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ABSTRACT 
 

Construction scheduling is usually limited to the documentation of one final 
construction schedule, and construction alternatives that might have been considered 
during the planning process are usually not included in the final schedule. Moreover, 
a formal control of construction schedules in terms of completeness and correctness is 
very limited, because existing methods, such as 4D visualization, are insufficiently 
integrated into the construction planning process. This paper addresses the 
development of a software framework that has been designed to support the process 
of construction scheduling. As will be shown in this paper, the process of construction 
scheduling, which is usually carried out manually, is conducted automatically to a 
large extent using building information models (BIM) and 4D visualization. Due to 
the logical interconnections of BIM objects and construction tasks, flexible schedules 
and visual representations of construction processes are automatically generated 
without permanent human interaction. 
 
INTRODUCTION 
 

In most construction projects, construction schedules are generated manually 
using state-of-the-art software tools. Unfortunately, the generated schedules are 
typically subject to the personal experience and the subjective knowledge of the 
project manager responsible for scheduling. Furthermore, construction scheduling is 
usually restricted to the documentation of the final result, i.e. only one final 
construction schedule is available, neglecting potential changes that might occur 
during construction. Construction alternatives that might have been considered during 
the construction planning process are typically not included in the final schedule. A 
revision of these schedules in case of changes occurring during construction is 
usually not done, because revisions are extremely time-consuming and expensive. 
Also, a formal control of construction schedules in terms of completeness is very 
limited since available methods, such as 4D visualizations, are insufficiently 
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integrated in the schedule planning process. As a consequence, the reuse of existing 
construction schedules is almost impossible. 

This paper presents an integrated software framework that actively supports 
the process of construction scheduling and facilitates the automated generation of 
construction schedules. The work shown in this paper is part of a collaborative 
research project that has been presented by König et al. (2006), Tauscher et al. 
(2009), Mikulakova et al. (2010), and Hartmann et al. (2012). In essence, the 
software framework provides a model for handling construction schedules both in the 
planning and in the execution process. Due to the automated generation of 
construction schedules and the integration of 4D visualizations, a high degree of 
reusability is achieved, entailing precise and flexible construction schedules even if 
changes in construction planning occur. The approach proposed herein uses building 
information created by CAD planning tools based on Industry Foundation Classes 
(IFC). The software framework is based on the IFC Tools project (Tauscher and 
Theiler, 2014). 

The paper is organized as follows. First, the basic concept of automatically 
generating construction schedules is briefly explained. Then, the utilization and the 
operation of the software framework are shown by the example of a research and 
office building located in Weimar, Germany. The paper concludes with a concise 
summary and a brief outlook on potential future research directions. 
 
GENERATING CONSTRUCTION SEQUENCES 
 

The first step when modeling a construction sequence is to define the 
granularity for the underlying model. In this study, it is assumed that one construction 
task results in the construction of exactly one building element. If there are several 
construction tasks required to construct a building element, the corresponding 
construction sequences can be substituted by a single construction task, as shown in 
Figure 1. 
 

 
 

Figure 1. Example substitution of construction sequences. 
 

A resulting building element is computationally represented by its object 
characteristics. Primary object characteristics, which are relevant to defining a task 
for constructing a building element, are type (e.g. wall), material (e.g. concrete), and 
dimension. Based on the above assumptions, two aspects are deduced that are crucial 
for the proposed generation concept, (i) the transferability of construction tasks and 
(ii) the sequence of construction tasks. 
  



 

 

Transferability of construction tasks 
 

Each construction task results in exactly one building element. To define an 
appropriate model, the characteristics of building elements or, more precisely, their 
descriptions are compared with each other by the software framework. Once a 
construction task has been defined for a certain building element, this task can be 
transferred to similar building elements (Figure 2). 
 

 
 

Figure 2. Example of transferability of construction tasks. 
 
Sequence of construction tasks 
 

A task within a construction sequence can be executed only if all relevant 
preceding tasks have previously been executed. In other words, the accomplishment 
of one or more construction tasks is a prerequisite of the succeeding task(s). As a 
consequence, given that a task results in a building element, one or more building 
elements are preconditions of the construction task to be executed. In the software 
framework, the sequence of construction tasks is achieved as a result of a 
concatenation of preconditions with identical resulting building elements, as shown in 
Figure 3. 
 

 
 

Figure 3. Example of sequencing construction tasks. 
 

The construction tasks, modeled in accordance with the aforementioned 
assumptions, are stored in a database. Based on the pool of construction tasks stored 
in the database, an automated assignment of construction tasks to building elements, 
which are part of the underlying building information model, as well as an accurate 
determination of the task order, is achieved. 
 
  



 

 

UTILIZATION AND OPERATION OF THE SOFTWARE FRAMEWORK 
 

The utilization and operation of the software framework is elucidated by 
means of the “CIB.Weimar” building, a 4-story research and office building located 
in Weimar (Germany), which serves as a reference building in this study (Figure 4). 
For the sake of clarity, only the third floor of the 4-story building is used in the 
following subsections to illustrate the efficient utilization and the operation of the 
framework. 
 

 
 

Figure 4. “CIB.Weimar” reference building (CAT, 2013). 
 

In this study, the process of generating construction schedules is divided into 
three main phases, as illustrated in Figure 5. These phases are the structuring phase, 
the generation phase, and the linking phase, all of which being supported by the 
software framework. 

 

 
 

Figure 5. The process of generating construction schedules. 



 

 

Structuring phase 
 
In the structuring phase, the building information model used is structured 

into coherent units, referred to as “structural units”. The main objective of the 
structuring phase is to automatically extract the building elements contained in each 
structural unit. For that purpose, the user defines geometric zones of the building and 
specifies queries on the building information model (Tulke, 2010; Tauscher, 2011). 
As an outcome of the structuring phase, the building to be constructed is divided into 
construction sections, and the building elements are precisely determined. It should 
be mentioned that the execution order of structural unit is defined manually because it 
is not possible to determine the correct order of all construction sequences 
automatically. Finally, the order of structural units is represented in a directed 
“structure graph” (Figure 6). 
 

 
 

Figure 6. Visualization of the 3rd floor of the “CIB.Weimar” including 
geometric zones (left) and structural units, SUi, as well as structure graph, SG 

(right). 
 

Generation phase 
 

The purpose of the second phase, the generation phase, is to automatically 
generate construction tasks for the building elements of the structural units as 
identified in the structuring phase. In addition to the automated generation provided 
by the software framework, manual user interaction is supported to achieve optimum 
results. The generation phase is subdivided into three further phases, (i) the mapping 
phase, (ii) the concatenation phase, and (iii) the conflict resolution phase, where the 
mapping phase includes two steps. 

 
Mapping phase – step 1.  Step 1 is conducted to find existing tasks stored in the 
database, i.e. in the building information model, that can be used for creating the 
building elements contained in the structural units. Technically, each building element 
of a structural unit is compared to building element descriptions stored in the 
database. Once a building element description fits to that of a building element of the 
considered structural unit, the corresponding tasks are mapped to the building 
element of the building information model. 



 

 

Mapping phase – step 2.  Step 2 compares the prerequisites of tasks mapped in step 
1. If prerequisites are similar, the geometric adjacencies to these tasks’ building 
elements are evaluated. If the minimal distance of the similar building elements is 
within a pre-defined limit, the determined building element is mapped as a 
prerequisite to the considered task. Exemplarily showing a rounded wall, which 
requires two columns as prerequisites. Figure 7 illustrates the principle of geometric 
adjacency. Based on the geometric distance to the wall, column “S1” and column 
“S2” are assigned prerequisites for the wall. 
 

 
 

Figure 7. Principle of geometric adjacency employed for assigning prerequisites. 
 

Concatenation phase.  While in the previous phase appropriate prerequisites and 
resulting building elements have been mapped to each task, in the concatenation 
phase workflow sequences for the structural units are created. Identical prerequisites 
and resulting building elements of the tasks are concatenated, and start as well as end 
nodes are added, as shown in the workflow graph in the right hand side of Figure 8. 
 

 
 

Figure 8. Workflow sequences after concatenation (left) and after inserting start 
and end nodes (right). 

 
Conflict resolution phase.  The workflow graphs resulting from the previous phase 
may potentially be inconsistent, because the algorithms for the graph generation may 
cause incorrect synchronization of XOR-splits (e.g. node 1 in Figure 8) and AND-
joins (e.g. node T4’ in Figure 8), which is a well-known problem (Tauscher, 2011; 
Pahl and Damrath, 2001). For this class of failure, an automated conflict-solving 
algorithm is integrated into the software framework that, in this example, revises the 
XOR-split by the insertion of pseudo nodes resulting in a correct connection of 
variants and parallel construction processes (Figure 9). 
 



 

 

 
 

Figure 9. Automated conflict solving. 
 

Linking phase 
 

Upon executing all previous phases, in the linking phase valid workflow 
graphs are generated for each structural unit, as defined in the structuring phase. As 
shown in Figure 10, the workflow graphs for the structural units are linked according 
to the previously defined by the structure graph SG in order to produce an overall 
workflow graph as the final result. 
 

 
 

Figure 10. Final workflow graph. 



 

 

SUMMARY AND CONCLUSIONS 
 

This study has demonstrated that construction scheduling processes can 
reliably be automated to a large degree. Using the software framework presented in 
this paper, a significant reduction of time and cost has been achieved, that would 
otherwise be caused by manually generating and tracking construction schedules. 
Specifically, flexible construction schedules are stored in a database and provided to 
the project manager in charge. The schedules, once being stored in the database, are 
available for the automated generation of construction schedules in future projects. 
Furthermore, the integration of 4D visualizations into the planning process offers a 
new quality of construction scheduling as compared with state-of-the-art software 
tools commonly deployed because missing or inaccurate tasks are identified and 
eliminated early. In future research, the presented geometric adjacency in the 
mapping phase may be refined by modeling step 2 more detailed; this would allow 
further reducing mapping failures that still occur to a certain extent in the current 
version of the software framework. In addition, further classifications of construction 
tasks that are not yet supported, e.g. the creation or demolition of building elements, 
are envisaged in future research efforts. 
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