

Automated Generation of Construction Sequences using Building Information
Models

E. Tauscher1, K. Smarsly1, M. König2 and K. Beucke3

1Bauhaus University Weimar, Computing in Civil Engineering, Coudraystraße 7,
99423 Weimar, Germany; PH: +49 3643 584215; FAX: +49 3643 584216; e-mail:
{eike.tauscher | kay.smarsly}@uni-weimar.de
2Ruhr University Bochum, Computing in Engineering, Building IC, 44781 Bochum,
Germany; PH +49 234 3223047; FAX +49 234 3214292; e-mail: koenig@inf.bi.rub.de
3Bauhaus University Weimar, Geschwister-Scholl-Straße 8, 99423 Weimar, Germany;
PH: +49 3643 581111; FAX: +49 3643 581120; e-mail: karl.beucke@uni-weimar.de

ABSTRACT

Construction scheduling is usually limited to the documentation of one final
construction schedule, and construction alternatives that might have been considered
during the planning process are usually not included in the final schedule. Moreover,
a formal control of construction schedules in terms of completeness and correctness is
very limited, because existing methods, such as 4D visualization, are insufficiently
integrated into the construction planning process. This paper addresses the
development of a software framework that has been designed to support the process
of construction scheduling. As will be shown in this paper, the process of construction
scheduling, which is usually carried out manually, is conducted automatically to a
large extent using building information models (BIM) and 4D visualization. Due to
the logical interconnections of BIM objects and construction tasks, flexible schedules
and visual representations of construction processes are automatically generated
without permanent human interaction.

INTRODUCTION

In most construction projects, construction schedules are generated manually
using state-of-the-art software tools. Unfortunately, the generated schedules are
typically subject to the personal experience and the subjective knowledge of the
project manager responsible for scheduling. Furthermore, construction scheduling is
usually restricted to the documentation of the final result, i.e. only one final
construction schedule is available, neglecting potential changes that might occur
during construction. Construction alternatives that might have been considered during
the construction planning process are typically not included in the final schedule. A
revision of these schedules in case of changes occurring during construction is
usually not done, because revisions are extremely time-consuming and expensive.
Also, a formal control of construction schedules in terms of completeness is very
limited since available methods, such as 4D visualizations, are insufficiently

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357543884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

integrated in the schedule planning process. As a consequence, the reuse of existing
construction schedules is almost impossible.

This paper presents an integrated software framework that actively supports
the process of construction scheduling and facilitates the automated generation of
construction schedules. The work shown in this paper is part of a collaborative
research project that has been presented by König et al. (2006), Tauscher et al.
(2009), Mikulakova et al. (2010), and Hartmann et al. (2012). In essence, the
software framework provides a model for handling construction schedules both in the
planning and in the execution process. Due to the automated generation of
construction schedules and the integration of 4D visualizations, a high degree of
reusability is achieved, entailing precise and flexible construction schedules even if
changes in construction planning occur. The approach proposed herein uses building
information created by CAD planning tools based on Industry Foundation Classes
(IFC). The software framework is based on the IFC Tools project (Tauscher and
Theiler, 2014).

The paper is organized as follows. First, the basic concept of automatically
generating construction schedules is briefly explained. Then, the utilization and the
operation of the software framework are shown by the example of a research and
office building located in Weimar, Germany. The paper concludes with a concise
summary and a brief outlook on potential future research directions.

GENERATING CONSTRUCTION SEQUENCES

The first step when modeling a construction sequence is to define the
granularity for the underlying model. In this study, it is assumed that one construction
task results in the construction of exactly one building element. If there are several
construction tasks required to construct a building element, the corresponding
construction sequences can be substituted by a single construction task, as shown in
Figure 1.

Figure 1. Example substitution of construction sequences.

A resulting building element is computationally represented by its object
characteristics. Primary object characteristics, which are relevant to defining a task
for constructing a building element, are type (e.g. wall), material (e.g. concrete), and
dimension. Based on the above assumptions, two aspects are deduced that are crucial
for the proposed generation concept, (i) the transferability of construction tasks and
(ii) the sequence of construction tasks.

Transferability of construction tasks

Each construction task results in exactly one building element. To define an
appropriate model, the characteristics of building elements or, more precisely, their
descriptions are compared with each other by the software framework. Once a
construction task has been defined for a certain building element, this task can be
transferred to similar building elements (Figure 2).

Figure 2. Example of transferability of construction tasks.

Sequence of construction tasks

A task within a construction sequence can be executed only if all relevant
preceding tasks have previously been executed. In other words, the accomplishment
of one or more construction tasks is a prerequisite of the succeeding task(s). As a
consequence, given that a task results in a building element, one or more building
elements are preconditions of the construction task to be executed. In the software
framework, the sequence of construction tasks is achieved as a result of a
concatenation of preconditions with identical resulting building elements, as shown in
Figure 3.

Figure 3. Example of sequencing construction tasks.

The construction tasks, modeled in accordance with the aforementioned
assumptions, are stored in a database. Based on the pool of construction tasks stored
in the database, an automated assignment of construction tasks to building elements,
which are part of the underlying building information model, as well as an accurate
determination of the task order, is achieved.

UTILIZATION AND OPERATION OF THE SOFTWARE FRAMEWORK

The utilization and operation of the software framework is elucidated by
means of the “CIB.Weimar” building, a 4-story research and office building located
in Weimar (Germany), which serves as a reference building in this study (Figure 4).
For the sake of clarity, only the third floor of the 4-story building is used in the
following subsections to illustrate the efficient utilization and the operation of the
framework.

Figure 4. “CIB.Weimar” reference building (CAT, 2013).

In this study, the process of generating construction schedules is divided into
three main phases, as illustrated in Figure 5. These phases are the structuring phase,
the generation phase, and the linking phase, all of which being supported by the
software framework.

Figure 5. The process of generating construction schedules.

Structuring phase

In the structuring phase, the building information model used is structured

into coherent units, referred to as “structural units”. The main objective of the
structuring phase is to automatically extract the building elements contained in each
structural unit. For that purpose, the user defines geometric zones of the building and
specifies queries on the building information model (Tulke, 2010; Tauscher, 2011).
As an outcome of the structuring phase, the building to be constructed is divided into
construction sections, and the building elements are precisely determined. It should
be mentioned that the execution order of structural unit is defined manually because it
is not possible to determine the correct order of all construction sequences
automatically. Finally, the order of structural units is represented in a directed
“structure graph” (Figure 6).

Figure 6. Visualization of the 3rd floor of the “CIB.Weimar” including
geometric zones (left) and structural units, SUi, as well as structure graph, SG

(right).

Generation phase

The purpose of the second phase, the generation phase, is to automatically
generate construction tasks for the building elements of the structural units as
identified in the structuring phase. In addition to the automated generation provided
by the software framework, manual user interaction is supported to achieve optimum
results. The generation phase is subdivided into three further phases, (i) the mapping
phase, (ii) the concatenation phase, and (iii) the conflict resolution phase, where the
mapping phase includes two steps.

Mapping phase – step 1. Step 1 is conducted to find existing tasks stored in the
database, i.e. in the building information model, that can be used for creating the
building elements contained in the structural units. Technically, each building element
of a structural unit is compared to building element descriptions stored in the
database. Once a building element description fits to that of a building element of the
considered structural unit, the corresponding tasks are mapped to the building
element of the building information model.

Mapping phase – step 2. Step 2 compares the prerequisites of tasks mapped in step
1. If prerequisites are similar, the geometric adjacencies to these tasks’ building
elements are evaluated. If the minimal distance of the similar building elements is
within a pre-defined limit, the determined building element is mapped as a
prerequisite to the considered task. Exemplarily showing a rounded wall, which
requires two columns as prerequisites. Figure 7 illustrates the principle of geometric
adjacency. Based on the geometric distance to the wall, column “S1” and column
“S2” are assigned prerequisites for the wall.

Figure 7. Principle of geometric adjacency employed for assigning prerequisites.

Concatenation phase. While in the previous phase appropriate prerequisites and
resulting building elements have been mapped to each task, in the concatenation
phase workflow sequences for the structural units are created. Identical prerequisites
and resulting building elements of the tasks are concatenated, and start as well as end
nodes are added, as shown in the workflow graph in the right hand side of Figure 8.

Figure 8. Workflow sequences after concatenation (left) and after inserting start
and end nodes (right).

Conflict resolution phase. The workflow graphs resulting from the previous phase
may potentially be inconsistent, because the algorithms for the graph generation may
cause incorrect synchronization of XOR-splits (e.g. node 1 in Figure 8) and AND-
joins (e.g. node T4’ in Figure 8), which is a well-known problem (Tauscher, 2011;
Pahl and Damrath, 2001). For this class of failure, an automated conflict-solving
algorithm is integrated into the software framework that, in this example, revises the
XOR-split by the insertion of pseudo nodes resulting in a correct connection of
variants and parallel construction processes (Figure 9).

Figure 9. Automated conflict solving.

Linking phase

Upon executing all previous phases, in the linking phase valid workflow
graphs are generated for each structural unit, as defined in the structuring phase. As
shown in Figure 10, the workflow graphs for the structural units are linked according
to the previously defined by the structure graph SG in order to produce an overall
workflow graph as the final result.

Figure 10. Final workflow graph.

SUMMARY AND CONCLUSIONS

This study has demonstrated that construction scheduling processes can
reliably be automated to a large degree. Using the software framework presented in
this paper, a significant reduction of time and cost has been achieved, that would
otherwise be caused by manually generating and tracking construction schedules.
Specifically, flexible construction schedules are stored in a database and provided to
the project manager in charge. The schedules, once being stored in the database, are
available for the automated generation of construction schedules in future projects.
Furthermore, the integration of 4D visualizations into the planning process offers a
new quality of construction scheduling as compared with state-of-the-art software
tools commonly deployed because missing or inaccurate tasks are identified and
eliminated early. In future research, the presented geometric adjacency in the
mapping phase may be refined by modeling step 2 more detailed; this would allow
further reducing mapping failures that still occur to a certain extent in the current
version of the software framework. In addition, further classifications of construction
tasks that are not yet supported, e.g. the creation or demolition of building elements,
are envisaged in future research efforts.

REFERENCES

Chamber of Architects of Thuringia (2013). CIB.Weimar – Centrum für Intelligentes

Bauen. [online] Available at: <http://www.architekten-thueringen.de>
[Accessed 20/12/2013].

Hartmann, V., Beucke, K., Shapir, K., König, M. (2012) “Model-based Scheduling
for Construction Planning”. In: Proceedings of the 14th International
Conference ICCCBE-XIV, Moscow, Russia: MSU

König, M., Beucke, K. and Tauscher, E. (2006). “Mangement and Evaluation of
Alternative Construction Tasks”. In: Proceedings of the Eleventh International
Conference ICCCBE-XI, Montreal, Canada: Université du Québec.

Pahl, P. J. and Damrath, R. (2001). “Mathematical Foundations of Computational
Engineering”, Heidelberg, Germany: Springer.

Mikulakova, E., König, M., Tauscher, E. and Beucke, K. (2010). “Knowledge-based
schedule generation and evaluation”. Advanced Engineering Informatics
24(2010) pp. 389-403.

Tauscher, E. and Theiler, M. (2014). IFC TOOLS PROJECT - IFC Java Framework,
http://www.ifctoolsproject.html (Feb. 18, 2014).

Tauscher, E., Mikulakova E., König, M. and Beucke, K. (2009). “Automated
Generation of Construction Schedules based on the IFC Object Model“. In:
Proceedings of the 2009 ASCE IWCCE, Austin, TX, USA.

Tauscher, E. (2011). “Vom Bauwerksinformationsmodell zur Terminplanung -Ein
Modell zur Generierung von Bauablaufplänen”. PhD Dissertation. Weimar,
Germany: Bauhaus University Weimar.

Tulke, J. (2010). “Kollaborative Terminplanung auf Basis von Bauwerks-
Informationsmodellen”. PhD Dissertation. Weimar, Germany: Bauhaus
University Weimar.

