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Abstract We show that certain functional inequalities, e.g. Nash-type and Poincaré-type
inequalities, for infinitesimal generators of C0 semigroups are preserved under subordination
in the sense of Bochner. Our result improves earlier results by Bendikov and Maheux (Trans
Am Math Soc 359:3085–3097, 2007, Theorem 1.3) for fractional powers, and it also holds
for non-symmetric settings. As an application, we will derive hypercontractivity, supercon-
tractivity and ultracontractivity of subordinate semigroups.
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1 Introduction

In this note we show that certain functional inequalities are preserved under subordination
in the sense of Bochner.

Bochner’s subordination is a method to get new semigroups from a given one. Let us briefly
summarize the main facts about subordination; our main reference is the monograph [12], in
particular Chapter 12. Let (Tt )t≥0 be a strongly continuous (C0) contraction semigroup on a
Banach space (B, ‖ · ‖). The infinitesimal generator is the operator
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922 R. L. Schilling, J. Wang

Au := lim
t→0

u − Tt u

t
,

D(A) :=
{

u ∈ B : lim
t→0

u − Tt u

t
exists in the strong sense

}
.

A subordinator is a vaguely continuous convolution semigroup of sub-probability mea-
sures (μt )t≥0 on [0,∞). Subordinators are uniquely characterized by the Laplace transform:

L μt (λ) =
∫

[0,∞)

e−sλ μt (ds) = e−t f (λ) for all t ≥ 0 and λ ≥ 0.

The characteristic exponent f : (0,∞) → (0,∞) is a Bernstein function, i.e. a function of
the form

f (λ) = a + bλ +
∫

(0,∞)

(1 − e−tλ) ν(dt), (1)

where a, b ≥ 0 are nonnegative constants and ν is a nonnegative measure on (0,∞) satisfy-
ing

∫
(0,∞)

(1∧ t) ν(dt) < ∞. There are one-to-one relations between the triplet (a, b, ν), the
Bernstein function f and the subordinator (μt )t≥0. Among the most prominent examples of
Bernstein functions are the fractional powers fα(λ) = λα , 0 < α ≤ 1. The Bochner integral

T f
t u :=

∫
[0,∞)

Tsu μt (ds), t ≥ 0, u ∈ B,

defines a strongly continuous contraction semigroup on B. We call (T f
t )t≥0 subordinate to

(Tt )t≥0 (with respect to the subordinator (μt )t≥0 or the Bernstein function f ). Subordination
preserves many additional properties of the original semigroup. For example, on a Hilbert
space, (T f

t )t≥0 inherits symmetry from (Tt )t≥0 and on an ordered Banach space (T f
t )t≥0 is

sub-Markovian whenever (Tt )t≥0 is. Let us write (A f , D(A f )) for the generator of (T f
t )t≥0;

it is known that D(A) is an operator core of A f and that A f is given by Phillips’ formula

A f u = au + b Au +
∫

(0,∞)

(u − Tsu) ν(ds), u ∈ D(A). (2)

Here (a, b, ν) is the defining triplet for f as in (1).
Bochner’s subordination gives rise to a functional calculus for generators of C0 contraction

semigroups. In many situations this functional calculus coincides with classical functional
calculi, e.g. the spectral calculus in Hilbert space or the Dunford–Taylor spectral calculus in
Banach space, cf. [4,12]. It is, therefore, natural to write f (A) instead of A f .

From now on we will use B = L2(X, m) where (X, m) is a measure space with a σ -finite
measure m. We write 〈·, ·〉 and ‖ · ‖2 for the scalar product and norm in L2, respectively;
‖ · ‖1 denotes the norm in L1(X, m). To compare our result with [2, Theorem 1.3], we start
with Nash-type inequalities. For the study of Nash-type inequalities and ultracontractivity of
the associated operator semigroups we refer to the paper [1] and the references therein. Our
main contribution to this type of functional inequalities are the following two results.

Theorem 1 (symmetric case) Let (Tt )t≥0 be a strongly continuous contraction semigroup of
symmetric operators on L2(X, m) and assume that for each t ≥ 0, Tt |L2(X,m)∩L1(X,m) has an
extension which is a contraction on the space L1(X, m), i.e. we have ‖Tt u‖1 ≤ ‖u‖1 for all
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Functional inequalities and subordination 923

u ∈ L1(X, m) ∩ L2(X, m). Suppose that the generator (A, D(A)) satisfies the following
Nash-type inequality:

‖u‖2
2 B(‖u‖2

2) ≤ 〈A u, u〉, u ∈ D(A), ‖u‖1 = 1, (3)

where B : (0,∞) → (0,∞) is any increasing function. Then, for any Bernstein function f ,
the generator f (A) of the subordinate semigroup satisfies

‖u‖2
2

2
f

(
B

(
‖u‖2

2

2

))
≤ 〈 f (A) u, u〉, u ∈ D( f (A)), ‖u‖1 = 1. (4)

Remark 2 For fractional powers Aα , 0 < α < 1, the result of Theorem 1 is due to Bendikov
and Maheux [2, Theorem 1.3]; this corresponds to the Bernstein functions f (λ) = λα . Our
result is valid for all Bernstein functions, hence, for all subordinate generators f (A). Note
that [2, Theorem 1.3] claims that

c1‖u‖2
2 (B(c2‖u‖2

2))
α ≤ 〈Aα u, u〉, u ∈ D(Aα), ‖u‖1 = 1,

holds for all 0 < α < 1 with c1 = c2 = 1, but a close inspection of the proof in [2] reveals
that one has to assume, in general, c1, c2 ∈ (0, 1). Note that Theorem 1 yields c1 = c2 = 1/2.

If (Tt )t≥0 is not symmetric, we still have the following result.

Theorem 3 (non-symmetric case) Let (Tt )t≥0 be a strongly continuous contraction semi-
group on L2(X, m) and assume that for each t ≥ 0, Tt |L2(X,m)∩L1(X,m) has an extension
which is a contraction on L1(X, m). Suppose that the generator (A, D(A)) satisfies the
following Nash-type inequality:

‖u‖2
2 B(‖u‖2

2) ≤ Re〈A u, u〉, u ∈ D(A), ‖u‖1 = 1, (5)

where B : (0,∞) → (0,∞) is any increasing function. Then, for any Bernstein function f ,
the generator f (A) of the subordinate semigroup satisfies

‖u‖2
2

4
f

(
2B

(
‖u‖2

2

2

))
≤ Re〈 f (A) u, u〉, u ∈ D( f (A)), ‖u‖1 = 1. (6)

Remark 4 (i) The assumption that Tt is a contraction both in L2(X, m) and L1(X, m)

is often satisfied in concrete situations. Assume that (Tt )t≥0 is a strongly continu-
ous contraction semigroup on L2(X, m) such that the operators Tt are symmetric and
sub-Markovian—i.e. 0 ≤ Ttv ≤ 1 a.e. for all 0 ≤ v ≤ 1 m-a.e. Then the following
argument shows that Tt |L2(X,m)∩L1(X,m) is a contraction on L1(X, m):

〈Tt u, v〉 = 〈u, Ttv〉 ≤ 〈|u|, ‖v‖∞〉 = ‖v‖∞‖u‖1 u ∈ L2 ∩ L1, v ∈ L1 ∩ L∞.

In general, a sub-Markovian L2-contraction operator Tt is also an L1-contraction if,
and only if, the L2-adjoint T ∗

t is a sub-Markovian operator, cf. [11, Lemma 2].
(ii) From (1) it follows that Bernstein functions are subadditive, thus

1

2
f (2x) ≤ f (x).

This shows that, for symmetric semigroups, (4) implies (6).
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924 R. L. Schilling, J. Wang

The remaining part of this paper is organized as follows. Section 2 contains some prepa-
rations needed for the proof of Theorems 1 and 3, in particular a one-to-one relation between
Nash-type inequalities and estimates for the decay of the semigroups. These estimates are
needed for the proof of Theorems 1 and 3 in Sect. 3. Section 4 contains several applications
of our main result, e.g. the super-Poincaré and weak Poincaré inequality for subordinate
semigroups and the hyper-, super- and ultracontractivity of subordinate semigroups.

2 Preliminaries

In this section we collect a few auxiliary results for the proof of Theorems 1 and 3. We
begin with a differential and integral inequality, which is a consequence of [6, Appendix A,
Lemma A.1, p. 193]. Note that the right hand side of the inequality (7) below is negative.
This is different from the usual Gronwall–Bellman–Bihari inequality, see e.g. [5, Section 3],
[3, Chapter 4 §§ 4,5] and [13, I.1.VI, I.6.IX], but it is essential for our purposes. For the sake
of completeness, we include the short proof whose idea follows [6, Appendix A, Remark
A.3, p. 194].

Recall that for an increasing function G : [0,∞) → R the generalized (right continuous)
inverse G−1 : R → [0,+∞] is defined as

G−1(y) := inf{t > 0 : G(t) > y}, inf ∅ := ∞.

If G is strictly increasing, then G−1 coincides with the usual inverse.

Lemma 5 Let h : [0,∞) → [0,∞) be a differentiable function. Suppose that there exists an
increasing function ϕ : [0,∞) → [0,∞) such that ϕ(t) > 0 for t > 0,

∫
0+ 1/ϕ(t) dt = ∞

and

h′(t) ≤ −ϕ(h(t)) for all t ≥ 0. (7)

Then, we have

h(t) ≤ G−1(G(h(0)) − t) for all t ≥ 0,

where G−1 is the (generalized right continuous) inverse of

G(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t∫
1

du

ϕ(u)
, if t ≥ 1,

−
1∫

t

du

ϕ(u)
, if t ≤ 1.

Proof Since h′(t) ≤ −ϕ(h(t)) ≤ 0, the set I = {t : h(t) > 0} is a (bounded or unbounded)
interval; for t ∈ I , the function h(t) is strictly decreasing. With the convention

∫ b
a = − ∫ a

b ,
we see for all t ∈ I that

G(h(t)) =
h(t)∫
1

1

ϕ(u)
du

= G(h(0)) +
h(t)∫

h(0)

1

ϕ(u)
du
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Functional inequalities and subordination 925

= G(h(0)) +
t∫

0

h′(u) du

ϕ(h(u))

≤ G(h(0)) − t.

If t �∈ I , G(h(t)) = G(0) = −∞, and the above inequality is trivial. The claim follows from
the definition of the generalized inverse G−1. ��

Let (Tt )t≥0 be a strongly continuous contraction semigroup of (not necessarily symmet-
ric) operators on L2 = L2(X, m). Denote by (A, D(A) the infinitesimal generator. Since
d
dt Tt u = −Tt Au for all u ∈ D(A), we have

d

dt
‖Tt u‖2

2 = −2 Re〈A Tt u, Tt u〉, u ∈ D(A).

Proposition 6 Let (Tt )t≥0 be a C0 contraction semigroup on L2(X, m) and assume that
each Tt |L2(X,m)∩L1(X,m), t ≥ 0, has an extension which is a contraction on L1(X, m), i.e.
‖Tt u‖1 ≤ ‖u‖1 for all u ∈ L1(X, m) ∩ L2(X, m). Then the following Nash-type inequality

‖u‖2
2 B(‖u‖2

2) ≤ Re〈A u, u〉, u ∈ D(A), ‖u‖1 = 1 (8)

with some increasing function B : (0,∞) → (0,∞) holds if, and only if,

‖Tt u‖2
2 ≤ G−1(G(‖u‖2

2) − t) for all t ≥ 0 and u ∈ D(A), ‖u‖1 = 1 (9)

where

G(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t∫
1

ds

2s B(s)
, if t ≥ 1,

−
1∫

t

ds

2s B(s)
, if t ≤ 1.

Proof Assume that (8) holds. Then,

‖u‖2
2 B

(
‖u‖2

2

‖u‖2
1

)
≤ Re〈A u, u〉, u ∈ D(A).

For all u ∈ D(A) with ‖u‖1 = 1 we have

d

dt
‖Tt u‖2

2 = −2 Re〈A Tt u, Tt u〉 ≤ −2 ‖Tt u‖2
2 B

(
‖Tt u‖2

2

‖Tt u‖2
1

)
,

Since the function B is increasing and ‖Tt u‖1 ≤ ‖u‖1 = 1, we have

d

dt
‖Tt u‖2

2 ≤ −2 ‖Tt u‖2
2 B(‖Tt u‖2

2).

This, together with Lemma 5, proves (9).
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926 R. L. Schilling, J. Wang

For the converse we assume that (9) holds. Then, for all u ∈ D(A) with ‖u‖1 = 1,

Re〈Au, u〉 = −1

2

d

dt
‖Tt u‖2

2

∣∣
t=0

= 1

2
lim
t→0

‖u‖2
2 − ‖Tt u‖2

2

t

≥ 1

2
lim
t→0

‖u‖2
2 − G−1(G(‖u‖2

2) − t)

t

= −1

2

d

dt
G−1(G(‖u‖2

2) − t)
∣∣
t=0

= [G−1(G(‖u‖2
2) − t) · B(G−1(G(‖u‖2

2) − t))] ∣∣t=0

= ‖u‖2
2 B(‖u‖2

2),

which is just the Nash-type inequality (8). ��
Finally we need some elementary estimate for Bernstein functions.

Lemma 7 Let f be a Bernstein function given by (1) where a = b = 0 and with representing
measure ν. Set

ν1(x) :=
x∫

0

ν(s,∞) ds.

Then for x > 0,

e − 1

e
x ν1

(
1

x

)
≤ f (x) ≤ x ν1

(
1

x

)
.

Proof By Fubini’s theorem we find

x ν1

(
1

x

)
= x

1/x∫
0

ν(s,∞) ds =
1∫

0

ν

(
t

x
,∞

)
dt

=
1∫

0

∞∫
t/x

ν(dy) dt

=
∞∫

0

(xy ∧ 1) ν(dy),

see also Ôkura [9, (1.5)]. Using the following elementary inequalities

e − 1

e
(1 ∧ r) ≤ 1 − e−r ≤ 1 ∧ r for r ≥ 0,

we conclude

e − 1

e
x ν1

(
1

x

)
=

∞∫
0

e − 1

e
(xy ∧ 1) ν(dy) ≤

∞∫
0

(1 − e−xy) ν(dy) = f (x).

The upper bound follows similarly. ��
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Functional inequalities and subordination 927

3 Proof of the main theorems

Proof of Theorem 1. Since D(A) is an operator core for ( f (A), D( f (A)), it is enough to
prove (4) for u ∈ D(A). Using Phillips’ formula (2) we find for all u ∈ D(A)

〈 f (A) u, u〉 = a ‖u‖2
2 + b 〈A u, u〉 +

∫
(0,∞)

〈u − Tsu, u〉 ν(ds).

This formula and the representation (1) for f show that we may, without loss of generality,
assume that a = b = 0.

Assume that (3) holds. Proposition 6 shows for t ≥ 0 and u ∈ D(A) with ‖u‖1 = 1,

〈Tt u, u〉
‖u‖2

2

= ‖Tt/2u‖2
2

‖u‖2
2

≤ G−1(G(‖u‖2
2) − t/2)

‖u‖2
2

.

Then,

〈 f (A) u, u〉 =
∫

(0,∞)

〈u − Tsu, u〉 ν(ds)

= ‖u‖2
2

∫
(0,∞)

(
1 − 〈Tsu, u〉

‖u‖2
2

)
ν(ds)

≥
∫

(0,∞)

(
‖u‖2

2 − G−1
(

G(‖u‖2
2) − s

2

))
ν(ds)

= g(‖u‖2
2),

where

g(r) =
∫

(0,∞)

(
r − G−1

(
G(r) − s

2

))
ν(ds).

Furthermore, for all r > 0,

g(r) =
∫

(0,∞)

(
r − G−1

(
G(r) − s

2

))
ν(ds)

=
∫

(0,∞)

⎛
⎜⎝

G(r)∫
G(r)−s/2

dG−1(u)

⎞
⎟⎠ ν(ds)

=
G(r)∫

−∞
ν(2(G(r) − u,∞)) dG−1(u)

=
r∫

0

ν(2(G(r) − G(u)),∞) du.
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928 R. L. Schilling, J. Wang

For the last equality we used that B is increasing, G(x) > −∞ for all x > 0 and G(0) = −∞;
this follows from

G(0) = −
1∫

0

du

u B(u)
≤ −1

B(1)

1∫
0

du

u
= −∞.

Using again the monotonicity of B, we find from the mean value theorem

1

2u B(u)
≥ G(r) − G(u)

r − u
≥ 1

2r B(r)
for all 0 < u < r. (10)

Therefore,

g(r) ≥
r∫

0

ν

(
1

u B(u)
(r − u),∞

)
du

≥
r∫

r/2

ν

(
1

u B(u)
(r − u),∞

)
du (11)

≥
r/2∫
0

ν

(
2v

r B(r/2)
,∞

)
dv

= 1

2
r B(r/2)

1/B(r/2)∫
0

ν(s,∞) ds.

A similar calculation, now using the lower bound in (10), yields

g(r) ≤ r B(r)

1/B(r)∫
0

ν(s,∞) ds.

Now we can use Lemma 7 to deduce that
e

e − 1
r f (B(r)) ≥ g(r) ≥ r

2
f
(

B
( r

2

))
for all r > 0,

and the proof is complete. ��
Remark 8 (i) In the proof of Theorem 1, at the line (11), we can replace r/2 by εr for

any ε ∈ (0, 1). Then we get

g(r) ≥ sup
ε∈(0,1)

[
(1 − ε) r f

(
εB(εr)

1 − ε

)]
,

which shows that we can improve (4) by

sup
ε∈(0,1)

[
(1 − ε) ‖u‖2

2 f

(
εB(ε‖u‖2

2)

1 − ε

)]
≤ 〈 f (A) u, u〉, u ∈ D( f (A)), ‖u‖1 = 1.

(ii) A close inspection of our proof shows that Theorem 1 remains valid if we replace the
norming condition ‖u‖1 = 1 in (3) and (5) by the more general condition �(u) = 1.
Here � : L2(X, m) → [0,∞] is a measurable functional satisfying �(cu) = c2�(u)

and �(Tt u) ≤ �(u) for all t ≥ 0 and �(u) = 0 if, and only if, u = 0.
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Functional inequalities and subordination 929

Proof of Theorem 3 The proof of Theorem 3 is similar to the proof of Theorem 1. Therefore
we only outline the differences in the arguments. As before we can assume that the function
f (λ) = ∫

(0,∞)
(1 − e−tλ) ν(dt). Moreover, it is enough to verify (6) for all u ∈ D(A). Since

(Tt )t≥0 is a contraction on L1(X, m) ∩ L2(X, m), we see from (5) and Proposition 6 that for
all t ≥ 0 and u ∈ D(A) with ‖u‖1 = 1,

‖Tt u‖2
2 ≤ G−1(G(‖u‖2

2) − t).

By the Cauchy–Schwarz inequality,

Re〈Tt u, u〉
‖u‖2

2

≤ |〈Tt u, u〉|
‖u‖2

2

≤ ‖Tt u‖2‖u‖2

‖u‖2
2

≤
√

G−1(G(‖u‖2
2) − t)

‖u‖2
.

Using (2) yields that for any u ∈ D(A) with ‖u‖1 = 1,

Re〈 f (A) u, u〉 =
∫

(0,∞)

Re〈u − Tsu, u〉 ν(ds)

= ‖u‖2
2

∫
(0,∞)

(
1 − Re〈Tsu, u〉

‖u‖2
2

)
ν(ds)

≥ ‖u‖2
2

∫
(0,∞)

⎛
⎝1 −

√
G−1(G(‖u‖2

2) − s)

‖u‖2

⎞
⎠ ν(ds)

= ‖u‖2
2

∫
(0,∞)

⎛
⎜⎜⎜⎜⎜⎝

1 − G−1(G(‖u‖2
2) − s)

‖u‖2
2

1 +
√

G−1(G(‖u‖2
2) − s)

‖u‖2

⎞
⎟⎟⎟⎟⎟⎠

ν(ds)

≥ ‖u‖2
2

2

∫
(0,∞)

(
1 − G−1(G(‖u‖2

2) − s)

‖u‖2
2

)
ν(ds)

= g(‖u‖2
2),

where

g(r) = r

2

∫
(0,∞)

(
1 − G−1(G(r) − s)

r

)
ν(ds).

A similar calculation as in the proof of Theorem 1 shows

g(r) = 1

2

r∫
0

ν(G(r) − G(u),∞) du ≥ r

4
f
(

2 B
( r

2

))
,

which is exactly (6). ��
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930 R. L. Schilling, J. Wang

4 Applications

We will now give some applications of our results. Throughout this section we retain the
notation introduced in the previous sections. In particular, (Tt )t≥0 will be a strongly con-
tinuous contraction semigroup on L2(X, m) with generator (A, D(A)). We assume that
‖Tt u‖1 ≤ ‖u‖1 for all u ∈ L2(X, m) ∩ L1(X, m) and, for simplicity, that the operators Tt ,
t ≥ 0, are symmetric. By � : L2(X, m) → [0,∞] we denote a functional on L2(X, m) such
that for all c, t > 0 and u ∈ L2(X, m)

�(u) = 0 ⇒ u = 0,�(cu) = c2�(u) and �(Tt u) ≤ �(u);
by f we always denote a Bernstein function given by (1).

4.1 Subordinate super-Poincaré inequalities

In this section, we study the analogue of Theorem 1 for super-Poincaré inequalities. For details
on super-Poincaré inequalities and their applications we refer to [14–16] or [17, Chapter 3].

Proposition 9 Assume that (A, D(A)) satisfies the following super-Poincaré inequality:

‖u‖2
2 ≤ r 〈A u, u〉 + β(r)�(u), r > 0, u ∈ D(A), (12)

where β : (0,∞) → (0,∞) is a decreasing function such that limr→0 β(r) = ∞ and
limr→∞ β(r) = 0; moreover, we set β(0) := ∞. Then the generator f (A) of the subordi-
nate semigroup also satisfies a super-Poincaré inequality

‖u‖2
2 ≤ r 〈 f (A) u, u〉 + β f (r)�(u), r > 0, u ∈ D( f (A)), (13)

where

β f (r) = 4β

(
1

2 f −1(2/r)

)
.

Proof We can rewrite (12) for any u ∈ D(A) with �(u) = 1 in the following form:

‖u‖2
2 B(‖u‖2

2) ≤ 〈A u, u〉,
where

B(x) = sup
s>0

1 − β(s)/x

s
.

Clearly, B(x) is an increasing function on (0,∞). Since β−1 : (0,∞) → (0,∞), we see
from

1

2β−1(x/2)
= 1 − β(β−1(x/2))/x

β−1(x/2)
≤ B(x) = sup

s≥β−1(x)

1 − β(s)/x

s
≤ 1

β−1(x)
(14)

that B : (0,∞) → (0,∞).
Using Theorem 1 and the Remark 8 (ii) yields for any u ∈ D( f (A)) with �(u) = 1,


(‖u‖2
2) ≤ 〈 f (A) u, u〉,

where


(x) = x

2
f
(

B
( x

2

))
= x

2
sup
s>0

f

(
1 − 2β(s)/x

s

)
.
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For r > 0, define

β̃(r) = sup
s>0

{
−1(s) − rs}.

Then,

‖u‖2
2 ≤ r 〈 f (A) u, u〉 + β̃(r)�(u), r > 0, u ∈ D( f (A)). (15)

Next, we will estimate β̃(r). By (14),


(x) ≥ x

2
f

(
1

2 β−1(x/4)

)
:= 
0(x),

which in turn implies that


−1(x) ≤ 
−1
0 (x).

By the definition of 
0(x), 
0 : (0,∞) → (0,∞) is a strictly increasing function such that
limx→0 
0(x) = 0 and limx→∞ 
0(x) = ∞, and so


−1
0 (x) = 2x

[
f

(
1

2 β−1(
−1
0 (x)/4)

)]−1

. (16)

On the other hand,

β̃(r) ≤ sup
s>0

{
−1
0 (s) − rs} = sup

s>0, 
−1
0 (s)≥rs


−1
0 (s).

From (16) we see that 
−1
0 (s) ≥ rs is equivalent to

1

2 f −1(2/r)
≤ β−1

(

−1

0 (s)

4

)
.

Since β is decreasing, we can rewrite this as


−1
0 (s) ≤ 4β

(
1

2 f −1(2/r)

)
,

and so

β̃(r) ≤ sup
s>0, 
−1

0 (s)≤4β
(

1
2 f −1(2/r)

) 
−1
0 (s) ≤ 4β

(
1

2 f −1(2/r)

)
. (17)

The proof is complete if we combine (15) and (17). ��
4.2 Subordinate weak Poincaré inequalities

We can also consider the subordination for weak Poincaré inequalities; for details we refer
to [10] or [17, Chapter 4].

Proposition 10 Assume that (A, D(A)) satisfies the following weak Poincaré inequality:

‖u‖2
2 ≤ α(r) 〈A u, u〉 + r �(u), r > 0, u ∈ D(A), (18)

where α : (0,∞) → (0,∞) is a decreasing function. Then the generator f (A) of the
subordinate semigroup also satisfies a weak Poincaré inequality

‖u‖2
2 ≤ α f (r) 〈 f (A) u, u〉 + r �(u), r > 0, u ∈ D( f (A)), (19)
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where

α f (r) = 2

/ [
f

(
1

2 α(r/4)

)]
.

Proof Suppose that (18) holds. As in the proof of Proposition 9 we find that

‖u‖2
2 ≤ α̃(r)〈 f (A) u, u〉 + r �(u), r > 0, u ∈ D( f (A)), (20)

where

α̃(r) = sup
s>0

{

−1(s) − r

s

}
and 
(x) = x

2
sup
s>0

f

(
1 − 2s/x

α(s)

)
.

If we set s = x/4,


(x) ≥ x

2
f

(
1

2 α(x/4)

)
=: 
0(x),

and this gives us

α̃(r) = sup
s>0

{

−1

0 (s) − r

s

}
≤ sup

s>0,
−1
0 (s)≥r


−1
0 (s)

s
. (21)

According to the definition of 
0(x), we have


−1
0 (x)

x
= 2

[
f

(
1

2 α(
−1
0 (x)/4)

)]−1

.

Since α is decreasing,

sup
s>0, 
−1

0 (s)≥r


−1
0 (s)

s
= sup

s>0, 
−1
0 (s)≥r

2

[
f

(
1

2 α(
−1
0 (s)/4)

)]−1

≤ 2

[
f

(
1

2 α(r/4)

)]−1

. (22)

The required inequality (19) follows from (20), (21) and (22). ��
4.3 The converses of Theorem 1 and Propositions 9 and 10

If A is a nonnegative self-adjoint operator, then it is possible to show a converse to the
assertions of Theorem 1 and Propositions 9 and 10.

Proposition 11 Let A be a nonnegative self-adjoint operator on L2(X, m), and f be some
non-degenerate Bernstein function. Let � : L2(X, m) → [0,∞] be a measurable functional
satisfying �(cu) = c2�(u) and �(Tt u) ≤ �(u) for all t ≥ 0 and �(u) = 0 if, and only if,
u = 0, where (Tt )t≥0 is the semigroup generated by A. If the following Nash-type inequality

‖u‖2
2 f (B(‖u‖2

2)) ≤ 〈 f (A) u, u〉, u ∈ D( f (A)), �(u) = 1

holds for some increasing function B : (0,∞) → (0,∞), then

‖u‖2
2 B(‖u‖2

2) ≤ 〈A u, u〉, u ∈ D(A), �(u) = 1.
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Proof Every non-degenerate (i.e. non-constant) Bernstein function f is strictly increasing
and concave. Thus f −1 is strictly increasing and convex. Let (Eλ)λ≥0 be the spectral reso-
lution of the self-adjoint operator A. Using Jensen’s inequality we get for all u ∈ D(A) with
‖u‖1 = 1

B(‖u‖2
2) = f −1 ◦ f (B(‖u‖2

2))

≤ f −1

(
〈 f (A)u, u〉

‖u‖2
2

)

= f −1

⎛
⎜⎝

∫
[0,∞)

f (λ)
d Eλ(u, u)

‖u‖2
2

⎞
⎟⎠

≤
∫

[0,∞)

f −1 ◦ f (λ)
d Eλ(u, u)

‖u‖2
2

= 〈Au, u〉
‖u‖2

2

,

cf. also [2, Proposition 2.3]. ��
Using Proposition 11 we can get the converses of Propositions 9 and 10. For example, if

the following super-Poincaré inequality

‖u‖2
2 ≤ r 〈 f (A) u, u〉 + β f (r)�(u), r > 0, u ∈ D( f (A))

holds for some decreasing function β f : (0,∞) → (0,∞), then

‖u‖2
2 ≤ r 〈A u, u〉 + β(r)�(u), r > 0, u ∈ D(A),

where

β(r) = 2 β f

(
1

2 f (1/r)

)
.

4.4 On-diagonal estimates for subordinate semigroups: Nash type inequalities

In this section X is the n-dimensional Euclidean space Rn equipped with Lebesgue measure
m(dx) = dx .

Proposition 12 Assume that (A, D(A)) satisfies the following Nash-type inequality

‖u‖2
2 B(‖u‖2

2) ≤ 〈Au, u〉, u ∈ D(A), ‖u‖1 = 1,

where B : (0,∞) → (0,∞) is some increasing function. Then, if for any t > 0,

η(t) :=
∞∫

t

du

u f (B(u))
< ∞,

the subordinate semigroup (T f
t )t≥0 has a bounded kernel p f

t (x, y) with respect to Lebesgue
measure, and the following on-diagonal estimate holds:

ess sup
x,y∈Rd

p f
t (x, y) = ‖T f

t ‖1→∞ ≤ 2 η−1
(

t

2

)
.
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Proof By Theorem 1 we know that the generator f (A) of the subordinate semigroup (T f
t )t≥0

satisfies

‖u‖2
2

2
f ◦ B

(
‖u‖2

2

2

)
≤ 〈 f (A) u, u〉, u ∈ D( f (A)), ‖u‖1 = 1. (23)

Therefore the required assertion follows from [7, Proposition II.2] or [17, Theorem 3.3.17
(1), p. 158]. ��
4.5 Contractivity of subordinate semigroups: Super- and Weak Poincaré inequalities

Let (X, m) be a measure space with a σ -finite measure m. Let (Tt )t≥0 be a semigroup on
L2(X, m) which is bounded on L p(X, m) for all p ∈ [1,∞]. This is, e.g., always the case
for symmetric sub-Markovian contraction semigroups on L2(X, m).

Recall that a semigroup (Tt )t≥0 is said to be hypercontractive if ‖Tt‖2→4 < ∞ for some
t > 0, supercontractive if ‖Tt‖2→4 < ∞ for all t > 0, and ultracontractive if ‖Tt‖1→∞ < ∞
for all t > 0. The example below improves [2, Theorem 3.1].

Proposition 13 Let f be a Bernstein function and (Tt )t≥0 be an ultracontractive symmetric
sub-Markovian semigroup on L2(X, m) such that for all t > 0,

‖Tt‖1→∞ ≤ exp(λ t−1/(δ−1))

for some λ > 0 and δ > 1. Then, we have the following statements for the subordinate
semigroup (T f

t )t≥0:

(i) If
∫ ∞

1
dr

f (rδ)
< ∞, then (T f

t )t≥0 is ultracontractive.

(ii) If limr→∞ f −1(λ)

λδ = 0, then (T f
t )t≥0 is supercontractive.

(iii) If limr→∞ f −1(λ)

λδ ∈ (0,∞), then (T f
t )t≥0 is hypercontractive.

(iv) If limr→∞ f −1(λ)

λδ = ∞, then (T f
t )t≥0 is not hypercontractive.

Proof Denote by A and f (A) the generators of the semigroups (Tt )t≥0 and (T f
t )t≥0, respec-

tively. By [7, Proposition II. 4] and [17, Proposition 3.3.16, p. 157], we know that the following
super-Poincaré inequality holds:

‖u‖2
2 ≤ r 〈A u, u〉 + β(r) ‖u‖2

1, r > 0, u ∈ D(A),

where

β(r) = c1[exp(c2 r−1/δ) − 1]
for some c1, c2 > 0. By Proposition 9,

‖u‖2
2 ≤ r 〈 f (A) u, u〉 + β f (r) ‖u‖2

1, r > 0, u ∈ D( f (A)),

where

β f (r) = 4c1{exp[c3( f −1(2/r))1/δ] − 1}
for some constant c3 > 0. Therefore, the required assertions follow from [17, Theorem
3.3.14, p. 156 and Theorem 3.3.13, p. 155] and the comment after Proposition 11.

��
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We close this section with a result that shows how decay properties are inherited under
subordination.

Proposition 14 Let (Tt )t≥0 be a symmetric sub-Markovian semigroup on L2(X, m). Assume
that there exist two constants δ, c0 > 0 such that

‖Tt u‖2
2 ≤ c0 �(u)

tδ
for all t > 0, u ∈ L2(X, m),

where � : L2(X, m) → [0,∞] is a functional with �(cu) = c2�(u) and �(Tt u) ≤ �(u)

for all c ∈ R and t ≥ 0 and �(u) = 0 if, and only if, u = 0. If

η(t) :=
∞∫

t

ds

s f (s)
< ∞ for all t > 0,

then there are constants c1, c2 > 0 such that

‖T f
t u‖2

2 ≤ c1 [η−1(c2t)]δ �(u).

Proof Denote by A and f (A) the generators of (Tt )t≥0 and (T f
t )t≥0, respectively. From [17,

Corollary 4.1.8 (1), p. 189; and Corollary 4.1.5 (2), p. 186] we know that the following weak
Poincaré inequality holds:

‖u‖2
2 ≤ α(r) 〈A u, u〉 + r �(u), r > 0, u ∈ D(A),

where

α(r) = c3 r−1/δ

for some c3 > 0. Proposition 10 shows that

‖u‖2
2 ≤ α f (r) 〈 f (A) u, u〉 + r �(u), r > 0, u ∈ D( f (A)),

where

α f (r) = 2[ f (c4r1/δ)]−1

for some constant c4 > 0. Therefore, the assertion follows from [17, Theorem 4.1.7, p. 188].
��

Note added in Proof After we have finished this paper, Patrick Maheux informed us that
he and Ivan Gentil have, independently, obtained similar results in their (at that point still
forthcoming) preprint [8]; although our findings partially overlap, the methods used here and
in [8] are essentially different.
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