 > 0 has nothing to do with 𝑥
0
.
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