
Proof General / Eclipse: A Generic Interface for

Interactive Proof

Daniel Winterstein1, David Aspinall1, and Christoph Lüth2

1 LFCS, School of Informatics, The University of Edinburgh, U.K.
2 Department of Mathematics and Computer Science, Universität Bremen, Germany

Abstract. This paper introduces PG/Eclipse; a sophisticated new in-
terface for interactive theorem provers, offering users a rich set of proof
development tools. It is based upon two complementary frameworks.
The first is PG/Kit, a generic communication framework for connecting
theorem provers and interfaces. PG/Kit should allow straightforward
adaptation to most interactive theorem provers. Moreover, by separat-
ing interface development from proof engine development, this framework
should facilitate the development of both. The second is Eclipse, a so-
phisticated open source framework for building IDEs. Eclipse is highly
modular and extensible, making it a good platform for interface research.
Using it has allowed us to provide a rich range of interface features. These
frameworks correspond to the twin goals of this project: to define a clear
separation between provers and interfaces, and to translate programming
development tools to a theorem proving environment.

1 Introduction

Developing formal proofs is an arduous and difficult task. Nevertheless, larger
and more complex formalisations are being undertaken in numerous interactive
theorem provers. However inspite of the considerable achievements of the formal
proof programme, take-up of these systems by mathematicians and programmers
remains poor. At least one reason for this is the lack of good development tools.

Proof scripts can be very large (e.g. work on formalising Java in Isabelle ran
to 30k lines with 1400 lemmas [23]), with complex dependencies. Yet the facilities
for developing and maintaining formal proofs are in general rather rudimentary,
especially when compared with the sophisticated IDEs available to the modern
programmer. One reason for this is the heterogenous nature of the formal proof
community – which has a wide variety of different systems.

1.1 PG/Emacs

The Proof General (PG) project is an ongoing attempt to redress this issue [3,
4]. The previous PG interface was built on the Emacs text editor (we will refer to
it here as PG/Emacs to distinguish it from the new interface). PG/Emacs has
been successfully used for several years, with an estimated sim300 active users.
Its success is due to its genericity, allowing easy adaption to a variety of provers

(primarily, Coq, PhoX, and Isabelle, for which it is the ‘official’ interface), and
its design strategy, which targets both experts and novice users.

Although successful, the limitations of the PG/Emacs system are becoming
increasingly clear. From the users’ point of view, it requires learning Emacs
and putting up with its idiosyncratic and at times unintuitive UI. From the
developers’ point of view, it is rather too closely tied with the Emacs Lisp API
which is restricted, somewhat unreliable, often changing, and differs between
different flavours of Emacs.

Another engineering disadvantage of PG/Emacs arose from its construction
by successively extending a generic basis to handle more provers. This strategy
meant that little or no specific adjustment of the provers was required, but it
resulted in overcomplicated configuration and internal mechanisms.

1.2 PG/Eclipse

In this paper we present PG/Eclipse, an interface/development environment
that marks a new phase in the PG project. It not only provides a more so-
phisticated suite of editing, browsing and debugging tools – it does so using a
generic framework that should allow it to be used by a wide range of systems.
We first describe the principles underlying its design, then present the features it
offers. We then describe the framework it operates in (called the PG/Kit), the
framework it is built on (Eclipse), and give an overview of the implementation.

2 Design principles

The design of PG/Eclipse and the PG/Kit is influenced by a wide range of
UI design principles. For example, the UI principle of supporting novices and
experts – and providing a pathway to convert one into the other3 – has always
been an important consideration in PG. This has led us to use a hierarchical

(a.k.a. level-structured [21]) interface design4 Here we describe two principles
that are specific to theorem proving.

2.1 Proof scripting is a form of programming

It has often been noted that theorem proving has a great many similarities with
programming. However this insight has not yet been extensively used in prover
interface design. Since programming interfaces serve a much larger community,
and consequently have been much more actively developed, it is not surprising
that they are more advanced. Hence it is sensible to borrow ideas from pro-
gramming interfaces where possible. This principle could also be used the other
way, and we will mention a couple of areas where TP interface design could
potentially benefit programming IDE design.

3 Novices into experts that is.
4 In practice this means providing multiple ways of accessing tools: buttons for novices,
menus for intermediate users and key bindings for experts, plus focused help to
encourage users to move from ‘novice’ use to more sophisticated use.

2

2.2 Separation of proof engine and interface

Modularisation brings clear benefits to the development of software. Separating
provers from interfaces is a specific instance of this. There are lots of different
TPs, and more are created all the time as new ideas and logics are developed.
Each of these needs a good interface if it is to be successful except as a demon-
stration of a concept. Hence separating prover and interface should facilitate the
development of TPs, by giving TP developers easy access to sophisticated inter-
faces. It would also benefit interface designers, who need not be tied to one proof
system. Note that whilst we have designed PG/Kit to implement this separa-
tion, whether or not it is successful will in the end depend upon the interactive
prover community.

3 The PG/Eclipse interface: a functional description

This section presents the main features of PG/Eclipse from a user-perspective.
Many of these features will be familiar to users of modern programming IDEs,
where they are now increasingly standard.

3.1 Eclipse

The restrictions of Emacs have led us to adopt Eclipse as the new platform for
developing Proof General. Eclipse is a modern IDE, originally intended for Java
programming. As such it fits with this project’s ‘proving as programming’ design
principle. Amongst the features Eclipse offers are:

– A state-of-the-art user-friendly GUI. This is based around a collection of ed-
itor and view windows. Editors are (typically) enhanced text-editors, whilst
views provide focused information, navigation tools and access to task-specific
features (e.g. CVS actions). It is a flexible system which can be easily re-
configured by the user. Views and editors can be opened, closed resized,
grouped together (with tabs), and the last configuration is automatically
remembered. These learnt configurations are task specific (in Eclipse jargon,
UI configurations are linked to perspectives) - which allows different configu-
rations for, say, browsing and editing. Configurations can also be saved and
loaded, but the option of task-specific perspectives means that this is rarely
necessary.

– Integrated CVS support, including a CVS client with a GUI and a compar-
ison editor for accepting/rejecting differences.

– Good platform independence. PG/Eclipse can be installed on Linux, Win-
dows or Mac boxes without any special configuration. Of course, the under-
lying theorem prover may be platform dependent, but a socket layer allows
the editor to be run on a different machine from the prover.

3

3.2 Script management

The central feature of PG/Eclipse is an advanced version of script manage-
ment (c.f. [8]), which is a form of step debugging tailored to linear scripts. To
interactively ‘run’ a proof script, we sequentially send each line to the prover.
Script management says that each script can be divided into a part which has
already been processed, a part which is currently being processed, and a part
which has not been processed (yet). Proof General supports this by colouring the
parts of the text being processed or already processed, and preventing editing
in those regions.5 This provides clear feedback to the user on processing, and
protects against edits that might invalidate the current proof state. A toolbar
provides buttons for navigating (moving the prover’s position) within the proof.

A screenshot in Fig. 1 shows this in action. The main editor window shows
the proof script; view windows below show the prover output. An Eclipse Prob-
lems view (not shown here) lists outstanding problems, such as syntax errors or
unfinished proof-goals. To the left of the editor window is an Outline view of
the proof script showing its structure. Above the editor, the dedicated toolbar
triggers proof or undo steps by sending instructions to the prover (left-to-right,
the buttons are: undo all, undo, interrupt, step forward, process all, and – most
useful of all – go to cursor location).

Fig. 1. Eclipse Proof General Display

5 The colouring of script management is demonstrated in the screenshot in Fig. 1.

4

3.3 Symbol support

Using mathematical symbols can make a huge difference to how readable a proof
script is. This is possibly an area where TP interfaces have something to offer
to programming interfaces.

PG/Eclipse provides symbol support similar to the Emacs X-Symbol pack-
age [24]. Like X-Symbol, it supports the use of typing shortcuts to enter sym-
bols (e.g. typing “- ->” for “\<longrightarrow>”). At present, it is less powerful
than X-Symbol in that it does not properly support subscripts and superscripts.
PG/Eclipse also provides a symbol table editor (shown in Fig. 2), allowing
users to adapt and extend the use of symbols to fit their own needs. Symbol
support is based on Unicode, which has the advantage that the user can cut and
paste text between modern applications, preserving symbols. The disadvantage
is that the symbol support available depends on access to a suitably rich unicode
font.6

Fig. 2. The PG/Eclipse Symbol-Table Editor

3.4 Theory navigation

As a theory grows, finding specific definitions and proofs can become increasingly
difficult and time consuming. This alone can make a large difference to the
usefulness of a theory. PG/Eclipse provides support for theory navigation. As
proof script files are read, their structure is analysed and the theories, theorems
and lemmas they contain are indexed. This gives the user several ways to navigate
a project:

– Via a ‘Theory Index View’ (which supports user-specified filters). This is
a list of previously processed theories, theorems and definitions. The list

6 Standard Linux and Windows installations should be fine; we have not tested on
Macs.

5

entries are hyperlinked to the relevant proof-script section, allowing quick
access.

– Via a similar ‘Problems View’ shows a (hyperlinked) list of unsolved prob-
lems, such as unproved goals or syntax errors.

– Via a ‘jump to definition’ command, that allows users to look-up the source
for a rule.

– Within a file, a zoomable/collapsible outline view shows the file structure at
a glance and allows quick navigation.

There are also Eclipse’s in-built indexing and browsing features, such as ‘edit
browsing’(which takes the user back through the locations of recent edits in a
file), book-marks and To-Do lists.

3.5 Content Assistant

The Content Assistant suggests completions for keywords/phrases. It is like the
Auto-Completion feature found in word-processors, but activated by a hot-key
combination rather than by typing alone (making it less intrusive). At present,
it uses a list of theorems plus a static list of keywords. However there is support
in PGIP for the prover to amend this list and provide more context sensitive
suggestions.

3.6 Integrated help

As with programming, good documentation and help is key to both the uptake
of theorem provers and the reuse of proof scripts. PG/Eclipse provides tools
for documenting prover commands, prover settings and proof scripts. Help is
then presented to the user via tooltips, shown in response to a pause or ‘hover’
by the user (see Fig. 3).

Help for prover commands can be defined via a simple XML file. Help for
prover settings (e.g. heap size, start-up directory, etc.) is handled similarly.
PG/Eclipse provides a GUI front-end for viewing and changing prover set-
tings. This is configured via another simple XML file, and can include help on
these settings. Help for theory elements (e.g. theorems) is created simply by
writing a preceding comment. This idea is taken from the Java approach to doc-
umenting code (c.f. [13]). The top half of Fig. 3 shows an example of this: the
comment creates a help entry for “Cantor’s Theorem”; the bottom half of Fig. 3
shows this entry being displayed when the cursor is held over a matching term.
Using comments gives a method for documenting proof scripts whilst writing
them – which aids both creation and maintenance of documentation ([13]). It
is straightforward (and will already be familiar to many users), and not overly
time-consuming. Also it means that help entries can be extracted from old files,
even though the comments were not originally intended to be used in this way.
Sometimes this will result in unhelpful tips. However the cost associated with
such misses is very low (∼2 seconds of the user’s time).

6

Fig. 3. Defining and displaying focused help via tooltips.

Help on the PG/Eclipse system itself is provided via links to a Wiki7. This
is, we hope, a good solution to the problem of documenting systems that serve a
small community (i.e. systems where the developers cannot afford to provide pro-
fessional level support and documentation). The PG Wiki includes a mechanism
for requesting help from the developers (text of the form “QUESTION: blah blah
blah” is interpreted as a request for help). This has the benefits of a Q&A user-
group, whilst simultaneously creating structured documentation. It also allows
users to easily share information, thus alleviating some of the documentation
burden on the developers. Although PG/Eclipse’s current documentation is
slight, using a Wiki means that it can grow as necessary in response to user
demands.

3.7 Teaching tool

One of the great potentials for provers, and as yet largely untapped, is in mathe-
matical/scientific education. Although there are excellent computer algebra and
graphing systems used in education (e.g. Mathematica [26]), these neither per-
form nor teach proofs, which is central to mathematical work.

PG/Eclipse introduces a teaching tool, designed for delivering teaching
material that interacts with a prover.8 The tool uses an embedded browser to
display web-pages. Links to proof scripts (recognised by file type) cause the script
to be opened in the PG editor. PG also defines some Javascript commands for
interacting with the script editor (e.g. setting preferences). The use of a web-
browser means this tool is very flexible, and should be easy to integrate with
existing web-based teaching material.

3.8 Interface scripting

Often a script will run better or view better under certain settings. PG/Eclipse
allows a theory developer to encode these settings in the proof script file. It de-
fines a small set of commands that can be used to script the interface itself.
Currently, there are commands for setting preferences, both of the interface and
of the underlying prover, for extending symbol support (e.g a script can specify
that myRelation should display as ?), and for running other such scripts (al-
lowing common settings to be factored out). These commands can be embedded

7 A Wiki is a website that can be edited by any visitor.
8 This tool could also be used to deliver documentation linked to ‘live’ examples.

7

inside comments, so that the proof scripts will still run outside of PG/Eclipse.9

This feature could also be useful when using PG/Eclipse as an educational tool
(where, for example, some automatic proof features might want to be temporar-
ily disabled).

(* <proofgeneral>

<loadscript src="defaultThySettings.pgip"/>

<setpref name="Isabelle:full-proofs" value="true"/>

<addsymbol ascii="myOperation" unicode="066D"/>

</proofgeneral> *)

Fig. 4. An example interface script ‘hidden’ inside an Isabelle/Isar comment.

4 Proof General Kit architecture

The PG/Kit framework is an attempt to achieve the design principle of sepa-
rating the prover from the interface. It was developed using experience gained
from the PG/Emacs project. We give an overview of its design here; for more
details see [10].

It is unrealistic to expect that a prover should not need modification to sup-
port a sophisticated interface. So instead of trying to match a range of different
behaviours, we propose a uniform API which captures the behaviour common
to most provers at an abstract level, and ask that each proof system implements
that. If done correctly, this will not place a great burden on the prover devel-
oper, and by defining a clear separation between the interface and the prover, it
should greatly facilitate interface development.

The PG/Kit API consists of two linked parts: A model for prover behaviour,
and a protocol for communication within proof sessions. This design reflects
a compromise between creating a flexible system, and working with existing
systems. An alternative would be to use a more communication based approach,
where the prover informs the interface about the proof-script relevant effects of
executing commands. For example, consider the undo command. the PG/Kit
model specifies how undo behaviour should change depending on context; the
communication-based approach would be to leave undo behaviour unspecified,
and for the response to an undo command to specify precisely what has been
undone. This would be more generic, but would require a greater change from
existing systems.

9 This is similar to the way that Javascript used to be hidden inside html comments,
so that the document would render correctly on old browsers.

8

4.1 Modelling the prover state

PG/Kit assumes an abstract model of how interactive provers behave, where we
suppose there are four fundamental states occupied by the prover. Transitions
between the states are triggered by commands issued via the interface. Fig. 5
shows the states, and the commands to change between them.

Theory Open

File Open

Top Level

<openfile>
<undostep>
<theoryitem>

<closefile>

<closegoal>

<opentheory>

<closetheory>

Proof Open

<opengoal>
depth=0

<giveupgoal>
<abortgoal>

<aborttheory>
<abortfile>

(depth n)

depth = depth − 1
<closegoal>

depth = depth + 1
<opengoal>
<undostep>
<proofstep>

Fig. 5. Proof states during development.

The reason for distinguishing the states is that different commands are avail-
able in each state, and the prover’s undo behaviour in each state can be different.
This model is based on abstracting the common behaviour of many interactive
proof systems, but it is not intended to capture precisely the way every proof
system works. Rather it acts as a clearly specified “virtual layer” that must be
emulated in each prover to cooperate properly with the broker.

4.2 PGIP: A protocol for interactive proof

The protocol for directing proof used by PG/Kit is called PGIP, for Proof

General Interactive Proof [5]. It was designed by examining the communications
used in PG/Emacs, and covers a wide range of prover-display interactions.
The format of the messages is defined by an XML schema10 Messages are sent
over channels (both sockets and Unix pipes are supported). Note that it is not
necessary for a prover to support all of PGIP in order to use the PG/Eclipse
interface (and indeed, at present PG/Eclipse does not implement all of PGIP).
The main types of command in PGIP are:

Proof script commands, corresponding to the commands in a conventional
proof script. These would typically be created from such a script. They affect
the internal (proof-relevant) state of the prover.

Improper commands are those which should not appear in a proof script.
They are used for controlling the proof session; examples are the undo and abort

commands appearing in Fig. 5.

10 Written in RELAX NG [18], but also available as an XML DTD).

9

Display messages are sent from the prover, and contain output directed to
the user, such as the current proof state or error messages.

Parsing commands define a mechanism whereby PGIP mark-up is added
to sections of ‘raw’ proof scripts (i.e. scripts in the language of the prover).
We expect that this task will normally be implemented as part of the theorem
prover, which should know how to parse its own language.

Other message kinds include configuration messages (allowing dynamic setup
of components), descriptions of the current proof environment (e.g., the theorems
that are currently available) and a meta-data category for miscellaneous prover-
specific messages.

4.3 Proof scripts in PGIP

The basic principle for representing proof scripts in PGIP is to use the prover’s
native language, and mark up the content with PGIP commands which give the
proof script the structure needed by an interface. This mark-up is only used
internally; it is not seen or edited by the user.For example, Fig. 6 shows the
PGIP representation of the a short example proof script. Notice the named and
unnamed <opengoal> elements, and the indentation structure introduced by
<opengoal> and <closegoal>.11

lemma fn1: "(EX x. P (f x)) --> (EX y. P y)"

proof

assume "EX x. P (f x)"

thus "EX y. P y" by simp

qed

With PGIP mark up:

<opengoal name="fn1">

lemma fn1: "(EX x. P (f x)) --> (EX y. P y)"

</opengoal>

<proofstep>proof</proofstep>

<proofstep>assume "EX x. P (f x)"</proofstep>

<opengoal>thus "EX y. P y"</opengoal>

<closegoal>by simp</closegoal>

<closegoal>qed</closegoal>

Fig. 6. An example proof script in Isabelle/Isar, with PGIP marked-up version.

The design decision to build PGIP as a wrapper for native languages has two
main consequences:

11 One may wonder why <opengoal> and <closegoal> are separate and distinct
elements; we do not use a single <goal> element to enclose the block structure
because we need to be able to incrementally parse and evaluate text, which means
handling ill-structured fragments of a block.

10

Firstly, the user employs the prover’s native language (such as Isar in Fig. 6)
to write the proof scripts instead of one generic language. This is necessary, since
the wide variety of logics and proof styles supported by modern provers make it
very hard to come up with one language which efficiently supports all of these.
It is also pragmatic, as users can continue to work in the proof language they are
familiar with and old proof scripts can still be used. Moreover, the interface does
not lock the user into always using it. Proof scripts developed with PG/Eclipse
can be run independently from the interface.

Secondly, the parsing of the proof script, and thus all user input, has to be
done by the prover (or a component coming with the prover), and not by the
interface, which knows nothing about the prover’s language. Note that this parser
only needs to understand some aspects of the prover’s language – principally, it
must be able to distinguish between the command types that appear as labels on
the state-transition arcs in Fig. 5. Hopefully, it should not be arduous to develop
such parsers (although c.f. §5.4 for a case study).

5 Implementation

5.1 Using Eclipse

Eclipse is an open-source IDE and tool integration platform written in Java and
SWT (SWT is a widget set created by IBM, which exploits native operating
system widgets to provide an interface that is both faster and more familiar
than most cross-platform GUIs) [20, 12]. Most prominently, Eclipse provides a
powerful and attractive IDE for Java, but it also has a modular design based
on plugins and extension points that allows almost any aspect of the platform
to be customised and extended to new domains. Many plugins are available,
supporting other programming languages, profiling and testing tools, graphical
modelling facilities, etc.

Extending Eclipse is not as straightforward as one might hope. To provide
functionality similar to that offered for Java, it is necessary to re-implement
much of the functionality. The learning curve for using Eclipse is quite steep.
One of Eclipse’s aims is to provide an extensible API that is cleanly separated
from the code-base, with custom extensions created using XML schemas rather
than via Java code. In practice, this has only partially been achieved. Most
extensions require Java code to complete their setup, which means engaging
with a complex and inter-linked code-base. For example, to set up basic syntax
highlighting (e.g. keyword and comment colouring – something that can be done
with one straightforward file in many editors), requires an XML configuration
file plus properly sub-classing and setting up six different Java classes.

However, Eclipse does provide a powerful and wide-ranging set of tools, plus
considerable support for creating new tools that work within a development
environment. These tools are also frequently interlinked, so that implementing
one aspect of a tool can unlock a range of extra functionality ‘for free’. Also,
Eclipse imposes relatively few limits on what can be implemented within its
framework.

11

5.2 PG/Eclipse Architecture

The PG/Eclipse plugin is implemented with around 10 Java packages contain-
ing about 100 classes, most of which contain small pieces of code to interface to
the Eclipse platform. It represents roughly one year’s work. The architecture of
the main editing loop of PG/Eclipse is shown in Fig. 7.

PG/Eclipse is implemented along Model-View-Controller lines. On loading,
proof scripts are converted into tree structured ‘document objects’ – this is
the model. Efficiently maintaining these document objects whilst the user edits
the text is a difficult problem, which we discuss in §5.3. This is presented to
the user via a specialised text-editor and associated viewers (e.g. the document
outline view). These ‘views’ support various actions (the 1controller’ aspect),
most importantly text editing and script management. Communication with
the prover is handled via the PGIP Gateway module, which converts between
internal command and event objects, and PGIP messages. This module also
handles establishing proof sessions, and maintains a model of the prover’s state,
which is necessary to properly implement actions such as undo.

Fig. 7. PG/Eclipse system architecture.

There are also several parts of PG/Eclipse that sit outside the editing loop,
and are not shown in Fig. 7. Most important of these are the views giving feed-
back on the session: the Current State View, an error log view, and a session log
view. These views simply listen to the event traffic generated by the PGIP Gate-
way, and display appropriate portions of it. Other aspects of PG/Eclipse not
illustrated here are the symbol table editor, the teaching tool, and the preference
system.

12

5.3 Parsing

PG/Eclipse provides tools that use information gleaned from the structure of
the script (and stored in the Document Objects). However it also supports free
form text edits – which can wreak arbitrary changes to a script’s structure. This
requires re-parsing following all user edits – something which could seriously
interfere with editing unless it can be done very fast. We solve this problem by
dividing parsing into two phases.

In the first phase, a fast lexer is used to perform syntax highlighting and to
break scripts into smaller partitions as the user is typing. This uses a simple
scanning algorithm, and is based on Eclipse’s standard classes.

In the second phase, the PGIP mark-up structure is obtained using a ‘lazy’
parser. Typically, the Lazy Parser module will act as a go-between, and the
actual parsing will be done by the prover or another outside process (c.f. Fig.
7).12 The lazy parser is not fast enough to be run as the user types. Instead it
is run as needed in response to specific user commands (such as evaluating a
script).

5.4 Converting Isabelle to use PGIP

Adapting a prover to use PGIP (and hence the PG/Eclipse interface) can be
done either within the prover or via a PGIP wrapper. The main work (besides
XML wrapping and unwrapping, which can be done using standard libraries) is
building a parser for the prover’s scripting language. For many proof languages,
this should be a straightforward task. Converting Isabelle presented more of a
challenge due to the complex and extensible nature of it’s syntax.

It was decided to build the parser component within Isabelle. While straight-
forward in principle, this turned out to be harder than expected. Isabelle/Isar
interprets scripts using a mix of abstract parsing and operational semantics, and
there were difficulties with parsing proof scripts independently of their execution:
the Isabelle code uses functional combinators to build combined parse-execute
functions that were hard to unravel.

We expect that this will usually be easier to do in other systems (and
PG/Kit also supports standalone parsing components).

5.5 Displaying prover output

There are two facilities available for attractively displaying output from the
prover. Firstly, the output uses the same symbol support as the text-editor,
allowing it to contain mathematical symbols. Secondly, the output is displayed
using an embedded html display widget, and can be formatted in arbitrary ways
via an XSL style-sheet. The default style-sheet provides pretty-formatting (e.g.
colouring of free vs. bound variables) for the PG Markup Language (PGML).

12 Although our implementation also allows for a Java-based parser to be used, if one
is available, which would be more efficient.

13

This is a sub-protocol of PGIP, which can be used to mark-up display messages.
PGML combines lightweight mark-up for terms with meta-information on how
terms should be displayed.

6 Related work

A notable exception to the rule that theorem provers have poor front-ends is
Theorema, a theorem prover built on top of Mathematica [7]. This provides it
with an excellent user-interface for entering and viewing mathematical expres-
sions. However this is also a weakness, as Mathematica is proprietary software
with closely-guarded source code. This means its GUI cannot really be extended,
and the Theorema system cannot be made freely available. The TeXMacs editor
has a similar GUI [17], and is both more extensible and an open source project.
Although originally intended as a WYSIWYG latex editor, it can perform script-
ing (and there are projects to develop TexMacs-based interfaces for Omega and
Coq). An added advantage of TexMacs is that it supports converting a proof
into a Latex paper.

Various systems already exist for script management (e.g. PG/Emacs, or
the PCoq interface for Coq [1]). However, these offer less functionality than
PG/Eclipse, and do not provide a satisfactory solution to the problem of han-
dling different provers.

There are several efforts to publish formalised mathematical content, includ-
ing Mizar [22], HELM [2], MoWGLI [16], Logosphere [19], and the XML format
OMDoc [15]. OMDoc explains the semantical content of logical terms, which
goes beyond the PG/Kit. It would be interesting to consider an extension of
our protocols to support OMDoc exchange, although we would not want to force
the underlying provers to implement OMDoc. The MathWeb project builds on
OMDoc, providing a standardised XML-RPC interface to a range of automated
provers (Otter, Spas, etc.) [27]. It does not have support for interactive systems
though (partly because it has no inherent concept of a proof state or a proof
session). This makes it a valuable possible partner to Proof General.

The most closely related work is that done within the PG/Kit framework.
The 2nd author has developed a PGIP-based version of PG/Emacs, whilst
the 3rd author is working on a PGIP-based ‘proof desktop’, where theories and
proofs are built up using graphical actions such as drag-and-drop. There is also a
broker component in that can act as a middle-man between a collection of PGIP-
equipped provers and interfaces [10]. This should lead to increasingly flexible
ways to develop proofs.

7 Future work

There are many possible lines for future development.
Firstly, we want to use the Eclipse framework to further explore the analogy

between theory development and software engineering. There are several ideas –
such as code folding (which makes large files more navigable by allowing blocks of

14

a proof script to be hidden (folded away)), refactoring (i.e. support for renaming
and reorganising sections of code), and pre-emptive type checking – which could
usefully be applied to proof development tools.

7.1 Proof Planning support

We can also go beyond adapting program development tools. One promising line
of work is on using interactive proof planning to construct proof scripts.Proof
planning is a powerful backwards-reasoning technique based on capturing expert
knowledge of proof structures. Moreover, proof-planning systems can include
automatic search and automatic analysis of failed proof attempts [9]. We are
currently working with Lucas Dixon on integrating IsaPlanner (an Isabelle based
proof-planner) with PG/Eclipse [11]. This should lead to a PGIP-based API
for generic proof-planner support. The proposed UI for this is:

1. The user asks for help on how to tackle an unsolved goal. This can be the
current goal, but it could also be any goal in the script which is marked
as unsolved. For example, in the script shown in the top half of Fig. 7.1,
the user selects to apply IsaPlanner to solve the ‘sorry’ (which marks an
unsolved goal in Isabelle) via a right-click activated context menu.

2. PG then uses the ‘goto’ command to process or undo the script as necessary
(so that the prover is at the appropriate point in the script), and then calls
the planner.

3. The planner responds with a list of suggestions, comprising possible changes
to the script. At the simplest level this could be a list of steps to try, but
it could also include advice on lemma-speculation, or generalisations that
might be easier to prove ([9]).

4. The user can then select one of these suggestions, or ignore them. If a sug-
gestion is selected, then the proof script text is edited accordingly (leading
in our example to the script shown in the bottom half of Fig. 7.1).

Often a proof plan will include unsolved sub-goals, as happens in the example
shown in Fig. 7.1. In this case, the process can be repeated if desired. This modus
operandi allows the user to switch seamlessly back and forth between free-form
text-editing and using a proof planner.

Note that this could be a valuable idea to transfer to IDE based program-
ming. The closest existing analogue is the idea of ‘programming templates’;
fragments of code which can be used to help build up programs (e.g. a for loop,
or a standard widget initialisation method). Proof planning is considerably more
powerful.

7.2 Longer term aims

The PG/Kit framework should provide a good platform for developing a vari-
ety of ideas to enhance and improve interactive theorem provers. Ideas we are
considering include:

15

Fig. 8. A partial Isabelle proof is extended using a proof-planner.

– Greater support for mathematical layouts (e.g. fractions).

– Diagrams provide intuitive ways of representing and reasoning about many
domains. They are ubiquitous in mathematics texts, but hardly used in the-
orem provers.13 Those provers that do use diagrams (e.g. HyperProof [6]
or Dr.Doodle [25]), are currently very domain specific, and not suitable for
serious mathematical research. It would be a major improvement to develop
support for diagrammatic editors and views that would allow them to be
used as part of proof texts.

– Supporting formal proofs that utilise multiple provers. This requires trans-
lation mechanisms, which are inherently logic-specific (or worse, specific to a
2-prover combination). It also requires great care if the guarantee of sound-
ness is to be preserved. Nevertheless, there are some standards which might
make this feasible (e.g. Otter syntax is understood by many 1st order the-
orem provers). This goal would probably be realised by a link-up with the
MathWeb project.

– User-friendly enhancements to proof languages. The Proof General frame-
work already partially separates the proof language seen and edited by the
user (the ‘user level language’) from that seen by the broker/prover (which
uses PGIP). Thus this framework is well suited to allowing user level proof
languages to be modified without having to re-program the underlying the-
orem prover. This could be used to support productivity-enhancing features

13 Apart from proof trees, which – whilst valuable as an interactive representation –
are notable for their complete absence from textbooks.

16

such as Latex-style macros.14 More ambitiously, we could look at allowing
some use of natural language in proof scripts.

8 Conclusion

The lack of good interface and development tools is one factor holding back the
use of interactive provers. PG/Eclipse attempts to redress this, drawing heavily
on the analogy between formal proof and programming. We have outlined the
main features of the system, and given details on how these were implemented.

An important aspect of the system is that it is based on the PG/Kit frame-
work. This framework is designed to aid the development of both provers and
proof-interfaces by providing a clear separation between them. Modularisation is
especially important in this domain, where – inspite of the relatively small size
of the community – there are a range of target applications and a diverse wealth
of systems. Eventually, we hope that implementers of both new and existing
proof systems will have a compelling reason to add PGIP support to their sys-
tems to access powerful front-ends. On the other end, we hope that the PG/Kit
will stimulate development of a wider range of interface tools. Such tools could
be developed as Eclipse plugins – extending PG/Eclipse– or as stand-alone
components.

Although the benefits of separating provers from interfaces are large, ulti-
mately this separation can only be achieved by the community acting together.
We hope that PG/Eclipse will provide a good starting point for this.

8.1 State of the project

An alpha-release of PG/Eclipse is now available. It can be downloaded from
http://proofgeneral.inf.ed.ac.uk/kit/wiki. The latest version of Isabelle now sup-
ports PGIP (due to work by the 2nd author), and is available from [14]. Devel-
opers interested in using Proof General for other provers should contact the
authors. We also welcome contact from researchers interested in working with
us on future directions.

Acknowledgments: D.Winterstein was supported by a 2004 Eclipse Innovation
Grant awarded by IBM. D.Aspinall benefited from support provided by the MRG
project (IST-2001-33149) which is funded by the EC under the FET proactive
initiative on Global Computing. C.Lüth does it for love.

References

1. A. Amerkad, Y. Bertot, L. Rideau, and L. Pottier. Mathematics and proof pre-
sentation in Pcoq. In Proceedings of Proof Transformation and Presentation and
Proof Complexities (PTP’01), 2001.

14 Macros would be easy to develop within the PG/Eclipse framework. However,
since there is not a well-defined usage for macros in proof scripts, we do not want to
commit to a macro-language without further investigation.

17

2. A. Asperti, L. Padovani, C. S. Coen, and I. Schena. HELM and the semantic math-
web. In R. J. Boulton and P. B. Jackson, editors, Theorem Proving in Higher Order
Logics TPHOLs 2001, volume 2152 of Lecture Notes in Computer Science, pages
59–74. Springer, 2001.

3. D. Aspinall. Proof General: A generic tool for proof development. In S. Graf and
M. Schwartzbach, editors, Tools and Algorithms for the Construction and Analysis
of Systems, LNCS 1785, pages 38–42. Springer, 2000.

4. D. Aspinall, H. Goguen, T. Kleymann, and D. Sequeira. Proof General system
documentation, 1999-2004. Available at http://proofgeneral.inf.ed.ac.uk/doc.

5. D. Aspinall and C. Lüth. Commentary on PGIP. Available from
http://proofgeneral.inf.ed.ac.uk/kit/, September 2003.

6. J. Barwise, J. Etchemendy, and G. Allwein. Hyperproof. CSLI Lecture Notes.
University of Chicago Press, 1994.

7. B.Buchberger, T.Jebelean, F.Kriftner, M.Marin, E.Tomuta, and D.Vasaru. A sur-
vey on the theorema project. In W.Kuechlin, editor, Proceedings of ISSAC’97
(International Symposium on Symbolic and Algebraic Computation). ACM Press,
1997.

8. Y. Bertot and L. Théry. A generic approach to building user interfaces for theorem
provers. Journal of Symbolic Computation, 25(7):161–194, Feb. 1998.

9. A. Bundy. Planning and patching proof. In Artificial Intelligence and Symbolic
Computation (AISC 2004). Springer, 2004.

10. C. L. David Aspinall and D. Winterstein. A framework for interactive proof, 2004.
11. L. Dixon and J. Fleuriot. Isaplanner: A prototype proof planner in isabelle. In

19th International Conference on Automated Deduction, Lecture Notes in Artificial
Intelligence. Springer, 2003.

12. Eclipse homepage: eclipse.org. See http://www.eclipse.org.
13. L. Friendly. The design of distributed hyperlinked programming documentation.

In International Workshop on Hypermedia Design ’95, 1995.
14. Isabelle home page. See http://www.cl.cam.ac.uk/Research/HVG/Isabelle/.
15. M. Kohlhase. OMdoc: Towards an OpenMath representation of mathematical

documents. Available from http://www.mathweb.org/omdoc/.
16. MoWGLI. mathematics on the web: Get it right by logics and interfaces.

http://www.mowgli.cs.unibo.it/.
17. L. R. Philippe Audebaud. Texmacs as authoring tool for formal developments. In

D. Aspinall and C. Lüth, editors, User Interfaces for Theorem Provers UITP’03,
volume 103 of Electronic Notes in Theoretical Computer Science, 2003.

18. RELAX NG xml schema language, 2003. Home page at http://www.relaxng.org/.
19. C. Schürmann, F. Pfenning, M. Kohlhase, N. Shankar, and S. Owre. Logosphere.

a formal digital library. http://www.logosphere.org/, 2003.
20. S. Shavor, J. D’Anjou, S. Fairborther, D. Kehn, J. Kellerman, and P. McCarthy.

The Java Developer’s Guide to Eclipse. Addison-Wesley, 2003.
21. B. Shneiderman. Designing the User Interface. Addison-Wesley, 1997.
22. A. Trybulec et al. The mizar project, 1973. See web page hosted at

http://mizar.org, University of Bialystok, Poland.
23. D. von Oheimb and T. Nipkow. Machine-checking the java specification: Proving

type-safety. In Formal Syntax and Semantics of Java, pages 119–156, 1999.
24. C. Wedler. Emacs package X-Symbol. Available from http://x-

symbol.sourceforge.net, 2003.
25. D. Winterstein. Dr.doodle: A diagrammatic theorem prover. In Automated Rea-

soning: Second International Joint Conference (IJCAR 2004). Springer, 2004.

18

26. S. Wolfram. Mathematica: A System for Doing Mathematics by Computer.
Addison-Wesley, 1991.

27. J. Zimmer and M. Kohlhase. System description: The mathweb software bus for
distributed mathematical reasoning. In 18th International Conference on Auto-
mated Deduction (CADE 18). Springer, 2002.

19

