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A Dynamic Absorber for Gear 
Systems Operating in Resonance 
and Instability Regions 
There are many practical situations where resonances and instabilities in pinion-
gear systems are difficult to predict in the design stage due to the unreliability of 
estimating the mesh stiffness and damping parameters. This paper presents a 
procedure for the design of an optimal dynamic absorber system which can be used 
in conditions where preliminary analysis shows that high dynamic tooth loads are 
likely to occur. The optimal parameters for the absorber are given in a generalized 
form in order to simplify its design for a particular gear system. 

Introduction 

In the previous paper (reference [1]) it has been shown that 
it is rather difficult, in the design stage, to insure the stability 
and safe performance of pinion-gear systems. This paper 
investigates the design of a vibration absorber for gear drives 
which can provide an appropriate solution for such con
ditions. 

The dynamic equations of motion for the absorber system 
are developed in non-dimensional form to determine the 
pertinent variables necessary for general description of the 
absorber system. The conditions for uncoupling these 
equations are specified. The decision parameters to be con
sidered in the optimization of the design are specified. A 
pattern search is employed to evaluate the optimal parameters 
for different gear system conditions and the results are given 
as design charts. The response of the optimal absorber shows 
its effectiveness even when the theoretical uncoupling con
ditions are not met. 

Model of the System With Absorber 

A schematic diagram of the envisioned system is shown in 
Fig. 1 (a) and an elastic-mass system representation of it is 
shown in Fig. 1(b). The original single pinion is replaced with 
a two part system that is internally preloaded using a 
relatively soft spring. The preload causes the absorber to be in 
contact on the back side of the gear tooth as in the case of 
antibacklash gears. The design includes a frictional damper 
for energy dissipation whenever relative motion occurs 
between the pinion and absorber. This allows for limiting the 
vibratory motion without affecting the rotational efficiency 
of the gear drive. 

A model of the system is shown in Fig. 2 where all 
parameters are referred to the high speed (H.S.). The main 
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I a = 
h = 
TP = 
Tf = 

system parameters are: 
Tx(t) = pinion load torque 
T2(t) = gear load torque 

pinion inertia 
absorber inertia 
gear inertia 
preload torque 
frictional torque 

Kl(t),K2(t) = mesh stiffness functions 
CX,C2 = viscous damping constants in each mesh 

Qp>Qg>Qa = coordinates of motion relative to a moving 
reference at nominal operating speed 

Since the preload spring, which supplies the preload torque, 
Tp, is very soft relative to the stiffness of a gear mesh, it will 
be included in the dynamic model as a constant torque applied 
to the pinion and absorber. 

The dynamic equations of motion for the system are 

ipdp+c^-e^ + TfSgnidp-e,) 
+KlU)Wp-0g)=*Tl(t)-Tp (1) 

Ig6e + Cl(6g-6p)+C2{dg-ea) 

+Ki (t) (dg-0p) +K2(t) (6g-da) = T2(t) 
lJa + C20a-dp)+Tfsgn(ea-6p) 

+K2(t)(6a-dg) = Tp 

(2) 

(3) 

Assuming a steady transmitted load with a sinusoidal com
ponent is aplied to the pinion, the torque load can be ex
pressed as: 

T1{t) = -T0 + T, sin uet (4) 
T2(t) = T0 (5) 

The gear is assumed to be driving in this case. A change of 
sign on the T0 and 
changes produces no change in the final result 

Tp terms if the direction of rotation 

Conditions for Uncoupling the Equations of Motion 

In order to simplify the analysis of the dynamic response of 
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Fig. 1(a) Schematic showing mechanical arrangement of absorber 
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Fig. 1(b) Elastic-mass system for absorber 

the absorber, the equations of motion will be uncoupled using 
the procedure described in reference [2]. The theoretical 
uncoupling conditions require that the stiffness variation 
functions are the same and the damping in the problem is of 
the Rayleigh type. Using the notation 

tf,(0=*.(*i(0) 
K2(t)=K2(<t>2(t)) 
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Fig. 2 Dynamic model of absorber 

where 
K, = 

K2 

average torsional stiffness of pinion-gear mesh 
over a cycle. 
average torsional stiffness of absorber-gear mesh 
periodic stiffness variation functions i = 1,2 

The theoretical uncoupling conditions therefore require that 
0, (/) = 02 (0- Since both the absorber and pinion have the 
same number of teeth, the mesh frequency, w,„, will be the 
same for both meshes. In order for the stiffness variations to 
be in phase, a new pair of teeth should enter the zone of action 
in the absorber-gear mesh at the same instant as a pair enters 
the zone of action in the pinion-gear mesh. Since the pinion-
absorber system acts like an antibacklash gear, the absorber-
gear mesh is generally expected to be out of phase with the 
pinion-gear mesh for a standard gear. By advancing the 
position of the teeth in the absorber section of the gear 
relative to the pinion section, the two stiffness variations can 
be adjusted to be in phase at least on a geometric basis. The 
required shift is given by 

Toothspace + G„ — Qr (6) 
where 

Qa is angle of approach with gear driving 
9 r is angle of recess with gear driving 

References [2] and [3] show, that stiffness variations in phase 
lead to narrower instability regions in a two-stage gear drive. 

The other uncoupling requirement is that the stiffness 
should vary between the same limit. For spur gear drives, this 
is automatically satisfied since the contact ratios in each mesh 
will be the same and the numbers of pairs of teeth in contact 
will be the same at all times. In helical gear drives, however, 
the relationships are more complex and it will be assumed that 
the upper and lower limits of each mesh stiffness are designed 
to be as close as possible. Accordingly, it will be assumed in 

Nomenclature 

h = 
T0 = 
T = 

K = 

* pmax > * pm\n 

original system pinion inertia 
Rayleigh spring damping con
stant for damping in the mesh 
gear inertia 
steady load on system 
sinusoidal fluctuation load 
amplitude applied to pinion 
average torsional stiffness of 
mesh of face width FW (stiffness 
of original system) = Kmin 
(c(Kmax-l) + (2-Fmax)) 

FW = total face width of original 
system 

4>(t) = stiffness variation function 
T'max = maximum allowable torque per 

inch of face 
maximum and minimum torques 
per inch of face of pinion (face 

T 

T T amax»-• ffmm 

wuw2 
T" 

L = 

£mesh 

K 

width FWp) = Kx(t) (6g-
ep)/Fwp 
maximum and minimum torques 
per inch of face of absorber (face 
width FWa) = K2(t) (6a-
eg)/F\va 
absorber system natural 
frequencies 
weights on objective function 
nominal load per inch of face in 
original system = T0 /FW 
effective inertia of original 
system = (IpoIg)/ ( / p o +^) 
original system natural frequency 
= -4KlTe 

damping ratio of original system 

minimum mesh stiffness of 
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the analysis that (j>l (t) = </>2 ( 0 = <M0. It should be noted 
here that deviations from this theoretical conditions to ac
commodate practical design situations do not appreciably 
affect the performance of the absorber. 

The other required condition for uncoupling the equations 
of motion is that the damping should be of the Rayleigh type. 
The damping coefficients attributed to the mesh can be 
reasonably assumed to be proportional to the average stiff
nesses of each mesh since the dissipation is primarily due to 
sliding friction. The frictional force is proportional to 
nominal load on the mesh. Both nominal load and stiffness 
are proportional to face width and the low damping ratios 
expected in gear meshes (lower than .05), makes Rayleigh 
damping a reasonable assumption. Accordingly 

C, = RKKX (7) 

C2 = RKKI (8) 

RK is defined based on the damping ratio of the original 
system which the absorber is designed to replace. Thus, if the 
original pinion-gear system had a damping ratio £ and natural 
frequency <J„, RK is found from 

RK=— (9) 

Modelling the effect of the frictional torque Tf as Rayleigh 
damping requires the evaluation of an equivalent RM con
stant. Thus, it will be modelled as Rayleigh mass damping 
acting on the pinion and absorber. Since mass damping 
theoretically requires that a damper is applied to each mass in 
the system, corrections will be necessary in the resulting 
uncoupled equations of motion. Therefore, in the equations 
of motion equations (1-3) Tf sgn (6p - Ba) is replaced by Cp Bp 

and 7} sgn(da-6p)is replaced by Ca6a. The relationship 
between RM and 7} is developed in the following section. 

The equations of motion incorporating all the above 
assumptions can be written in matrix form as: 

[IN]{e)+[RK[K] 

+ RMUN}}{e}+<Kt)[K]{6) = [At)} (10) 

where 

[/*] = 
b ° 
0 0 

[*1 = 

1/(01 = 

K, K, 0 

— /Cj K\ + K-2 ~ K% 

0 -Ki K, 

-T0 -TD + Te s i n uet 
T 

The system natural frequencies can therefore be found as: 

o?n2 = A-[A2-B]'< 
o>2

n3 = A + [A*-BY> 
(11) 
(12) 

where 

, 4 = 1 r * 1 Ri+Ri k^Bz=^R^ip+is+i") 

and the corresponding normal mode vectors are 

T),= >/'= 1,2,3 

(13) 
Placing each mode vector into a matrix [7], the coordinate 
transformation which uncouples the equations of motion is 
therefore 

[0} = [T\in} 
where (r\) are the normal mode coordinates 

(14) 

[7] = 
1 1 1 
1 e21 e23 

1 e32 e 3 3 . 

Nomenclature (cont.) 

original pinion-gear system 
Kmax = Kmsa/Kmin = ratio of maximum 

to minimum stiffness 
c = generalized contact ratio = 1 

period of maximum stiffness 

mesh period 

F, = face width of absorber/face 
width of original system and 
average torsional stiffness of 
absorber mesh/average torsional 
stiffness of original system mesh 
= FW£ = ^ 

FW K 
/*! = absorber inertia/original 

inertia 
^2 = pinion 

inertia = Ip/Ipo 

pinion 

inertia/original pinion 

CTP - preload torque per inch face of 
absorber/nominal torque per 
inch face of original system = 
(Tp/FWaU(T'0) 
face width of pinion/face width 
of original system and average 
torsional stiffness of pinion 
mesh/average torsional stiffness 
of original system mesh 

FWn 

K FW 
[DV] = Design Vector = [Fit nit n2, 

CTp, F2) 
(DK)m a x , |DK)m i n = upper and lower limits on [DV] 

I —l . ) —£. j = general point in frequency 
w« Wm domain of original system 
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The resulting uncoupled equations of motion can be obtained 
as described in [4] as: 

W+lRKlW+RMinUnl + tUmttr,} = LT(0 
where 

(15) 

/ = « 2 

h 

(23) 

(24) 

[fi2] = 
0 0 0 
0 co2

2 0 
0 0 co2

3 

in--
"1 0 
0 1 
0 0 

identity matrix 

[ru)) = 

and 

Te sin uet/Mi 
(-T0(l-e22)-T\(l-e32) + Te sin wet)/M2 
(-T0(l-e23)-Tp(l-e33)+Te sin <*et)/M3 

Mx=Ip+Ia+Ig 

M2=Ip+e2
22Ig + ej2Ia 

M3=Ip + el3Ig+e^Ia 

Since the relative motions 6p — 6g, 6g — 6a are of interest in 
finding the tooth loads, they can be expressed as: 

(ep-dg) = (l-e22)V2+ (l-e23)r,3 (16) 

(0* - °a ) = («22 - iil)Vl + (£23 ~ e33)V3 (17) 

The damping ratios in the second and third mode equations 
are found from 

1 
€ / = y [ ^ j f « » / + ^ / « J < = 2>3 (18) 

Equivalent RM Value for the Coulomb Friction Torque 

An approximate effective RM value can be developed based 
on equivalent energy dissipation per cycle for any particular 

1.5 value of Tf as: 

RM = 
Cf)1 10 -& 8T / 

[<-fe]w (£) 
(19) 

where 7po is the moment of inertia of the original pinion. 

The above equation is used to define RM for the approximate 
normal mode analysis and is found to give approximately 
equal response amplitude to those obtained by numerical 
integration with Coulomb damping. 

Selection of Design Variables 

The design variables which will influence the response of 
the system can be written as: 

K±=FWZ 

K FW 
Kj _FW, 
1 ~~FW 

= F, 

7 = ^ 1 

Tp/FWa 

T' 
= CT 

(20) 

(21) 

(22) 

where FWa, FWp are face widths of the absorber and pinion, 
respectively. 

It is reasonable to assume that the stiffness is proportional 
to the face width in gears. Accordingly, specifying the face 
width also specifies stiffness. Tp is chosen to be equal to the 
nominal load per inch of fact (TJ) times face width of the 
absorber (FWa) and a non-dimensional constant CTP. 

Tf is selected to be .STp, so that slip between the absorber 
and pinion is always possible. 

Non-Dimensional Equations of Motion for Absorber 

Writing equation (1) in terms of the design variables and the 
parameters of the original system gives 

{If)^P+RJiF2^0p-Og) 

+ .wTPF^^sgn{ep-ea) 
A 

+ F2W„2</>(/) (6p-eg) = co2 "h ( - 1 -CTPF1 + - p - sin <v) 

(25) 

Defining 

where 

ft= 

yields 

ost-

«jr«» 

T-

ft = 

ft' 

T 
_ ° 
~ k = -^smesh 

= W„t 

6 
Qstu„ 

e 
^<w« 

where (') denotes d/dr. Substituting for d, 6, and 6 in 
equation (25) and dividing by 0s/o>2 gives 

I. 
tofi'p + 2imbF2(fip - ft) + .8CTPFlSgn^p - ft) 

+F2<HT)WP-ft) = f- 1 -CTPFt + - I j -s in(-^-T)1 (26) 

Similarly, equation (2) becomes 

+ JF20(r)(ft-ft)+F10(r)(ft-ft)=l 

ft + 2^meshF2Wg - ft) + 2£imbFl (ft - ft) 

(27) 

Equation (3) becomes 

h 

Since 

S- H ft" + 2^meshJF, (ft' - ft) + Fl 0(r)(ft - ft) 

+ .8CTPFlSgn(l3a - f t ) = CTPF{ (28) 
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I. 
Upo+hl -Cf) + 1 

and 

holh 

(29) 

(30) 

the parameters needed to describe the system non-
dimensionally are therefore: 

T I 
* e *po £ 
1 o Jg plus the design variables 

/„ FW. 
I 'I ' 

po *• po 
FW' 

T /FW FW 
" "and—-*-

Tl FW 

The Optimal Absorber 

The design of the absorber is formulated as an optimization 
problem as follows: 

Given: Ipo, RK, Iv TB, Te, ( - ^ - , ^ - ),K, 4>(0. FW, 

from which 

j > rp > smesh» wn 
S o 

can be calculated for the original system 
Find[DV) 
to minimize 

£ / = [ ( ( m a x ( ^ , ^ ) - m i n ( ^ , ^ ) ) 

+ W,max[^2-

(31) 

Q T' T' 

-

Subject to: 

T T T • 
A max T J / * pmm ,Ir

 J pmin 
T , , r> 1 „ . , W\ T . 
1 O * 0 1 0 

{DV}minSiDV)^[DV}m,s 

Fi+F2 = l 

T T • 

1 o •*• o 

T T T 
•*• pmax * ornax ^ x max 

m (32) 

(33) 

(34) 

(35) 

(36) 
T" ' T* T* 
1 o 1 o * o 

The objective function U implies that the overall load 
fluctuations in the pinion and absorber be minimized. It also 
includes a function which limits the maximum violation of the 
constraints on allowable loading in the mesh (equations (35) 
and (36)). These constraints are not explicitly enforced, but 
only appear in the objective function. The first term in the 
objective function represents the overall amplitude of mesh 
torque variation. The second term represents either the 
maximum loading constraint violation (a positive value), or 
the constraint which is closest to being violated (a negative 
value) if equation (35) and equation (36) are satisfied. It then 
selects the worst case of the two points 

in the frequency domain analyzed for each design. The two 
points are defined by first assigning welw,a the generalized 
we/oi„ value and then assigning o)e/a)„3 the generalized coc/w„ 

1.0 1.5 
(J e /0Jn 

Fig. 3 Response spectrum for the original pinion-gear system 

value for the given we/co,„. By careful selection of the 
generalized (we/w„, we/wm) point used, it is found that this 
objective function, besides improving the response at this 
point, will also improve the response of the system at all other 
frequencies and eliminate the instabilities and superharmonic 
resonance conditions. It is possible to include more than one 
set of points in the optimization if desired. 

Search Algorithm 

The search algorithm used is a pattern search technique 
similar to the one used by Baxa and Seireg [5]. The technique 
requires a starting point satisfying constraint equation (33); a 
maximum number of iterations, iVmax; and a relative stepsize, 
8 which is used to calculate scaled stepsizes for each variable. 
An option is provided for enforcement of constraint equation 
(34). If it is enforced only the first four variables are used; if 
not, all five variables are optimized. 

Given the starting point, each element of {DV} is 
sequentially changed by the appropriate increment (stepped) 
in the positive direction. If improvement of the objective 
occurs, the tested point becomes the design vector, and the 
next variable is tested from the new point. If not, the element 
of [DV] is tested with a negative step from the starting point, 
with the tested point becoming the design vector if im
provement of the objective occurs. If neither step results in 
improvement, the next element of the design vector (DKj is 
tested in a similar manner. One iteration is completed when a 
pass through all the design variables in [DV] is completed. A 
logic variable tests for a change in any of the variables during 
each iteration. The program terminates when either the 
maximum number of iterations is exceeded, or all the 
variables are tested in both directions and no changes occur. 

Example Problem 

An example problem is presented for illustration using a 
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case with a rectangular stiffness variation. The parameters 
given are: Ipo = .2190 lb rin.-sec2; Ig = .438 lb rin.-sec2; K 
= 5.84144 x 107 in.-lb/rad; c = 1.5 (contact ratio); Vmax = 
1.4; RK = 1.9997 x W6 sec; FW = 5.24 in.; T0 = 3948.85 
in.-lby; Te = 592.33 in .- l^; WUW2 = 1.0; rmax = 2T'0; and 
(toe/co„, we/wm) = (1, 1). From which: / e = .1460 lby-in.-
sec2;r0* = 753.60 in.-lb/in. face; co„ = 20002.47 rad/sec; 
/ p o / / g = .5; £mesh = .02; and Te/T0 = .15; which 
corresponds to a (Te/T0 Ie/Ipo) = .1 or 10% effective load 
fluctuation on the mesh of the original pinion-gear system. 
The optimization will operate on the peak resonant point 
which is the we/a>„ = uni/u„, ue/um = 1.0 point for each 
absorber system natural frequency. It will select the worst of 
the two points for the merit value. 

Since the out of phase loading condition is worse for iae/o>m 

= 1.0, as shown in [1], it is this case that will be solved. The 
analysis of the absorber will automatically solve the worst 
case (out of phase) for a positive Te value. 

The original pinion-gear mesh torque magnifications are 
shown in Fig. 3 which is used for comparison with the 
response of the optimum absorber. 

In order to begin the optimization, starting points are 
selected and the upper and lower constraints of equation (33) 
are specified. Constraint equation (34) is enforced in this 
example, leaving only the first four variables to be optimized. 
For the cases presented: 

[DV)ma = {.5,.5,3.0,2.0Jf/A) 

(£>K)min = (.05,.l,.75,.5,iVM) 

5 =.05 

^max=40 (35) 

The relative stepsizes using 8 are found from 

^D^ = (DVmax.-DVmia.)d (36) 

which yields the stepsize vector, in this case, to be 

(ADK} = {.0225,.02,.1125,.075>7VA4} (37) 

Several starting points are used to increase probability of 
finding a suitable optimum design since the design region is 
poorly structured and many local optimums can be expected. 
It has generally been found that the starting point selected in 
the middle of the allowable region usually yields the solution 
with the highest merit. 

Comprehensive Design Charts 

Using the optimal design parameters calculated for both 
rectangular and sinusoidal stiffness variations, curves which 
represent reasonable relationships between each of the design 
variables and the ratio Ipo/Ig are developed for the case of a 
10% effective load fluctuation acting on the mesh of the 
original pinion-gear system. These are shown in Fig. 4. These 
constructed curves are generalized approximation, but have 
the advantage of eliminating the need for specific knowledge 
of oie/u„, ratio and the actual stiffness variation function 
<j>(t) which are generally difficult to predict. Constraint 
equation (34) is enforced for these curves. 

Comparison of results using the parameters in Fig. 4 with 
those obtained by optimizing for each coc/w„, value shows that 
no significant change in the absorber system response oc
curred from using the same design parameters for the entire 
frequency domain encountered at a given Ipo/Ig value. Thus, 
eliminating ue/um as a variable in developing the design 
charts in Figs. 4 had no effect on the performance of the 
absorber for all practical purposes. 

Figure 5 shows the response of the absorber system which 
can be compared to the original system with the same rec
tangular stiffness given in Fig. 3. As can be seen all the in-
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Fig. 5(a) Response spectrum for the pinion tooth load in the system 
with optimal absorber.(lpo/lg = .2, £mesh = -02)-

Normal mode response 
• Phase plane solution 

* Phase plane solution with Vmm = 1.4 for pinion 
and 2.0 for absorber 

1.0 

0.5 

0 0.2 0.4 0.6 0.8 
T f / T p 

Fig. 6 Effect of T,/Tp on response of absorber system 

stabilities have been eliminated and the peak resonant points 
practically flattened. 

The figure also shows that the approximations utilized in 
the normal mode analysis give good results when checked by 
phase plane integration. 

A sample check was performed to investigate the effect of 
mismatching the stiffness fluctuation in the absorber with that 
of the pinion. The cross points in Fig. 5 show the results for 
the extreme case of Vmax = 2.0 for the absorber using the 
phase plane. No significant effect can be detected due to this 
discrepancy in the response. 

In order to test the sensitivity of the absorber to the actual 
value of friction torque 7} used, the peak response point for 
uelum = 1.0 and Ipo/Ig = .5 is checked for several values of 
Tf/Tp. Note that Tf/Tp = .8 is the value used in the 
developed approximate RM relationship. 

Figure 6 shows a plot of Tpmax/T0 T • /T /T* 

1.0 1.5 

Fig. 5(b) Response spectrum for the absorber tooth load in the system 
with optimal absorber. (7po//g = .2>fmest, =.02). 

TomiJT'o versus Tf/Tp for the same design as calculated by 
the phase plane method. As can be seen from the figure the 
response of the absorber changes very little until Tf/Tp drops 
below the value of .4. Thus, the absorber would be expected 
to function properly even when the actual frictional torque is 
reduced to one-half of its design value. 

Conclusion 

It can be concluded from this study that an optimal 
dynamic absorber can be designed which is capable of 
providing safe gear system operation at all speeds including 
unexpected resonance and instability conditions for the 
pinion-gear system. The design charts which are given in this 
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paper based on a computer optimization strategy can be used 
for the design of such absorber for any gear pair as a function 
of their moment of inertia. Such absorber systems would be 
invaluable in critical high speed operations where resonances 
or instabilities are suspected and cannot be exactly predicted 
beforehand. 
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