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Glucose-6-phosphate dehydrogenase (G6PDH), the enzyme which catalyzes the rate determining step of the pentose phosphate
pathway (PPP), controls the production of nucleotide precursor molecules (R5P) and powerful reducing molecules (NADPH)
that support multiple biosynthetic functions, including antioxidant defense. GGPDH from hepatopancreas of the freshwater
crayfish (Orconectes virilis) showed distinct kinetic changes in response to 20 h anoxic exposure. K, values for both substrates
decreased significantly in anoxic crayfish; K, NADP* dropped from 0.015 + 0.008 mM to 0.012 + 0.008 mM, and K,, G6P
decreased from 0.13 + 0.02mM to 0.08 + 0.007 mM. Two lines of evidence indicate that the mechanism involved is reversible
phosphorylation. In vitro incubations that stimulated protein kinase or protein phosphatase action mimicked the effects on anoxia
on K, values, whereas DEAE-Sephadex chromatography showed the presence of two enzyme forms (low- and high-phosphate)
whose proportions changed during anoxia. Incubation studies implicated protein kinase A and G in mediating the anoxia-
responsive changes in G6PDH Kkinetic properties. In addition, the amount of G6PDH protein (measured by immunoblotting)
increased by ~60% in anoxic hepatopancreas. Anoxia-induced phosphorylation of G6PDH could contribute to modifying carbon
flow through the PPP under anoxic conditions, potentially maintaining NADPH supply for antioxidant defense during prolonged
anoxia-induced hypometabolism.

1. Introduction has been documented in various systems from bacteria and
yeast to plants and animals [6-9] with controls at multiple
levels (transcriptional, translational and post-translational),
especially under oxidative or salt stresses.

Freshwater crayfish (Orconectes virilis) reside in the
shallows of streams and lakes, and in this environment
are susceptible to low oxygen stress. In the summer,
high temperature and low flow conditions can result in
hypoxic conditions in the water. In the winter, hypoxic (or
even anoxic) conditions can be encountered in ice-locked
bodies of water when oxygen is depleted over time by
organismal respiration and the inability of photosynthetic

Glucose-6-phosphate dehydrogenase (G6PDH) is the rate
determining enzyme of the pentose phosphate pathway
(PPP). It plays an important role in regulating the produc-
tion of reduced nicotinamide adenine dinucleotide phos-
phate (NADPH) for many types of biosyntheses as well
as pentose phosphates for DNA/RNA synthesis and 3-7
carbon sugars or sugar phosphates for many other uses
[1, 2]. One important use of NADPH generated by the
PPP is in antioxidant defense, with the NADPH being
used to generate the reduced glutathione and thioredoxin

that are primary sources of reducing power for antioxidant
reactions. Indeed, elevated PPP activity (as a consequence
of enhanced G6PDH activity) is often seen under conditions
of oxidative stress [3], and G6PDH regulation appears to be
critical to antioxidant defense, as seen in multiple studies
where G6PDH is disrupted [4, 5]. Regulation of G6PDH

plants to replenish oxygen. Hence, crayfish can require
good hypoxia/anoxia tolerance and, indeed, several reviews
summarize the physical [10] and molecular [11] adaptations
used by crustaceans to adapt to hypoxia. Two aspects
of hypoxia/anoxia tolerance that have recently received
considerable attention are metabolic rate depression (MRD)


https://core.ac.uk/display/357543827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and antioxidant defense [12-14]. In response to oxygen
limitation, hypoxia/anoxia-tolerant organisms strongly sup-
press the rates of both catabolic and anabolic pathways
in a coordinated manner, reducing ATP expenditures over
prolonged periods when ATP production by mitochondrial
oxygen-dependent mechanisms is interrupted. The main
mechanism involved is reversible protein phosphorylation
of regulatory enzymes. Several enzymes of carbohydrate
catabolism are known targets [12, 13], and recent studies of
G6PDH in two natural systems of MRD indicate that control
of the PPP under stress conditions is also achieved in this
manner. This includes G6PDH from liver of a freeze-tolerant
frog (freezing is an anoxic/ischemic stress) and G6PDH from
hepatopancreas of an estivating snail (a state of aerobic
MRD), both of which showed stress-responsive changes in
enzyme properties that were linked with changes in the
phosphorylation state of the enzyme [15, 16].

Animals that transition into hypometabolic states to
survive environmental stress conditions also typically show
well-developed antioxidant defenses [14]. These contribute
both to long term cell preservation in the hypometabolic
state and to dealing with a rapid increase in reactive
oxygen species (ROS) production when organisms transition
back to oxygenated conditions. This implicates GG6PDH as
an important enzyme in anoxia tolerance. In the present
report we examine the regulation of GG6PDH from O. virilis
hepatopancreas. Relatively few metabolic studies have been
done on this invertebrate model but previous experiments
revealed regulation of critical protein kinases involved in
signal transduction as a response to anoxia exposure [17].
The present study shows that under anoxic conditions there
is an increase in the amount of G6PDH present in the high
phosphate, low K,,, enzyme form, implicating a more active
enzyme form under anoxia. In vitro incubation studies also
demonstrated that changes in G6PDH phosphorylation state
that could be mediated by cAMP-dependent protein kinase
(PKA) or cGMP-dependent protein kinase (PKG).

2. Methods and Materials

2.1. Animals. Freshwater crayfish (Orconectes virilis) were
obtained from the Britannia Bait and Food market in Ottawa,
Ontario. They were kept in aerated containers of fresh water
in incubators set at 15°C for 7 days before use. Animals were
then separated into groups of 10 and placed in individual
covered buckets with 15°C water that was either aerated with
a bubbler or deoxygenated by bubbling with 100% nitrogen
gas (bubbling with nitrogen gas was begun 45 minutes prior
to adding animals). Control animals were sampled from their
buckets after 1 hour. Animals in deoxygenated water were
sampled after 20 hours of anoxia exposure. Animals were
killed by severing the head, and then hepatopancreas was
rapidly excised, immediately frozen in liquid nitrogen, and
stored at —70°C until use.

2.2. Sample Preparation. Typical homogenates were made
1:5 w:v in ice-cold homogenization buffer A: 50 mM
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imidazole, pH 7.0, 2mM EDTA, 2mM EGTA, 10mM -
mercapthoethanol, 10 mM f-glycerol phosphate, 10% v:v
glycerol, and 50 mg phenylmethylsulfonyl fluoride (PMSF)
protease inhibitor. Homogenates were centrifuged at 12,000 g
for 30 minutes at 4°C. Supernatants were collected and
assayed for activity.

2.3. G6PDH Activity Assay. Optimal conditions for GGPDH
activity were determined to be 0.5mM NADP* and 5mM
G6P in 50 mM imidazole buffer, pH 7.0; standard assays
assayed 20 uL of crude extract in a total of 200 yL reaction
mix. Preliminary studies showed that the optimal pH for
G6PDH activity was 7.0, added Mg?* did not alter activity,
and prior desalting of extracts via low speed centrifugation
through small columns of Sephadex G25 (equilibrated in
homogenization buffer at pH 7.0) did not affect activity.
NADPH production was measured at 340 nm on an MR5000
microplate reader. One unit is defined as the amount
of enzyme that utilized 1umol of NADP* per min at
22°C. For K,, determinations, each substrate was varied
over a range of concentrations (0.1-5mM for G6P; 0.025—
0.7 mM for NADP*) at constant cosubstrate concentration.
Protein content of the crude extracts was measured using
the Coomassie blue dye-binding method with the Bio-Rad
prepared reagent. All data were collected using Biolinx 2.0
software and analyzed with MPA and Kinetics 3.51 software
[18, 19]. Statistical analysis used the Student’s t-test or one-
way ANOVA with a post-hoc Dunnett’s test.

2.4. In Vitro Incubations to Stimulate Endogenous Protein
Kinases and Phosphatases. To determine the effects of
endogenous protein kinases and phosphatases on G6PDH
activity, samples of crude enzyme extract were incubated in
vitro with various additives that stimulated the activities of
different kinases or phosphatases. Homogenates were pre-
pared 1:2 w:v in basic incubation buffer: 50 mM imidazole
buffer, pH 7.0, containing 100 mM sucrose. Prior testing
showed that activity was stable in this buffer for at least 2
hours. Aliquots of enzyme extract were incubated for 2h
at 4°C as described below. After incubation, samples were
centrifuged and then K, values for NADP* and G6P were
measured.

To promote the activities of endogenous protein kinases,
incubations contained 5mM ATP and 30 mM NaF with
additions as follows: (a) for PKA: 1mM cAMP, 10 mM
MgCl,, and 5 mM NazVOy; (b) for protein kinase G (PKC):
1 mM ¢cGMP, 5mM Na3;VOy, and 10 mM MgCl,.

To promote the activities of endogenous protein phos-
phatases, incubations contained: (a) for protein phosphatase
1 (PP1): 5mM Na3;VO,4, 2mM EDTA, 2mM EGTA, and
2.5nM okadaic acid; (b) for PP1 + protein phosphatase 2
A (PP2A): 30 mM Na3zVOy, 2mM EDTA, and 2 mM EGTA;
and (c) for PP2B: 5 mM Na3;VOy, 2 mM EDTA, 5 mM CaCl,,
and 1uM okadaic acid. A fourth incubation contained
basic incubation buffer plus 1 unit of calf intestine alkaline
phosphatase.

For comparison, an “untreated” condition was run, with
homogenates prepared in a 1:2 w:v in homogenization
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buffer A, incubated for 2h at 4°C. After incubation, K,
values for NADP* and G6P were measured.

2.5. G6PDH Elution Profiling. Hepatopancreas samples were
homogenized 1:5 w:v in homogenization buffer B: 50 mM
Tris-HCI, pH 9.0 plus all nonbuffer components contained in
buffer A. After centrifugation, 0.5 mL aliquots of supernatant
were applied to DEAE" Sephadex G50 columns (7.5 cm X
0.75 cm) equilibrated in buffer B. Columns were washed with
buffer B and then G6PDH was eluted with a 0-0.5M KCI
gradient in buffer B. Sixty fractions of 10 drops/tube were
collected with a Gilson FC203B fraction collector, and 100 uL
samples were assayed for activity.

2.6. Western Blotting. Frozen tissue samples were crushed
under liquid nitrogen and then homogenized 1:5 w:v in
homogenizing buffer C (20mM Hepes, pH 7.5, 200 mM
NaCl, 0.1 mM EDTA, 10 mM NaF, 1 mM Na3;VO,, 10 mM
B-glycerophosphate) with a few crystals of PMSF and 1uL
protease inhibitor cocktail added (Sigma-Aldrich, Oakville,
ON, CA). Samples were centrifuged as above for 15 min and
supernatant was collected. Soluble protein concentration was
measured using the Coomassie Blue dye-binding method
with a prepared reagent (Bio-Rad, Hercules, CA, USA) and
bovine serum albumin as the standard. Sample concentra-
tions were adjusted to a constant 10 ug/uL by the further
addition of small amounts of homogenizing buffer and then
aliquots of samples were mixed 1: 1 v:v with 2 x SDS buffer
(100 mM Tris-base, 4% w/v SDS, 20% v/v glycerol, 0.2% w/v
bromophenol blue, 10% v/v 2-mercaptoethanol) to give a
final protein concentration of 5 ug/uL. Samples were boiled
for 5 min and chilled on ice prior to loading onto gels.

Aliquots containing 25ug protein were loaded into
wells of 10% polyacrylamide gels, together with prestained
molecular weight standards (Bio-Rad) and separated using
a discontinuous buffer system [20]. Samples from all exper-
imental conditions were always run on the same gel. Gels
were run in a Mini-Protean III apparatus (Bio-Rad) at
constant 180V for 45 minutes at room temperature (RT).
Proteins were transferred onto PVDF membranes at 60V
for 90 minutes at 4°C. The resulting blots were probed
overnight with primary antibodies for GGPDH (Santa Cruz
biotechnology, Santa Cruz, CA, USA—rabbit polyclonal IgG
sc-67394) diluted 1 : 1000 dilution in Tris Buffered Saline and
Tween 20 (TBST). Blots were then washed multiple times
with TBST and incubated with HRP-linked goat anti-rabbit
IgG (diluted 1:4000 in TBST) (BioShop, Burlington, ON,
CA) for 1 hour at RT. Blots were then washed with TBST
and developed using enhanced chemiluminescence reagents.
Subsequently, blots were stained with Coomassie blue stain
(0.25% w/v brilliant blue R or a spatula tip full, 7.5% (v/v)
acetic acid, 50% (v/v) methanol and 42.5% ddH,O) for 10
minutes and destained with destain solution (10% v : v Acetic
acid, 30% v : v methanol, and 60% v:v ddH,O), for a further
10 minutes.

Bands were scanned using a ChemiGenius Bio-Imaging
system, and densitometric analysis was performed using the
associated GeneTools software (Syngene, Frederick, MD). To

control for irregularities in loading, the chemiluminescent
band intensity in each lane was normalized against the corre-
sponding density of one control identified Coomassie stained
protein band in the same lane, that was constant between
control and experimental conditions (these bands were well
separated from the G6PDH band). Mean normalized band
densities + SEM were then calculated; statistical analysis used
the Student’s ¢-test.

3. Results and Discussion

3.1. The Pentose Phosphate Pathway under Anoxic Conditions.
All organisms respond to hypoxia/anoxia conditions by shift-
ing metabolic fuel use to a high (or even total) reliance on
carbohydrate fuels and the glycolytic pathway for generating
ATP. Species that have a well-developed anoxia tolerance
typically couple this with a strong overall MRD so that ATP
demand is lowered to a level that can be supported over the
long term by glycolysis alone [13]. G6P sits at an important
locus in carbohydrate metabolism and strong enzymatic
controls determine its fate in response to different metabolic
demands; G6P is produced from both glucose and glycogen
and can be utilized in numerous ways including by glycolysis
and the PPP as well as for reconversion to either glucose
or glycogen. Prominent controls on glycolytic regulatory
enzymes via reversible phosphorylation are a common
feature of anoxia tolerance in many species but much less
is known about regulation of the PPP in response to anoxia
and/or during MRD. Estivation-induced phosphorylation of
G6PDH occurred in hepatopancreas of the land snail, Otala
lactea, with effects that would activate the enzyme and it
was proposed that this may enhance relative carbon flow
through the PPP, compared with glycolysis, during estivation
to help maintain NADPH production for antioxidant defense
[15]. Analysis of GGPDH from liver of frozen wood found
an opposite result—the enzyme from frozen (anoxic) frogs
showed a lower affinity for G6PDH substrates that, along
with other changes, argued for a reduced role of GGPDH
in the frozen animal. The present study evaluates GGPDH
regulation with respect to anoxia tolerance in crayfish
hepatopancreas. G6P levels typically increase under anoxia,
coincident with a switch to reliance on glycogen or glucose as
the fuel. In crayfish tail muscle, for example, G6P levels rose
from 84 + 30 nmol/gram wet weight (gww) to a maximum of
535 + 152 nmol/gww after 4 h anoxia exposure and remained
high at 158 = 77 nmol/gww after 12 hours of anoxia (T. A.
Churchill and K. B. Storey, unpublished data). With a higher
available substrate concentration, differential regulation of
G6PDH under anoxia could be required to regulate flux
through glycolysis versus the PPP and serve the needs for
antioxidant defense during hypometabolism.

3.2. Regulating G6PDH Kinetics through Reversible Phos-
phorylation. The invertebrate hepatopancreas conducts the
functions of the liver and pancreas organs of verte-
brates. The organ has an important role in balancing
anabolism/catabolism of fuels (including carbohydrates)
and also has important roles in antioxidant defense and



TasBLE 1: Effect of incubation under conditions that stimulated the
activities of protein phosphatases or protein kinases on the K,
values (mM) for G6P of crayfish hepatopancreas GGPDH.
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TasLE 2: Effect of incubation under conditions that stimulated the
activities of protein phosphatases or protein kinases on the K,
values (mM) for NADP* of crayfish hepatopancreas.

Condition Control K,,, (mM) 20 h Anoxic K,,, (mM) Condition: Control K,,, (mM) 20 h Anoxic K,,, (mM)
Untreated 0.13 = 0.016 0.08 =+ 0.007° Untreated 0.15 = 0.008 0.12 =+ 0.008°

PP1 0.11 = 0.026 0.092 +0.014 PP1 0.11 = 0.05 0.13 = 0.048
PP2B 0.20 + 0.036" 0.25 + 0.025* PP1/2A 0.22 +0.035" 0.19 +0.033
Alkaline Phosphatase ~ 0.40 + 0.076° 0.83 = 0.088" Alkaline Phosphatase ~ 0.38 + 0.002° 0.38 + 0.036°
PKA 0.019 + 0.039* 0.026 + 0.009* PKA 0.017 + 0.005" 0.014 + 0.001*
PKG 0.024 + 0.039* 0.034 + 0.009* PKG 0.023 + 0.002* 0.020 + 0.003*
Data are means * SEM, n = 3-4. *Significantly different from the Data are means + SEM, n = 3-4. *Significantly different from the

corresponding untreated value, P < 0.05; Psignificantly different from the
corresponding control value, P < 0.05.

Enzyme activity (mU)
[\S}

0 1 2 3 4
G6P concentration (mM)

—e— Control
—o— 20 h anoxic

FiGure 1: Velocity versus G6P substrate concentration for GGPDH
in crude extracts of hepatopancreas from control and 20 h anoxic O.
virilis. Data are means = SEM, n = 9.

detoxification. All of these roles can include a need for
G6PDH regulation, both in terms of controlling G6P use by
catabolic versus anabolic pathways, and in the generation of
NADPH reducing power for multiple types of biosynthesis as
well as for antioxidant defense.

The maximum activity of crayfish hepatopancreas
G6PDH did not change between aerobic control and anoxic
states (data not shown) but affinity for G6P substrate
increased significantly (K, decreased) between the two states
(Table 1, Figure 1).

The K,, G6P fell from 0.13 mM for the aerobic control
enzyme to 0.08 mM for the 20h anoxic enzyme, a 60%
decrease for the hepatopancreas enzyme from anoxic cray-
fish. The K, value for NADP* also showed a decreasing trend
under anoxia as compared with the aerobic control value
(Table 2, Figure 2).

Hence, it appears that the affinity of G6PDH for its
substrates is increased under anoxic conditions. These
responses to anoxia are similar to the results for G6PDH in
other invertebrate models that also show modified G6PDH
kinetic properties in response to environmental stress.

Properties of G6PDH changed significantly between
aroused and estivating states in hepatopancreas from the

corresponding untreated value as determined using ANOVA and a post hoc
Dunnett’s test, P < 0.05; "significantly different from the corresponding
control value, P < 0.05.

2.5 7

1.5 A

Enzyme activity (mU)

0.5 -

0O T T T ]
0 0.2 0.4 0.6 0.8
NADP Concentration (mM)

—e— Control
—o— 20 h anoxic

FiGure 2: Velocity versus NADP* substrate concentration for
G6PDH in crude extracts of hepatopancreas from control and 20 h
anoxic O. virilis. Data are means + SEM, n = 9.

land snail, O. lactea; for example, K,, G6P decreased by
50% during estivation [15]. In a vertebrate model, the wood
frog R. sylvatica, liver G6PDH also showed stress-responsive
changes but in this case K,, values for both substrates
increased by over 20% during whole body freezing [16].

Stress-responsive stable changes in the properties of
enzymes are often due to covalent modification of the
protein and frequently these are due to the addition (via
protein kinases) or removal (via protein phosphatases) of
covalently bound phosphate to the enzyme [12, 13]. To assess
whether reversible phosphorylation could also be responsible
for the anoxia-induced changes in kinetic properties of
crayfish hepatopancreas G6PDH, crude extracts of crayfish
hepatopancreas were incubated under conditions that would
stimulate the action of selected endogenous protein kinases
or protein phosphatases and then changes in the K, for
G6P and NADP* were quantified (Tables 1 and 2) with
relative changes in K, values, compared to aerobic control
conditions, shown in Figure 3.
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FiGure 3: Effects of in vitro incubations that stimulated the activities of protein kinases or protein phosphatases on the relative values for
K,y for (a) G6P and (b) NADP* for hepatopancreas GGPDH. Data were normalized against the untreated control value that was set to 1.0;
values are means + SEM, n > 6 independent. *Significantly different from the corresponding untreated control condition, P < 0.05. Note:
Kinases and phosphatases stimulated were endogenous, with the exception of alkaline phosphatase.

These experiments indicated that the phosphorylation
state of G6PDH can be a decisive factor in substrate affinity.
Incubation under conditions that promoted the action of
PP1 did not affect K,, values but stimulation of PP2
enzymes led to significant increases in K, for both substrates.
Stimulation of PP2B increased K,,, G6P of the aerobic control
enzyme by 1.5-fold and K, of the anoxic enzyme by 3-fold.
Treatment with commercial alkaline phosphatase produced
very large 2.5-6-fold increases in the K,, values for both
substrates (Figure 3). Conversely, stimulation of endogenous
kinases (PKA, PKG) significantly decreased K,, G6PDH to
15-18% of the untreated control value or to 33—42% of the
anoxic value (Table 1, Figure 3(a)). Protein kinase treatments
resulted in similar strong decreases in K,, NADP* (Table 2,
Figure 3(b)). These data provide strong evidence that the
anoxia-induced decrease in K, values, providing increased
substrate affinity, is mediated by protein phosphorylation
events; conversely, the return to oxygenated conditions
would be mediated by GGPDH dephosphorylation by protein
phosphatases. Not only does this identify protein kinases as
the activating agent for GGPDH under anoxia but a strong
increase in the percentage of PKA present as the free catalytic
subunit was found in crayfish tissues under oxygen-limited
conditions [17]. It is evident that PKA may be the anoxia-
responsive protein kinase that regulates GGPDH in vivo but
a role for PKG in mediating responses to anoxia cannot be
discounted. Indeed, both PKA and PKG treatments altered
G6PDH activity and elution profiles in hepatopancreas
extracts from O. lactea [15].

3.3. DEAE Ion Exchange Separation of G6PDH Forms.
Changes in the phosphorylation state of a protein alter its
charge and hence the high and low phosphate forms of

enzymes are typically separable on an ion exchange col-
umn. Figure 4 shows the elution pattern of hepatopancreas
G6PDH from aerobic and anoxic crayfish on DEAE ion
exchange chromatography. Activity eluted in two main peaks
and the ratio of the two peaks changed between the two
physiological states. Under aerobic conditions, the majority
of the activity (88.8% of recovered activity) eluted in a
broad peak at a low KCI concentration (Figure 4(a), peak I).
Under anoxia, however, the percentage of activity in peak
I decreased to 58.8% of recovered activity with a second
large peak of activity eluting at a higher salt concentration
(Figure 4(a), peak II). The higher the content of bound
phosphate on a protein, the greater its negative charge and
the more tightly it should bind to DEAE; therefore, a higher
concentration of KCI should be required for elution. Hence,
peaks I and II would represent the low- and high-phosphate
forms of G6PDH, respectively.

This also agrees with the outcome of the kinase and
phosphatase incubations. Anoxia exposure reduced the K,
values for both substrates. This was mimicked by stimulating
protein kinase actions on the enzyme; both PKA and PKG
action on G6PDH strongly decreased the K, values for both
substrates (mimicking the effects of anoxia) indicating that
the anoxic enzyme is the high phosphate form. By contrast,
incubation of the anoxic enzyme formed under conditions
that stimulated PP2 action raised K,, values to those that
mimicked or exceeded the control values, indicating that
G6PDH in hepatopancreas of aerobic crayfish is the low
phosphate form. The elution profiles also show that under
both aerobic and anoxic conditions that G6PDH exists in
two forms—both high and low phosphate forms are present
and anoxia exposure shifts the proportions of the enzyme
in each form. While the elution profile does not indicate
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FIGURE 4: (a). DEAE-G50 Sephadex elution profile for GGPDH from hepatopancreas of control and 20 h anoxic O. virilis. The elution profile
is representative of three independent determinations for both control and anoxic conditions. Activity is the percentage of activity retrieved
from the column. (b). Percentage of G6PDH activity in the low (Peak I) and high (Peak IT) phosphorylated forms in O. virilis hepatopancreas

under aerobic control and anoxic conditions.

a target kinase, it does confirm a phosphorylation event
during anoxia. Hence, K,, values for the untreated control
and anoxic forms represent the value for a mixture of
the two forms. The incubation treatments with PKA/PKG
versus alkaline phosphatase indicate that there is a much
wider scope for change in K,, if the enzyme is fully
phosphorylated or dephosphorylated. For example, K,,, G6P
values ranged from 0.019 to 0.034 mM when fully phos-
phorylated to 0.40-0.83 mM when fully dephosphorylated,
giving an approximately 10—40-fold scope for change in K,,
G6P. Similarly, K, NADP was 0.014-0.023 after PKA/PKG
treatment and 0.38 mM after alkaline phosphatase treatment,
a 16-27-fold difference between fully phosphorylated and
fully dephosphorylated enzyme forms.

3.4. Protein Levels of GGPDH Increase under Anoxia. Along
with kinetic changes regulated by posttranslation modifica-
tion, changes in the total amount of G6PDH protein could
also be a factor in G6PDH control under anoxia. There is
a precedence for stress-mediated G6PDH expression level
changes: both RNA and protein. Under salt stress in reed
callus [8] and wheat [21], G6PDH expression levels are
distinctly responsive. In both cases NaCl treatments caused
marked increases in G6PDH protein levels [8] and RNA
levels [21]—particularly in longer (>12 h) exposures.

G6PDH protein levels were analyzed by Western blotting,
the results showing a 1.6-fold increase in total protein levels
in O. virilis hepatopancreas under anoxia (Figure 5).

This suggests a twofold mechanism for enhancing
G6PDH activity in hepatopancreas under anoxia—an
increase in G6PDH protein levels and reversible phospho-
rylation mediated conversion of the enzyme to a more
active form with enhanced substrate affinity. This dual action

2 - *
o L5
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>
=
.5
I
e 1
a
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2
=
]
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0 T ]
Hepatopancreas
G6PDH

mm Control
—= 20 h anoxic

Figure 5: Effect of 20h anoxia exposure on the protein levels of
G6PDH in O. virilis hepatopancreas, as determined by Western
blotting. Immunoblot bands for n = 4 independent samples
are shown, and histogram shows normalized protein levels. Data
are means + SEM, n = 4. *Significantly different from the
corresponding control, P < 0.05.

mechanism supplies strong evidence that GGPDH regulation
is important to anoxia survival and/or aerobic recovery from
anoxia, potentially by modifying G6P flux though the PPP
under anoxia and providing enhanced NAPDH availability
for antioxidant defense.

This follows the trend established among other stress-
tolerant animals: G6PDH from O. virilis sharing the inver-
tebrate protein expression pattern of increasing under stress
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conditions. Specifically, the land snail (O. lactea) G6PDH
shows increased peak II (high phospho) protein activity,
which is also less susceptible to urea degradation [15].
Similarly, O. virilis GGPDH protein expression differs from
the vertebrate model (R. sylvatica), which appears not to
change under freezing exposure [16].

4. Conclusions

As oxidative stress becomes prolonged, in a stress adapted
animal, energetically expensive procedures are limited,
while defenses (heat shock proteins, stress activated protein
kinases, antioxidant proteins, etc.) are triggered and accu-
mulated. The anoxia-tolerant freshwater crayfish, Orconectes
virilis, is no exception to this and could consequently
experience a reduction in metabolic rate of up to 90% [12],
during its overwintering period. The increased protein levels
and activity of O. virilis G6PDH, which increase substrate
affinity of both G6P and NADP, can have a twofold effect;
first to divert G6P away from glycolysis and second to
generate reducing molecules (NADPH).

The NADPH produced can then be used to return
glutathione (GSSG) to its reduced form (GSH) which is the
substrate for two powerful antioxidant enzymes, glutathione
peroxidase (GPX) and glutathione-S-transferase (GST) [22].
NADPH is also used to replenish reduced thioredoxin which
contributes to peroxiredoxin antioxidant defenses [22], as
well as providing the reducing power for the cytochrome
P450 enzymes that mediate detoxification and xenobiotic
transformation reactions [23]. Thus, increased NADPH
production underlies the majority of antioxidant defenses
necessary both for long-term survival in the hypometabolic
sate and in preparation for the substantial influx of oxygen
at the end of an anoxic excursion. Without these defenses,
accumulation of ROS could cause severe cellular damage,
as is the case in numerous examples where experimental
manipulations have inhibited/reduced G6PDH activity [5,
24, 25].

In summary, these data illustrate a potentially con-
served invertebrate mechanism of G6PDH regulation under
oxidative stress. Under anoxic conditions, O. virilis shows
increased G6PDH protein content in hepatopancreas and a
stable modification of the enzyme via phosphorylation (pos-
sibly mediated by PKA) that increases substrate affinity. This
implicates a coordinated molecular response of the crayfish
to oxidative stress in order to maintain energetic homeostasis
and generate antioxidant defenses in the hypometabolic
state.
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