
A Framework for Meta-level Control in Multi-Agent Systems

Anita Raja
Department of Software and Information Systems

The University of North Carolina at Charlotte
Charlotte, NC 28223

anraja@uncc.edu

Victor Lesser
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003
lesser@cs.umass.edu

Abstract

Sophisticated agents operating in open environments must make decisions that efficiently trade off
the use of their limited resources between dynamic deliberative actions and domain actions? This is the
meta-level control problem for agents operating in resource-bounded multi-agent environments. Con-
trol activities involve decisions on when to invoke and the amount to effort to put into scheduling and
coordination of domain activities. The focus of this paper is how to make effective meta-level control de-
cisions. We show that meta-level control with bounded computational overhead allows complex agents
to solve problems more efficiently than current approaches in dynamic open multi-agent environments.
The meta-level control approach that we present is based on the decision-theoretic use of an abstract
representation of the agent state. This abstraction concisely captures critical information necessary for
decision making while bounding the cost of meta-level control and is appropriate for use in automatically
learning the meta-level control policies.

Keywords: Multi-Agent Systems, Bounded Rationality, Meta-level Control Architecture

1 Introduction

Open environments are dynamic and uncertain. Complex agents operating in these environments must rea-
son about their deliberations in real-time. Deliberative control actions include scheduling domain-level
actions and coordinating with other agents to complete tasks requiring joint effort. These deliberations may
involve computation and delays waiting for arrival of appropriate information. Furthermore, new tasks can
be generated by agents at any time. Tasks have deadlines, where completing the task after the deadline
could lead to lower or no utility. We define meta-level control as the ability of complex agents operating in
open environments to sequence domain and deliberative actions to optimize expected performance. Meta-
level control supports decisions on when to accept, delay, or reject a new task; when it is appropriate to
negotiate with another agent; whether to renegotiate when anegotiation task fails; how much effort to put

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357543769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

into scheduling when reasoning about a new task; and whetherto reschedule when actual execution perfor-
mance deviates from expected performance. These decisionsinfluence each other and affect the amount of
resources available for future computations. The intent ofthis paper is to show that a meta-level reason-
ing component with bounded and small computation overhead can be constructed such that it significantly
improves the overall performance of agents in a cooperativemulti-agent system. Further, we show that
appropriately abstracting the agent state is key to the development of the meta-level control component and
that such abstraction can be the basis for automatically learning meta-level control policies.

A problem with most single-agent and multi-agent systems [4, 19, 23, 29, 35, 58] is that they do not
explicitly reason about the cost of deliberative computation because they assume all deliberative computa-
tions are always done and always done in the same way. Thus, most systems, have no way to trade off the
resources used for deliberative actions and domain actions. An agent is not performing rationally if it fails
to account for all the costs involved in achieving a desired goal. Failure to account for all costs could poten-
tially lead to agents taking actions that are without operational significance [43]. Taking the entire cost of
computation into account leads to what Simon calls procedural rationality, Good refers to as type II rational-
ity [13] and what Russell and Wefald refer to as bounded rationality [37]. An agent exhibits such bounded
rationality if it maximizes its expected utility given its computational and other resource limits. If significant
resources are expended on making this meta-level control decision, then ”meta-meta”-level decisions have
to be made on whether to spend these resources on meta-level control. However, if the meta-level reasoning
process has a small computational overhead, there is no needfor explicit meta-meta level reasoning. In this
work, we avoid infinite regress of the meta-level control problem by ensuring that the meta-level reasoning
process has a small and bounded computational overhead.

Meta-level control can be viewed as a sequential decision problem. The essence of sequential decision
problems is that decisions that are made now can have both immediate and long-term effects; the best current
action choice depends on the types of future situations the agent will face and the action choices that have
to be made at those future decision points. For instance, theresource-bounds of the agent cause the current
meta-level action choices to affect the resources available to future action choices. Effective meta-level
control also needs to use past performance information to make predictions about the future to make non-
myopic decisions at each decision making point. This is in contrast to myopic decision making which tries
to optimize only the next state of the system. Some of the characteristics of the meta-level problem in this
work that make it difficult are the complexity of the information that characterizes the state of the agent
and other agents it interacts with; variety of responses with differing costs and parameters available to the
situation; deadlines associated with these tasks; high degree of uncertainty caused by the non-deterministic
arrival of tasks and outcomes of primitive domain actions; consequence of decisions are often not observable
immediately and may have significant down-stream effects. To our knowledge, meta-level control for such
a complex agent environment has not been studied.

In our work, each agent will have its own meta-level control component and the meta-level control policy
will be computed offline. The problem environment is cooperative as each agent has its individual goals to
achieve and some of these goals require cooperation of otheragents. The agents are trying to maximize the
sum of the utilities attainable by the multi-agent system asa whole. The following assumptions are made in
this paper:

• The agents are cooperative and will prefer alternatives that increase social utility/quality even if it is
at the cost of decreasing local utility.

• An agent may concurrently pursue multiple high-level goalsand completing a goal derives utility for
the system or agent. The high-level goals are generated either by sensing internal event triggers or by

2

receiving requests for assistance from other agents.

• The high-level goals must often be completed by a certain time in order to achieve any utility.

• It is not necessary for all high-level goals to be completed in order for an agent to derive utility from
its activities, and partial satisfaction of a high-level goal is sometimes permissible while trading-off
the amount of utility derived for decrease in resource usage.

• The overall objective of the system or agent is to maximize the utility generated over some finite time
horizon. Although a fixed horizon is used in the experiments,this information is not provided to the
agents. This was deliberately done to equip the agents to operate in domains and environments with
indefinite horizons (an unknown finite horizon).

To equip the agents with the ability to perform this type of meta-level control, we augment the clas-
sic agent architecture [36] with meta-level control that reasons about the deliberative actions (also called
control actions) and alternative ways of performing them. Figure 1 describes the meta-level control agent
architecture. The arrival of percepts trigger the meta-level control layer to determine the tasks which the
agent desires to pursue. The agent’s control layer determines how these chosen tasks will be processed and
mapped into action sequences.

AGENT

ENVIRONMENT

Percepts

Actions

Control Layer

Scheduler
1

*** ***Scheduler
M

Neg Type
1

Neg Type
N

FailureEffectors

Meta-Level Control
Layer

Figure 1: Meta-level control architecture for a bounded rational agent

The three classes of deliberative actions discussed in thispaper are: information gathering actions,
planning/scheduling actions and coordination actions. The first type of deliberative action is information
gathering which can be of two kinds:gathering information about the environment; anddetermination of
complex state features. The environmental information gathered by an agent including information about the
state of other agents, is used by its meta-level controller to determine the relevant control actions. These ex-
ternal information gathering actions do not use significantlocal processor time but they delay the meta-level
deliberation process because of the end-to-end delay of getting information from other agents. However,
information gathering that involves determination of complex state features of the agent can involve a sig-
nificant amount of local computation. These features, for instance, can compute detailed timing, placement
and priority information about the primitive actions whichhave to be executed to complete the agent’s
tasks. The agent must make explicit meta-level control decisions on whether to gather complex features and
determine which complex features are appropriate.

The second type of deliberative action involves planning and scheduling. Planning is the process in
which the agent uses beliefs about actions and their consequences to search for solutions to one or more

3

high-level tasks (goals) over the space of possible plans. It determines which domain actions should be taken
to achieve the tasks. Scheduling is the process of deciding when and where each of these actions should be
performed. In this paper, planning is integrated with scheduling. The agent’s scheduling decisions involve
choosing which subset of these high-level goals to pursue and how to go about achieving them. The meta-
level control decision is to decide whether to invoke a scheduler, which scheduler to invoke, and how much
resources to invest in the scheduling process. Finally, thethird type of deliberative action, coordination,
is the process by which a group of agents achieve their tasks in a shared environment. In this research,
coordination is the inter-agent negotiation process that establishes commitments on finish times of tasks
or methods done by one agent in the context of constraints of another agent’s activities. The meta-level
control decisions on coordination involve choosing the tasks that require coordination, deciding whether to
coordinate with another agent and how much effort to spend oncoordination. We make the simplifying
assumption that results of coordination are binding and that other agents will not decommit from their
commitments at later stages. We believe that as we build moreadvanced agents operating as a group in less
predictable real-time environments, reasoning about agent activities from a meta-level perspective will be
crucial for effective agent operation.

The paper is structured as follows: We first present the meta-level agent architecture which can support
reasoning about costs at all levels of the decision making process; various meta-level decisions that need to
be made; and the state information necessary to make these decisions. A description of high-level features
that capture the state information concisely while bounding the size of the state space is also provided. We
then describe a formal model of the problem with an emphasis on the sequential decision making process that
is involved. We discuss the difficulty in using this formal model for this complex problem which motivates
our approximate solution method which capitalizes on the ability to model and use an abstract representation
of the state. We then describe two strategies based on hand-generated heuristics: the Naive Heuristic Strategy
and the Sophisticated Heuristic Strategy. They differ in the amount of environmental information available
as part of the system state. These strategies use the high-level features that will be provided to the meta-
level learning strategy. Snapshots of the meta-level reasoning process for specific exogenous events are also
presented. The performance of the hand-generated strategies provide a sanity check on the effectiveness
of the state features to allow for effective meta-level control. Based on the positive results of the previous
section, we show that a reinforcement learning strategy based on the abstract state features can be used
to learn meta-level control policies within a reasonable number of learning episodes. These policies are
shown to be as effective as those that are hand-generated. Wethen conclude the paper with a review of the
important ideas presented in the paper and experimental results and briefly discuss future work.

2 An Agent Architecture with Meta-Level Control

Meta-level control is the process of optimizing an agent’s performance by choosing and sequencing domain
and control activities. In this section we present a classicagent architecture augmented with a meta-level
control component. This includes a description of the interaction among the various components in the
architecture and the agent’s ability to reason about control costs as first class entities. A high-level repre-
sentation of the state which captures the critical information while bounding the computation required to
process the state is also described.

We will describe the role of meta-level control in the agent architecture by concentrating on the control
flow among the various components (see Figure 2). In this architecture, the control components such as the
schedulers, negotiation components and execution subsystem interact with the meta-level control (MLC)
component. The MLC is invoked when certain exogenous or internal events occur (e.g. the request by

4

another agent to perform a task for it). Both the meta-level and control components are involved in the agent
decision making process. There are a number of data structures which help keep track of the agent’s state.
The NewTask List contains the tasks which have just arrived at the agent from the environment. The Agenda
List is the set of tasks which have arrived at the agent but thereasoning about how to achieve the tasks has
been delayed. They have not been scheduled yet. The ScheduleList is the set of high-level tasks chosen to
be scheduled and executed. The Execution List is the set of primitive actions which have been scheduled to
achieve the high-level tasks and maybe in execution or yet tobe executed. Examples of the decision making
process corresponding to particular agent states are provided later in the section.

The meta-level is invoked when a new task arrives at the agent, even if the agent is in the midst of
executing another task. The execution subsystem is invokedwhenever the agent has to act upon the envi-
ronment. These actions may or may not have immediate rewards. When an action completes execution,
the execution subsystem sends the execution characteristics to the meta-level controller which is also the
monitoring subsystem.

Meta-Level
Controller

Agenda List

Execution List

NewTask
List

Schedule
List

Simple
Scheduler

Complex
Scheduler

NegMech1

NegMech2

New task
arrives

New task

Call
 Scheduler

Delay
Task

Drop
Task

ScheduleSchedule

TaskSet,
CriteriaTaskSet,

Criteria

Execution
Subsytem

Components

Data

Data Flow

Key:

Executable
Action

Execution
Results

Coordinate with
other agent

Approve
Negotiation

Approve
Negotiation

Execute
Negotiation

Action

Send
delayed

tasks

Figure 2: Control flow in meta-level control agent architecture

The control layer may consist a number of schedulers and negotiation protocols. For the purposes of
our discussion, we consider two schedulers, simple and complex, and two negotiation protocols that differ
in their performance profiles.

Simple Scheduler:The simple scheduler is invoked by the meta-level controller and receives the task
structure and goal criteria as input. It selects the most appropriate schedule for the current context from a
set of pre-computed task schedules. This choice does not take into account other tasks that could be simul-
taneously scheduled with this task. When an agent has to schedule a task but doesn’t have the resources or
time to call the complex domain-level scheduler, the pre-computed information about the possible schedules
of the task structure can be used to provide a reasonable but often non-optimal schedule. The agent gathers
knowledge about all tasks that it is capable of executing by performing off-line analysis on each task. This
off-line process constructs potential schedules in the form of linear sequences of primitive actions. Each

5

sequence has associated performance characteristics suchas expected quality distribution, expected dura-
tion distribution, and expected duration uncertainty for achieving the high level tasks. These performance
characteristics are discovered by systematically searching over the space of objective criteria. The task ab-
straction hides the details of these schedules and providesonly the high level information necessary to make
meta-level choices.

Complex Scheduler: The domain level scheduler depicted in the architecture is an extended version
of the Design-to-Criteria (DTC) scheduler [54]. Design-to-Criteria (DTC) scheduling is the soft real-time
process of finding an execution path through a hierarchical task network such that the resultant schedule
meets certain design criteria, such as real-time deadlines, cost limits, and utility preferences. Casting the
language into an action-selecting-sequencing problem, the process is to select a subset of primitive actions
from a set of candidate actions, and sequence them, so that the end result is an end-to-end schedule of an
agent’s activities that meets situation specific design criteria. If the meta-level action is to invoke the complex
scheduler, the scheduler component receives the task structure, objective criteria and a set of scheduler
parameters as input and outputs a satisficing schedule as a sequence of primitive actions. The complex
scheduler, in contrast to the simple scheduler, can reason about and schedule multiple tasks simultaneously.
A detailed description of the scheduler parameters are provided later on in this section.

Negotiation Protocols:There are two types of negotiation protocols [57]:NegMech1andNegMech2.
The choice of the exact negotiation protocol will depend on the relative gain of doing the associated task and
the likelihood of the other agent doing the task. NegMech1 isa single-shot negotiation protocol that works
in an all or nothing mode. A single proposal is sent out and single response is received. It is inexpensive but
has a lower probability of success than the other negotiation protocol. NegMech2 is a multi-step negotiation
protocol which tries to achieve a commitment by a sequence ofproposals and counter-proposals until a
consensus is reached or time runs out. It is more expensive than the single-shot protocol because of the
computation and communication overhead. It, however, has ahigher probability of success.

We will now discuss how the architecture equips the agent with the capability to adapt to changing
conditions in an unpredictable environment. This architecture accounts for computational and execution
cost at all three levels of the decision hierarchy: domain, control and meta-level control activities. The cost
of domain activities is modeled directly in the task structures which describe the tasks. Domain activities are
reasoned about by control activities like scheduling and coordination. Performance profiles of the various
control activities are used to compute their costs and are reasoned about by the meta-level controller. Meta-
level control activities in this architecture are modeled as activities with small yet non-negligible costs which
are incurred by the computation of state features which facilitate the decision-making process. These costs
are accounted for by the agent, whenever events trigger meta-level activity. The state features and their
functionality are described in greater detail below. This MLC architecture is an open architecture in that the
modules belonging to the various layers can be replaced by modules with better performance characteristics
and the advantages of the architecture described below willstill hold true [34].

There are five types of event triggers that require meta-level decision making in our framework.

1. Arrival of a new task from other agents or the external environment.

2. Presence of a task in the current task set that requires negotiation with a non-local agent1.

3. Failure of a negotiation to reach a commitment.

1Another agent in the multi-agent system that owns the task ormethod that enables a task or method in the local agent of
concern. These tasks and methods are called non-local tasksand non-local methods respectively.

6

4. Domain action completes execution requiring a check to see if there is a significant deviation of online
schedule performance from expected performance.

5. Decision to schedule a new set of tasks or to reschedule existing tasks.2

These particular event triggers were chosen because they occur frequently in the domain described in
this paper. It is our view that most meta-level decisions in other multi-agent applications [34] could be
mapped into one of these five event trigger classes.

In order to illustrate the meta-level control decision making process, we describe a simple scenario
consisting of two roversRoverAandRoverB. Rovers are unmanned vehicles equipped with cameras and a
variety of scientific sensors for the purpose of planetary surface exploration. The discussion here will focus
on the various meta-level questions that will have to be addressed byRoverB. Figure 3 describesAssist
Sample Collection, also called taskS0which is performed byRoverA; Analyze Rock, also called taskT0,
andExplore Terrain, also called taskT1, which are the tasks performed byRoverB; as well as the non-local
enables relationship that exists betweenRoverAandRoverB.

Figure 3: TaskAssist Sample Collectionbelongs to RoverA; TasksAnalyze RockandExplore Terrainbelong
to RoverB

In this example, each top-level task, as described in the TÆMS task description language [7], is decom-
posed into two executable primitive actions. In order to achieve the taskAnalyze Rock, RoverBmust execute
both primitive actionsGet To Rock LocationandFocus Spectrometer on Rockin sequence. All primitive
actions in TÆMS calledmethods, are statistically characterized in two dimensions: quality and duration.
Quality is a deliberately abstract domain-independent concept that describes the contribution of a particular
action to overall problem solving. Thus, different applications have different notions of what corresponds to
model quality. The sequence is denoted by the enables arrow between the two actions and the min quality
attribution factor (which denotes a conjunction operator)states that the minimum of the qualities of the two
actions will be attributed to theAnalyze Rocktask. To achieve the taskExplore Terrain, RoverBcan execute
one or both primitive actionsExamine TerrainandCollect Sampleswithin the task deadline and the quality
accrued for the task will be cumulative (denoted by thesumfunction).

RoverAis equipped with a storage compartment whileRoverBis not. TheCollect Samplesmethod
requiresRoverAandRoverBto coordinate:RoverBhas the ability to pick up the soil sample and put it
in RoverA’s storage compartment. This relationship between the two agents is denoted by the non-local

2This meta-level control decision is triggered as a consequence of one of the four decisions mentioned above.

7

enablesfrom RoverA’s Arrive at Location (N5)method toRoverB’s Collect Samplesmethod. Utility and
duration distributions for each primitive action are provided.

To illustrate the trade-offs involved in the meta-level decision making process, we frame the meta-level
questions for theArrival of new task event trigger in the context of the rover example. We then describe
the cost/benefit trade-offs. In the interests of space, we refer the readers to [33] for the cost/benefit trade-offs
for the other four meta-level event triggers as well as detailed time-line execution trace of a sample run of
the example.Event Trigger: Arrival of a new task from the environment.
Meta-Level Question: ShouldRoverBschedule a new task immediately at the time it became known or
postpone scheduling to sometime in the future or drop that particular instance of the task.
Benefit: If the new task has low expected utility, its deadline is veryclose and there is a high probability
of a high utility task arriving in the future, then it should be discarded. This meansRoverBchooses not to
expend its limited resources on a low priority task and instead will wait for a future high priority task. If
the incoming task has very high priority, in other words, theexpected task utility is very high and it has a
relatively close deadline, thenRoverBshould override its current schedule and schedule the new task im-
mediately. If the current schedule has average utility thatis significantly higher than the new task and the
average deadline of the current schedule is significantly closer than that of the new task, then reasoning
about the new task should be postponed till later.
Cost: There is the cost associated with this meta-level control decision. This is a small, fixed cost as de-
scribed in the next section. Additionally, if the new task isscheduled immediately regardless of its expected
utility or deadline, then its possible that the opportunitycost3 of scheduling that task can be very high.
Scheduling the new task has an associated cost in time units in addition to costs for dropping established
commitments if the previous schedule is significantly revised or completely dropped. These costs can be
diminished or avoided completely if the decision about the new task is postponed to later or completely
avoided if the task is dropped.

We now describe how the MLC handles the five events and their corresponding set of possible action
choices. Each of the external events and corresponding meta-level decisions has an associated decision tree.
The external action triggers a state change. The response actions, execution of domain action or complex
feature computation, are also modeled in the decision tree.We use the rover example to illustrate the state
representation for theArrival of a new taskandPresence of task requiring coordination in current task set
event triggers. We refer the reader to [33] for details relating to the rover example for the remaining event
triggers.

Arrival of a new task: When a new task arrives at the agent, the meta-level controlcomponent has to
decide whether to reason about it later; drop the task completely; or do scheduling-related reasoning about
an incoming task at arrival time and if so, what type of scheduling - complex or simple. The decision tree
describing the various action choices named A1-A8 is shown in Figure 4. Scheduling actions have costs
with respect to scheduling time and decommit costs of previously established commitments if the previous
schedule is significantly revised or completely dropped. These costs are diminished or avoided completely
if scheduling a new task is postponed to a later convenient time by adding it to the agenda of unscheduled
tasks [A5] or completely avoided if the task is dropped [A1].If a task is of high priority relative to other
tasks in execution or on the agenda, the meta-level controller might decide to use the complex scheduler to
schedule the task [A3]. If the new task is of high priority andthe currently executing schedule is also of
high priority, the meta-level controller could decide to reschedule all the tasks using the detailed scheduler
[A4]. If there are tight constraints on scheduling the task,the simple scheduler could be invoked [A2]. The

3Resources that could have been invested in future high priority tasks are instead invested in lower priority tasks leading to lower
overall utility gains.

8

meta-level controller could also determine that it does nothave enough information to make a good decision
and will consequently choose to spend more time in collecting features which will help with the decision
making process [A6]. The meta-level controller can hence choose to spend more resources to make a better
informed decision. After getting the additional state information, the meta-level control will choose from
one of the five possible choices described earlier (A7-A11).4

New task

arrives

Use detailed scheduler

Get new

features

on all tasks including
partially executed tasks

Use simple scheduler

Drop task

on new task

Drop task

[A2]

[A1]

[A3]

[A4]

[A5]

[A6]

[A9]

[A8]

on new task

Add new task
to agenda

Add task to agenda

Use detailed scheduler Legend

state

 transition
function

 executable
 action

 external
event

on new task
Use simple scheduler

Use detailed scheduler
on new task

Use detailed scheduler
on all tasks including
partially executed tasks

[A7]

[A10]

[A11]

Figure 4: Decision tree when a new task arrives

To illustrate this control process, instances of the state of agentRoverBand the corresponding decision
choice made by the meta-level controller are provided. These are hand-generated rules specifying the re-
quired type of meta-level control decisions. These will be represented as rules in the heuristic strategies and
learned automatically in the reinforcement learning strategy.

An example of the above described decision process occurs when theRoverBis in StateS1. It represents
the situation at time 2.RoverBis in a wait state doing nothing when a new taskAnalyze Rock, which arrives
at time 1 with a deadline of 40, is added to the NewTaskList.RoverB’smeta-level controller is invoked. All
the other lists are empty andRoverBhas not executed any task and has accrued zero utility. Basedon its
current state,RoverB’smeta-level control decision is toCall the Detailed Scheduler.

State S1:
CurrentTime : 2
NewTaskList : AnalyzeRock< 1, 40 >; AgendaList :φ
ScheduleList:φ; ExecutionList :φ
InformationGathered :φ
Utility of current schedule : 0.0; Duration of current schedule : 0.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 0.0;
Total Utility accrued : 0.0
Meta-Level Control Decision :Call Detailed Scheduler

4The cost of computing complex features for the experiments described in this work is assumed to be low when compared to the
cost of scheduling actions. This was done to test the effectiveness of these features on all the decision choices that succeed them.
The cost of the computing complex features can be significantly higher than the cost of other control actions in certain domains.
In those domains, it might be appropriate to reduce the number of options available after the information gathering action. For
instance, if the cost of simple scheduling is 2 units and the cost of computing complex features is 4 units, it might be sensible to
always execute the more expensive complex scheduling instead of simple scheduling, after computing complex features.

9

Here is another instance of the meta-level control decisionprocess whereRoverBis in stateS5and it is
time 16. A new taskExplore Terrainarrives at time 15 with a deadline of 80. The new task is added to the
NewTask List andRoverB’smeta-level controller is invoked.RoverBis in the midst of executing method
Focus Spectrometer on Rock, which has executed for 2 time units. The current schedule has gained 6.0 utility
points andRoverBhas gained a total of 6.0 utility points also. Based on its current state,RoverB’smeta-
level control decision is toDelay Explore Terrain taskand to add it to the Agenda List instead.RoverBwill
continue execution of methodFocus Spectrometer on Rock. When execution of this method is completed
and if the NewTask List is empty,RoverBwill automatically make meta-level control decision on allthe
tasks in the Agenda List.

State S5:
CurrentTime :16
NewTaskList :ExploreT errain < 15, 80 >; AgendaList :φ
ScheduleList:φ; ExecutionList :{FocusSpectrometeronRockexe}
InformationGathered :φ
Utility of current schedule : 6.0; Duration of current schedule : 8.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 2.0;
Total Utility accrued : 6.0
MLC Decision :Add New task to agenda

Event Trigger 2: Presence of task requiring coordination incurrent task set: Suppose there is a subtask
or method in the currently scheduled task set which either requires a non-local method to enable it or should
be sub-contracted out to another agent. The local agent has to decide whether it is worthwhile to even initiate
negotiation and if so, which negotiation protocol to use. The decision tree associated with this meta-level
decision is described in Figure 5. This decision is made using theMetaNeginformation described below.

Figure 5: Decision tree on whether to negotiate and effort

Coordination actions are split into an external information gathering phase and a negotiating phase, with
the outcome of the former enabling the latter. The negotiation phase can be achieved by choosing from a
family of negotiation protocols [57]. The information gathering phase facilitates the negotiation phase and is
modeled as aMetaNegmethod in the task structure (see Figure 6) and the negotiation methods are modeled
as individual primitive actions. Thus, reasoning about thecosts of negotiation is done explicitly, just as it is
done for regular domain-level activities.

TheMetaNegmethod belongs to a special class of domain actions which request an external agent for
a certain set of information that does not require any significant use of local processor time. It queries the

10

other agent and returns information such as expected utility of other agent’s schedule, expected finish time
of other agent’s schedule, and amount of slack in the other agent’s schedule. This information assists the
meta-level controller in its decision making process.

D 100% 8

D 100% 2

sum_all

enablesenables
Neg. Task

exactly_one

NegMech1 NegMech2

Q 95% 1 5% 0
D 80% 3 20% 5

Q 80% 3 20% 0
D 100% 3

Q 100% 0.01

Q 100% 12

Explore
Terrain’

Terrain

samples

Q 90% 10 10% 12
D 90% 10 10% 12

sum

Terrain

T1

Explore

Examine

Meta−Neg. collect

Figure 6: Task ExploreTerrain modified to include meta-negotiation action

The following is an instance whereRoverBis in a state namedS11at time 33. The Information Gathering
Action (MetaNeg) has completed execution. The following information is returned by the information
gathering action: AgentRoverAis executing high utility tasks, has deadlines which are faroff and has a
high amount of slack. Based on this information.RoverB’s meta-level controller is invoked and it uses the
above information to decide thatRoverBshould negotiate withRoverAusing the NegMech2 protocol about
the finish time ofRoverA’smethodArrive at Location.

State S11:
CurrentTime :33
NewTaskList :φ; AgendaList :φ
ScheduleList:φ; ExecutionList :{NegMech2, ExamineTerrain, CollectSamples}
InformationGathered :< HIGH, HIGH, HIGH

Utility of current schedule : 0.0; Duration of current schedule : 1.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 2.0;
Total Utility accrued : 18.0
MLC Decision :Choose NegMech2 and continue

Event Trigger 3: Negotiation process fails to reach a commitment:Suppose there is a subtask or method
in the currently scheduled task set which has been negotiated about with a non-local agent and suppose the
negotiation fails. The local agent should decide whether torenegotiate and if so, which protocol should it
use. Figure 7 describes the associated decision tree.

Event Trigger 4: Domain action completes execution: When a primitive action is completed, the meta-
level controller checks to see if the real-time performanceof the current schedule is as expected. If the actual
performance deviates from expected performance by more than the available slack time, then a reschedule

11

Negotiation

fails

No ReNegotiation

Renegotiate
using NegMech 1

using NegMech2

[C1]

[C2]

[C3]Renegotiate

Legend

state

 executable
 action

 external
event

 transition
function

Figure 7: Decision tree on whether to renegotiate upon failure of previous negotiation

may be initiated. A decision to reschedule helps in two ways:it would preclude the agent from reaching
a bad state in which too many resources are spent on a schedulewith bad performance characteristics;
and it would allow for meta-level activities to be processedwithout the detrimental effects such processing
would have on domain activities if slack is minimal. Hansen’s work [14] on meta-level control of anytime
algorithms using a non-myopic stopping rule is described inSection 5. It finds an intermediate strategy
between continuous monitoring and not monitoring at all. Itcan recognize whether or not monitoring is
cost-effective, and when it is, it can adjust the frequency of monitoring to optimize utility. Thus, the decision
to reschedule in this paper can be viewed as a non-myopic stopping rule within Hansen’s work. The decision
tree associated with this meta-level decision is describedin Figure 8.

Scheduled Action

completes

	Continue with

original schedule

Call reschedule

[E1]

[E2]

Legend

state

 transition
function

 executable
 action

 external
event

Figure 8: Decision tree when a domain action completes execution

Event Trigger 5: Invocation of the detailed scheduler: The parameters to the planner/scheduler are
scheduling effort (E) and slack amount (S). They are determined based on the current state of the agent
including characteristics of the existing schedule and theset of new tasks that are being scheduled. Theeffort
parameter determines the amount of computational effort that should be invested by the planner/scheduler.
The parameter can be set to eitherHIGH, where a high number of alternative plans/schedules are produced
and examined orLOW, where pruning occurs at a very early stage and hence few alternative plans/schedules
are compared, reducing the computational effort while compromising the optimality of the schedule. The
effort is proportional to the expected utility and complexity (in terms of number of possible alternative plans
) of the task. Although, the effort can be any discrete value,two qualitative values are used in the current

12

implementation of the agent. These two values were sufficient to show the importance of varying the effort
based on problem solving context. Depending on the problem domain, one could increase and decrease the
number of feature values and the decision process will handle them appropriately.

The slackparameter determines the amount of flexibility available inthe schedule so that unexpected
events can be handled by the agent without it detrimentally affecting its expected performance characteris-
tics. The amount of slack to be inserted depends on three factors, the amount of uncertainty in the schedule,
the importance of the currently scheduled tasks and the expected amount of meta-level control activity that
will occur during the duration of the schedule. The scheduler determines the amount of uncertainty in the
schedules it builds and automatically inserts slack to handle highly uncertain primitive actions. The meta-
level control component uses information about the arrivalof future tasks to suggest slack amounts to the
scheduler. Three slack values of 10%, 30% and 50% of the totalavailable time are used in the current im-
plementation of the agent. These values, like in the case of the effort, can be varied as needed. The decision
tree describing the various action choices for this meta-level decision is shown in Figure 9. Each of the
choices in the decision tree are combinations of possible effort and slack values.

(Re)schedule

call

E=1, S=10%

E=2, S=30%

E=2, S=10%

E=1, S=50%

E=2, S=50%

E=1, S=30%

Legend

state

 transition
function

 executable
 action

 external
event

Figure 9: Decision tree for invoking the scheduler

In the introduction, we presented meta-level control as a sequential decision making process. In the next
sub-section, we describe a formal model of the meta-level control problem which frames it as a sequential
decision making process.

2.1 A Formal Model of Meta-level Control Decision Problem

1. LetSbe the set of states of the agent andsi ǫ S is a particular state of the agent. Since this is a finite
horizon problem,i = 0, 1, 2, 3 . . . , n

2. A is the set of possible control actions anda ǫ A is the action taken by the agent in statesi.

Control actions do not directly affect the utility achievedby the agent since they affect only the agent’s
internal state. These actions consume time and have only indirect effects on the external world.

Control actions are followed by the execution of utility achieving domain actions. These domain
actions are directly the result of control actions in the current and preceding states. These domain
actions are not explicitly represented in this model since they are encased by the control actions.

3. A policy π is a description of the behavior of the system. A stationary meta-level control policy
π : S → A specifies, for each state, a control action to be taken. The policy is defined for a specific

13

environment.

An environment is defined by three distributions describingarriving task type, task arrival rate and
task deadline tightness.

4. π(si, a) is the probability of an agent taking an actiona in statesi under policyπ.

5. sj is the new state reached after executing control actiona followed by the execution of corresponding
domain actions that followa.

6. R(si, a, sj) is the reward obtained in statesj as a consequence taking control actiona in statesi and
then executing the domain actions that followa.

The reward is the cumulative value of the domain actions which are completed between the state
transitions. Since the values achieved by the tasks have associated uncertainties, the reward function
is represented as a distribution.

7. Uπ(si) is the utility of statesi under policyπ.

8. P (sj |si, a) is the probability that agent is in statesj as a result of taking actiona in statesi.

The above model defines a finite Markov decision process [2].
According to decision theory, an optimal action is one whichmaximizes the agent’s expected utility. For

a finite-horizon problem, this is given by

E[Uπ(si)] = Eπ{
n

∑

j=1

γj R(si, a, sj)}

. γǫ[0, 1) is a discount-rate parameter which determines the present value of future utility gains.
This can be computed as follows

E[Uπ(si)] =
∑

a

π(si, a)
n

∑

j=1

P (sj|si, a))[R(si, a, sj) + γ E[Uπ(sj)]]

The meta-level control problem for an individual agent is tofind a best meta-level control policyπ∗

which maximizes the expected return for all states. This optimal policy can be determined by using dynamic
programming [2] or reinforcement learning [48] methods. Reinforcement learning methods like Q-learning
will implicitly determine the transition probability model and reward function defined previously. If the
model were to be used as defined above for a sophisticated agent architecture, finding the optimal meta-level
control policy would be computationally intractable because of the size of the state space. The quantitative
values of the agent’s state features contributes to the explosion of the state space. We feel that independent
of the approach used to formulate meta-level control, the ability to appropriately abstract the agent state is
key to the development of an effective meta-level control component.

In this paper, we describe a computationally feasible approach to handle the above described complexity.
The following are the salient features of our approach:

1. We identify state features that are effective approximations of the system state. This helps bound the
size of the state set making the problem tractable.

14

2. We test the effectiveness of this approximate representation of system state using two classes of hand-
generated heuristics for meta-level control. These heuristics use the approximate system state in their
decision making. We show that these strategies that leverage meta-level control perform better than
strategies without any meta-level control.

3. We then use these features to define the state of a meta-level Markov Decision Process for various
environments and use reinforcement learning techniques toestimate the probability transition and
reward model. The resulting MDP is evaluated and a non-myopic meta-level control policy for agents
operating in complex environments is determined.

2.2 Agent State

The meta-level controller uses the current state of the agent to make appropriate decisions. In Section 2.1, we
discussed that the use of quantitative feature values wouldmake computing the optimal meta-level control
policy intractable. Consequently in this work, a distinction is made between the current state of the agent
(also called real state) and the approximate representation of the state and the use of qualitative values which
capture only the critical information about the current state.

The real state of the agent has also the detailed informationrelated to the agent’s decision making and
execution. It accounts for every task which has to be reasoned about by the agent, the execution characteris-
tics of each of these tasks, and information about the environment such as types of tasks arriving at the agent,
frequency of arrival of tasks and the deadline tightness of each of these tasks. The real state is continuous
and complex. This leads to a combinatorial explosion in the real state space even for simple scenarios. The
complexity of the real state is addressed by defining an abstract representation of the state which captures
the important qualitative state information relevant to the meta-level control decision making process. There
are eleven features in the abstract representation of the state and each feature can have one of four different
values. So the maximum size of the search space is411 = 222, which is about a million states. Framing this
problem in the MDP framework would result in a search space ofmillion states out of which only states in
the order of a few thousand are actually encountered becausethe feature values are not independent of each
other and act as constraints on each other and the specifics ofthe environmental dynamics. For instance
when the utility goodness of the current schedule is HIGH andthe deadline tightness of the current schedule
is TIGHT, the amount of slack in local schedule is usually LOW. It never takes on the value HIGH.

The following are some characteristics of the system state features, the environment and its dynamics.

1. The status of tasks currently being processed and those which need future processing, e.g. New-
TaskList, AgendaList, ScheduleList, ExecutionList.

2. Environmental model, e.g. Probability of arrival of specific types of tasks and their deadline tightness.

3. Internal influences on action choice, e.g. Slack in the schedules.

4. External influences on action choice, e.g. Utility of tasks of other agents, Deadline Tightness of tasks
belonging to other agents, Slack in schedules of other agents

5. Real time performance characteristics, e.g. Deviation from expected performance, Cost of decommit-
ing from existing tasks

These “real” features are used to construct the abstract state representation that will permit effective
meta-level control for the domain described in this paper.

15

FeatureID Feature Complexity

F1 Utility goodness of new task Simple
F2 Deadline tightness of a new task Simple
F3 Utility goodness of current schedule Simple
F4 Deadline tightness of current schedule Simple
F5 Arrival of a valuable new task Simple
F6 Amount of slack in local schedule Simple
F7 Amount of slack in other agent’s schedule Simple
F8 Deviation from expected performance Simple
F9 Decommitment Cost for a task Complex
F10 Relation of slack fragments in local schedule to new taskComplex
F11 Relation of slack fragments in non-local agent to new taskComplex

Table 1: Table of proposed state features, their description and category

2.3 Abstract Representation of the State

The overhead of meta-level control activities is accountedfor by the cost of state feature computation.
The eleven features, which are of two categories - simple features where the reference values are readily
available by simple lookups and complex features which involve computation to determine their values.
Simple features help the agent make informed decisions on executable actions or whether to obtain more
complex features to make the decisions. An example of a simple feature would be the availability of slack
in the current schedule. If there is a lot of slack or too little slack, the decision to accept the new task or drop
the new task respectively is made. However, if there is a moderate amount of slack, the agent might choose
to obtain a more complex feature, namely computing the relation of slack fragments which is described
below.

Complex features usually involve computations that take time that is sufficiently long that, if not ac-
counted for, will lead to incorrect meta-level decisions. The computation of the complex features is cumber-
some since they involve determining detailed timing, placement and priority5 characteristics and provide
the meta-level controller with information to make more accurate action choices. For instance, instead of
having a feature which gives a general description of the slack distribution in the current schedule i.e. there
is a lot of slack in the beginning or end of the schedule, thereis a feature which examines the exact charac-
teristics of the new task and makes a determination whether the available slack distribution will likely allow
for a new task to be included in the schedule. The agents make explicit meta-level control decisions based
on whether to gather complex features and determine which complex features are appropriate.

In Section 2.1, a formal definition of the meta-level controlproblem was presented. The abstract repre-
sentation of the state defined in this section will be the states in the Markov Decision process model. The
control actions defined in section 2 will be the actions in theMDP model. The probability transition function
and the reward function will be determined by estimating them from data gathered in previous system runs.

Table 1 enumerates the features of the abstract representation of the state used by the meta-level con-
troller.

F1: Utility goodness of new task: It is a simple feature which describes the utility of a newlyarrived
task based on whether the new task is very valuable, moderately valuable or not valuable in relation to

5Priority accounts for quality and deadline.

16

other tasks being performed by the agent. The assigned feature values are HIGH, MEDIUM and LOW
respectively.

F2: Deadline tightness of a new task: It is a simple feature which describes the tightness of the
deadline of a particular task in relation to expected deadlines of other tasks. It determines whether the new
task’s deadline is very close, moderately close or far in thefuture. The assigned feature values are TIGHT,
MEDIUM, LOOSE respectively.

F3: Utility goodness of current schedule: It is a simple feature describes the utility of the current
schedule normalized by the schedule length and is based on information provided by the scheduler. This
feature determines whether the current schedule is very valuable, moderately valuable or not valuable with
respect to other tasks and schedules. The assigned feature values are HIGH, MEDIUM and LOW respec-
tively.

F4: Deadline tightness of current schedule: It is a simple feature which describes the deadline tight-
ness of the current schedule in relation to expected deadlines of tasks in that environment. If there are
multiple tasks with varying deadlines in the schedule, the average tightness of their deadlines is computed.
It determines whether the schedule’s deadline is very close, moderately close or far in the future. The
assigned feature values are TIGHT, MEDIUM, LOOSE respectively.

F5: Arrival of a valuable new task: It is a simple feature which provides the probability of a high
utility, tight deadline task arriving in the near future by using information on the task characteristics like
task type, frequency of arrival and tightness of deadline. It can take on the values of HIGH, MEDIUM,
LOW.

F6: Amount of slack in local schedule: It is a simple feature which provides a quick evaluation of the
flexibility in the local schedule. Availability of slack means the agent can deal with unanticipated events
easily without doing a reschedule. The cost of inserting slack is that the available time in the schedule is not
all being used to execute domain actions. This feature can take on the values of HIGH, MEDIUM, LOW.

F7: Amount of slack in other agent’s schedule: This is a simple feature used to make a quick evalu-
ation of the flexibility in the other agent’s schedule. This is used when an agent is considering coordinating
with the other agent to complete a task. This feature can takeon the values of HIGH, MEDIUM, LOW.

F8: Deviation from expected performance: This is a simple feature which uses expected performance
characteristics of the schedule and the current amount of slack (F6) to determine by how much actual per-
formance is deviating from expected performance. The feature can take on the values of HIGH, MEDIUM,
LOW.

F9: Decommitment Cost for a task: This is a complex feature which estimates the cost of decommiting
from doing a method/task by considering the local and non-local down-stream effects of such a decommit.
This feature can take on the values of HIGH, MEDIUM, LOW.

F10: Relation of slack fragments in local schedule to new task: This is a complex feature which
determines the feasibility of fitting a new task given the detailed fragmentation of slack in a particular
schedule. It involves resolving detailed timing and placement issues. This feature can take on the values of
HIGH, MEDIUM, LOW.

F11: Relation of slack fragments in non-local agent to new task: This is a complex feature which
determines the feasibility of fitting a new task given the detailed fragmentation of slack in a particular non-
local schedule. This feature can take on the values of HIGH, MEDIUM, LOW.

Each of the state features takes on qualitative values. The quantitative values such as utility of 80 versus
utility of 60 are classified into these qualitative buckets (high versus medium utility) in a principled way as
shown later in this section. As will be seen in the experimental results in later sections, these qualitative
measures provide information that can be exploited to make effective meta-level control decisions.

17

2.4 Computation of State Features

As described above, our goal is to bound the size of the state space. This is done by making the high
level state features time independent and also by eliminating the specifics of tasks and their performance
characteristics from the state. We adopt a qualitative representation for the state feature values and consider
the characteristics of task sets instead of individual tasks.

The following describes the mechanism that exploits knowledge about the agent tasks and environmental
characteristics to determine the high-level features of the agent state.

• The multi-agent system M is a collection of n heterogeneous agents. Each agentα has a finite set of
tasksT which arrive in a finite interval of time.NΨ is the total number of tasks that have arrived at
the system from the start to current timeΨ.

• A taskt ǫ T upon arrival has an arrival timeATt and a deadlineDLt associated with it. A taskt can
be achieved by one of various alternative ways (plans)t1, t2, t3...tk.

• A plantj to achieve taskt is an executable sequence of primitive actionstj = {m1,m2, ...mn}. Each
plan tj has an associated utility distributionUDtj and duration distributionDDtj .

Example: ExamineTerrainA and ExamineTerrainB are two alternate plans to achieve task
ExamineTerrain.
(25% 22 50% 50 25% 100) is the duration distribution ofExamineTerrainA, which means that plan
ExamineTerrainA takes 22 units of time25% of the time, 50 time units50% of the time and 100
time units25% of the time. AlsoExamineTerrainA has a utility distribution of(10% 30 90% 45).
ExamineTerrainB has a duration distribution(50% 32 30% 40 20% 45) and utility distribution of
(25% 20 75% 30).

UDExamineTerrainA = (10% 30 90% 45)

DDExamineTerrainA = (25% 22 50% 50 25% 100)

UDExamineTerrainB = (25% 20 75% 30)

DDExamineTerrainB = (50% 32 30% 40 20% 45)

• Ψt is the time required for scheduling a taskt if it is chosen for scheduling.

Example :Ψt is 2 units6 if simple scheduling is chosen. If detailed scheduling is chosen, the cost is 4
units if the scheduling set has less than 5 primitive actionsto evaluate, 12 units if the scheduling set
has between 5 and 10 primitive actions to evaluate and 18 units if the scheduling set has more than 10
primitive actions.

System execution is single threaded allowing for one primitive action at the most to be in execution
at any time. If a meta-level action is required when a primitive actionm is executing, the execution is
interrupted and control is turned over to the meta-level controller. When the meta-level control action
is completed, execution ofm is always resumed7.

6The number of time units is the statistical average of the durations obtained from offline simulations of executing the task using
the particular deliberative mode. It is described in terms of simulation ticks.

7This is an artifact of the simulation environment. In order for the simulator to keep accurate records of utility accumulated, it
requires that executing actions should be fully completed.

18

• Υm is the remaining time required for primitive actionm to complete execution.

• The earliest start timeESTt for a taskt is the arrival timeATt of the task delayed by the sum ofΥm,
the time required for completing the execution of the actionm which is interrupted by a meta-level
control event andΨt, the time required for scheduling the new task.

ESTt = ATt + Υm + Ψt

• The maximum available durationMDt for a taskt is the difference between the deadline of the task
and its earliest start time.

MDt = DLt − ESTt

Example: SupposeExamineTerrain arrives at time 45 and has a deadline of 100. Also suppose
the execution of methodm is interrupted by the arrival ofExamineTerrain andm still needs about
8 time units to complete execution. Suppose the time spent onschedulingExamineTerrain is 5
units. Then the maximum available duration for taskExamineTerrain is 100 − 45 − 8 − 5 = 42
time units. The meta-level controller is aware that the entire range of the maximum available duration
is not always available solely for the execution of this task. When the maximum available duration
ranges of a number of tasks overlap, the maximum duration available for a particular task is effectively
reduced.

• Given a taskt and its maximum available durationMDt, the probability that a plantj meets its
deadlinePDLtj is the sum of the probabilities of all values in the duration distribution of plantj

which are less than the task’s maximum available duration.

PDLtj =
n

∑

j=1

pj

100
: ((pj% xj) ǫ DDtj) ∧ (xj < MDt)

Example: Suppose the maximum available duration for taskExamineTerrain is 42. There is only
one duration value inDDExamineTerrainA which has a value less than 42 and that value is 22 and
occurs 25% of the time.

PDLExamineTerrainA =
25

100
= 0.25

There are two duration values inDDExamineTerrainB which have a value less than 42 and they are 32
and 40 which occur 50% and 30% respectively in the distribution.

PDLExamineTerrainB =
50 + 30

100
= 0.8

• The expected durationEDtj of a plantj , is the expected duration of all values in the duration distri-
bution of plantj which are less than the maximum available duration for the task.

EDtj =

∑n
j=1

pj

100
∗ xj

PDLtj
: ((pj% xj) ǫ DDtj) ∧ (xj < MDt)

Example: For the above constraint where the maximum available duration for taskExamineTerrain

is 42

EDExamineTerrainA =
(25

100
∗ 22)

0.25
= 22

EDExamineTerrainB =
(50

100
∗ 32 + 30

100
∗ 40)

0.8
= 35

19

• The expected utilityEUtj of a plantj, is the product of the probability that the alternative meets its
deadline and the expected utility of all values in the utility distribution of alternativetj.

EUtj =
n

∑

j=1

PDLtj ∗
pj

100
∗ xj : ((pj% xj) ǫ UDtj)

Example: When the maximum available duration for taskExamineTerrain is 42,

EUExamineTerrainA = 0.25 ∗
10

100
∗ 30 + 0.25 ∗

90

100
∗ 45 = 10.875

EUExamineTerrainB = 0.8 ∗
25

100
∗ 20 + 0.8 ∗

75

100
∗ 30 = 22

• Given the maximum available duration for a task, the preferred alternativeALTt for a taskt is the
alternative whose expected utility to expected duration ratio is the highest.ALTt is the alternative
which has the potential to obtain the maximum utility in minimum duration within the given deadline.

ALTt = tj :
n

max
j=1

EUtj

EDtj

Example: Suppose the maximum available duration for taskExamineTerrain is 42. Consider each
of ExamineTerrain’s alternative plans which were described earlier. PlanExamineTerrainA’s
expected utility to expected duration ratio is10.875

22
= 0.494 and planExamineTerrainB ’s expected

utility to expected duration ratio is22
35

= 0.629. So the alternative with the maximum expected utility
to expected duration ratio8 is ExamineTerrainB.

ALTExamineTerrain = ExamineTerrainB

.

• The utility goodnessUDt of a taskt (feature F1 in Table 1) is the measure which determines how
good a task’s preferred alternative is in relation to the preferred alternatives of all the other tasks
which arrive at the system.

The tasks with high utility are the tasks which are in the 66thpercentile (top 1/3rd) of the expected
utility to expected duration ratio of the task’s preferred alternative.

UDt =

HIGH,
EUALTt

EDALTt
is above the 66th percentile

MEDIUM,
EUALTt

EDALTt
is between the 66th and 33rd percentile

LOW, otherwise

Example: The utility goodness of taskExamineTerrain given a deadline of 100 and a maximum
available duration of 42 is22

35
= 0.628 which lies above the 66th percentile.UDExamineTerrain =

HIGH

8The assumption here is that there may be other tasks that can use the available time. If we add a model of opportunity cost, this
definition can be modified. This is an area of future work.

20

• The deadline tightnessTDt of a taskt (feature F2 in Table 1) measures the flexibility of the maximum
available duration. It determines how much unexpected meta-level activities and similar delays affect
the maximum available duration.Suppose a meta-level activity on average has an expected duration
of CML. The expected amount of time required for handling unexpected meta-level activitiesΩt,
during the execution of taskt, is computed as follows:

Ωt = CML ∗
NΨ

Ψ
∗ MDt

Example: Suppose the average time per meta-level activity is 2 units, 4 tasks have arrived at the agent
and the current time is 60.MDt is 42 as determined previously.ΩExamineTerrain = 2∗ 4

60
∗42 = 5.6

The amount of time expected to be spent on future meta-level activities is 5.6 units.

In order to determine if a given deadline is tight, theproposed maximum available duration, MDX
t

for a proposed scenarioX is computed. It is the maximum available duration which alsoaccounts for
the anticipated meta-level costs of future activities.

MDX
t = MDt − Ωt

Example: From the previous example, theMDX
ExamineTerrain = 42 − 5.6 = 36.4

The related parametersPDLX
ALT t

, EDX
ALT t

, EUX
ALT t

and the expected utility to expected duration

ratio
EUX

ALTt

EDX
ALTt

for the proposed scenario are also recomputed with respect to the redefinedMDX
t .

PDLX
ExamineTerrainB = 0.5, EDX

ExamineTerrainB = 32

EUX
ExamineTerrainB = 11.25, UDX

ExamineTerrain =
EUX

ExamineTerrainB

EDX
ExamineTerrainB

= 0.3451

The expected utility to expected duration ratio now falls below the 33rd percentile,

UDX
ExamineTerrain = LOW

TDt =

TIGHT, (UDt = HIGH) ∧ (UDX
t 6= HIGH

LOOSE, (UDt = HIGH) ∧ (UDX
t = HIGH)

MEDIUM,∀ other values of UDt, UDX
t

Example: Since(UDExamineTerrain = HIGH) ∧ (UDX
ExamineTerrain = LOW), the time spent on

unexpected meta-level control activities is detrimental to taskt’s utility gain, which in turn means its
deadline is tight.

TDExamineTerrain = TIGHT

• The high priority task set for an agentα HPTSα is the set of tasks whose utility goodness is HIGH
and deadline tightness is TIGHT.

HPTSα = {Tk} : (UGk = HIGH) ∧ (TDk = TIGHT)

Example:
HPTSA = {ExamineTerrain}

21

• The arrival rate of high priority tasks for an agentα, ARTα (feature F5 in Table 1), is the ratio of the
number of high priority tasks that arrive at the system to thetotal number of tasksn that have arrived
at the system.

ARTα =
|Tk|

n
: Tk ǫ HPTSα

• The probability of a high priority task arriving in the near futurePHTα depends on the arrival rate
of high priority tasks.The intuition behind this relation is that the characteristics of tasks that arrived
in the past can be used to predict the characteristics of tasks that will arrive in the near future. The
assumption made by the system that the past information can be used to predict the future is a valid
assumption since the environment is stationary for a finite-horizon.

For instance, ifARTα is less than 0.04 (arrival rate is less than 4%), thenPHTα is also low.

PHTα =

LOW, ARTα < 0.04
MEDIUM, 0.04 <= ARTα < 0.10
HIGH, ARTα >= 0.10

• The slack in the scheduleSLACKscur (used to compute features F6 and F7 in Table 1), is the total
amount of flexibility that should be inserted in the scheduleso that unexpected meta-level activities
and uncertainty in method execution durations of all the tasks being scheduled can be accommodated
without expensive rescheduling control actions.The slack is defined using a simple slack distribution
strategy, where the duration of each method in the schedule is extended by equal fractions of the total
slack.

SLACKscur =
∑

∀tǫscur

Ωt

The following sections will test the hypothesis that using this state information, the best sequence of
control and domain actions can be determined for each environment. The action sequence can either be de-
termined by a heuristic hand-generated rules as described in the next section or can be learned automatically
as described in Section 4.

3 Heuristic Strategies

We have discussed the reasons for the intractability of computing a meta-level control policy using the real
system state in Section 2.1. We also defined an approximate representation of the state that will control
the complexity of the meta-level control problem. In this section we validate the effectiveness of the ap-
proximate state representation using hand-generated heuristics for meta-level control. These hand-generated
heuristics will then be used as a baseline for evaluating theperformance of a reinforcement learning approach
that we propose to use to learn the meta-level control policies for different environments.

We address the three following questions: Does meta-level control lead to better performance in rational
agents situated in the domain described in this paper? Is it possible to construct a hand-generated meta-level
control policy based on the high-level state features described earlier for specific environments. Does this
hand-generated policy outperform a deterministic meta-level control policy?

Two heuristic strategies, the Naive Heuristic Strategy andthe Sophisticated Heuristic Strategy, that use
context sensitive rules for meta-level control are described. Both strategies use high-level state features and
they serve as a test-bed for the effectiveness of the state features for efficient meta-level control. The Naive

22

Heuristic Strategy (NHS) uses state-dependent hand-generated heuristics to determine the best course of
meta-level control action. The current state information will allow the meta-level controller to dynamically
adjust its decisions. The heuristics, however, are myopic and do not reason explicitly about the arrival of
tasks in the near future. The Sophisticated Heuristic Strategy (SHS), on the other hand, is a set of hand-
generated rules that use knowledge about task arrival models to predict the environment characteristics. The
agent’s environment is typically characterized by the expected utilities of the tasks, their deadline tightness
and frequency of arrival. In this work, the information on the three parameters is available to the SHS.
Though not implemented in the context of this paper, this information can be learned by the SHS by gath-
ering statistics over multiple runs. The meta-level controller can make non-myopic decisions by including
information about its environment in its reasoning process.

In the interests of space, we describe a simple example to differentiate the decision making process
between the two strategies and provide details of the SHS heuristics for theArrival of New Taskevent
trigger. We refer the reader to [33] where details of the NHS heuristic rules as well the SHS heuristics for
all five event triggers are described in detail. Table 2 and Table 3 describe SHS rules required to support
each of the actions on the new task in Figure 4 for theArrival of new taskevent trigger. For instance the first
row in the Table 2 describes the following rule: If new task has LOW utility goodness and TIGHT deadline;
HIGH probability of high priority tasks arriving in the nearfuture, then best action isDrop Task (A1). When
a feature is not specifically addressed in a rule, it is assumed that the feature can take on any of its domain
values. So in the above example the Current Schedule UtilityGoodness (CSUG) state feature can be HIGH,
MEDIUM or LOW and the rule would still hold true. We now describe an example that the decision making
process using NHS and SHS rules respectively. Consider the scenario where a new task arrives at the agent
at timet. The agent has to decide whether to delay the reasoning aboutthe task until later; never execute the
task (drop task); execute the task immediately at arrival time by calling for a reschedule action or add the
new task to the agenda. Now suppose an agent has to make a meta-level decision in the following context:
the utility of the new task is MEDIUM; the deadline tightnessof the new task is TIGHT; utility of current
task set is MEDIUM; and the deadline of the existing task is MEDIUM; and the probability of a high priority
task (HIGH utility, TIGHT deadline) arriving in the near future is HIGH. An agent equipped with NHS rules
would make the myopic decision toCall the Detailed Scheduler on All Lists (A4)as it does not have access
to the information about the probability of arrival of a highpriority task in the near future. This decision
implies that the agent is willing to incur the cost of interrupting the current schedule and reschedules the
current task and new task expecting that this would produce ahigher quality schedule. A second agent
equipped with SHS rules has access to the knowledge that there is a high probability of a high priority task.
The SHS rule in the third row of Table 2 prescribes that the meta-level control decision isDrop Task. This
implies that the new task will be dropped and the agent will continue execution of the current schedule until
the schedule completes execution or another meta-level decision is triggered. Given that the high probability
of arrival of a high priority task arriving in the near futurewill trigger a reschedule using both NHS and SHS
rules, the SHS decision would be the correct non-myopic choice in most environments as it would avoid the
cost of the first reschedule prescribed by the NHS rules.

3.1 Single-agent Experiments

This sub-section provides performance comparisons of fourdifferent strategies to single-agent meta-level
control: Naive Heuristic Strategy (NHS); Sophisticated Heuristic Strategy (SHS); Deterministic Strategy;
and Random Strategy in different types of problem environments. Specifically, we empirically validate the
advantage of using the heuristic strategies that dynamically adjust to context. We also show that knowledge

23

ID NTUG NTDL CSUG CSDL P MLC Decision

1 L T * * H Drop Task (A1)
2 L * H T * Drop Task (A1)
3 H/M M/T H/M M/T H Drop Task (A1)
4 H T L * * Simple Scheduler (A2)
5 L * - - L Simple Scheduler (A2)
6 L * * * * Simple Scheduler (A2)
7 H M * * M/L Detailed Scheduler (A3)
8 H T L T L Detailed Scheduler (A3)
9 H T L T L Detailed Scheduler on All Lists (A4)
10 H LS H M/LS L/M Add New Task to Agenda (A5)
11 M/L M/LS H * L Add New Task to Agenda (A5)

Table 2: SHS rules forArrival of New Taskevent trigger (Actions A1-A5). The column headers are ID =
Heuristic Rule Number; NTUG = New Task Utility Goodness state feature; NTDL = New Task Deadline
state feature; CSUG = Current Schedule Utility Goodness state feature; CSDL = Current Schedule Deadline
state feature; P = Probability of Arrival of High Priority Tasks in the near future state feature; MLC Decision
= Meta-level Control Action Choice. The column values are the following : H = HIGH; M = MEDIUM; L
=LOW; T = TIGHT; LS = LOOSE; * = all possible values; - = no value.

about the type of problem environment, specifically knowledge about the future, is advantageous.
We define a deterministic strategy as one that uses a fixed choice of meta-level action. When a new

task arrives, this strategy always chooses to perform complex scheduling on the new task along with the
tasks in the current schedule and tasks in the agenda. The scheduler is invoked with a fixed effort level of
high and fixed slack amount of 10% of the total schedule duration. The deterministic strategy also does
not automatically reschedule upon execution failure. The random strategy randomly chooses its actions
for each of the three single-agent meta-level control decisions: when to accept, delay or reject a new task,
how much effort to put into scheduling when reasoning about anew task and whether to reschedule when
actual execution performance deviates from expected performance. The following costs are assumed for
the experiments. The meta-level control actions have an associated cost of 1 time unit; the drop task and
delay task actions take 1 time unit also. These actions are designed to be very quick, yet they are actions
with costs. Hence they are assigned a duration of 1 simulation tick each. The call to the simple scheduler
costs 2 time units9 and the cost of computation of complex features costs 2 time units, the cost of detailed
scheduling tasks with less than five methods is 4 units, with less than ten methods is 12 time units and greater
than ten methods is 18 time units10. The duration of the control action is proportional to the effort level.
Actions requiring higher effort levels will require longerdurations.

The agents in the experimental test-bed were implemented using the Java Agent Framework (JAF)
framework [53] and situated in the Multi-Agent Survivability Simulator (MASS) environment [18]. In
order to randomly generate different types of problem environments, we implemented a task environment
generator that varied the following environment parameters.

9As defined earlier, the number of time units is the statistical average of the durations obtained from offline simulationsof
executing the task using the particular deliberative mode.

10The non-linear increase in processing time is due to the design of the heuristic complex scheduler. The Design-to-Criteria
scheduler is shown to work well for tasks with fewer than 10 primitive actions[54].

24

ID NTUG NTDL CSUG CSDL CSSL AGUG AGDL DC P MLC Decision

12 * * M/H LS/M * M/H LS/M * L Get More Features (A6)
13 * * M M L M M L/M * Drop Task (A7)
14 * * M/H M * M/H M * * Simple Scheduler (A8)
15 M/H M M/H M H * * * * Detailed Scheduler (A9)
16 H * H M H H * M * All Lists Detailed Scheduler (A10)
17 H LS H M M * * * * Add New Task to Agenda (A11)

Table 3: SHS rules forArrival of New Taskevent trigger (Actions A6-A11). The column headers are ID
= Heuristic Rule Number; NTUG = New Task Utility Goodness; NTDL = New Task Deadline; CSUG =
Current Schedule Utility Goodness; CSDL = Current ScheduleDeadline; CSSL = Slack in Current Sched-
ule; AGUG = Utility Goodness of tasks in Agenda; UGDL = Deadline Tightness of tasks in Agenda; DC =
Decommitment Cost; P = Probability of Arrival of High Priority Tasks in the near future; MLC Decision =
Meta-level Control Action Choice. The column values are thefollowing : H = HIGH; M = MEDIUM; L
=LOW; T = TIGHT; LS = LOOSE; * = all possible values; - = no value.

enables

min

sum

Q 100% 52
 D 100% 28

Q 50% 55 50% 50
D 90% 30 10% 32

Q 70% 70 30% 78
D 60% 27 40% 20

Q 90% 64 10% 68
D 90% 30 10% 32

Get Image

Choose Object Develop
Image

Capture Image
from angle 1

Capture Image
from angle 2

Capture Image
from angle 3

Figure 10: A complex task in a single agent environment

1. complexity of tasksc ǫ {simple(S), complex(C), combination(A)}

2. frequency of arrivalf ǫ {high(H),medium(M), low(L)}

3. tightness of deadlinedl ǫ {tight(T),medium(M), loose(L)}.

Complexity of tasks refers to the expected utilities of tasks and the number of alternative plans available
to complete the task. Typically, complex tasks have higher expected utility, higher expected durations and
a greater number of alternatives than simple tasks. A simpletask has two primitive actions and its structure
and number of possible alternatives is similar to the AnalyzeRock task (Figure 3) described in Section 2.
The utility distribution and duration distribution of a simple task is within a 5% range of the corresponding
distributions of AnalyzeRock. A complex task also has structure similar to that of GetImage task described
in Figure 10. It has between four and six primitive actions. The utility distribution and duration distribution
of a complex task is within a 5% range of the corresponding distributions of GetImage. The combination
value means that 50% of the tasks are simple and 50% are complex tasks.

The frequency of arrival of tasks refers to the number of tasks that arrive within a finite time horizon. The

25

Row# SHS NHS Deter. Rand.

1 AUG 205.49 192.10 121.90 89.97
2 σ 7.0 12.5 12.55 19.114
3 CT 20.37% 23.92% 39.27% 11.77%
4 RES 0% 14.53% 0% 50.56%
5 PTC 41.08% 39.64% 30.52% 21.56%
6 PTDEL 43.78% 49.0% 0% 11.49%

Table 4: Performance evaluation of four algorithms over a single environment AMM with a combination
of tasks, medium frequency of arrival and medium deadline tightness. Column 1 is row number; Column
2 describes the various comparison criteria; Columns 3-6 represent each of the four algorithms; Rows 1
and 2 show the average utility gain (AUG) and respective standard deviations (σ) per run; row 3 shows the
percentage of the total 500 units spent on control actions(CT); row 4 is percent of tasks rescheduled (RES);
Row 5 is the percent of total tasks completed (PTC); Row 6 is percent of tasks delayed on arrival (PTDEL)

resource contention among the tasks increases as the task frequency increases. Task arrival is determined
by a normal distribution withµ = 250 andσ2 = 35. When the frequency of arrival is low, about one to ten
tasks arrive at the agent in 500 time unit horizon; when the frequency is medium, between ten and fifteen
tasks arrive at the agent; and when the arrival frequency is high, fifteen to twenty arrive on average at the
agent. The tightness of deadline refers to the parameter defined in the previous section and it is task specific.
The resource contention is also proportional to the deadline tightness. If the deadline tightness is set to low,
the maximum available duration given to the task is between 120% and 150% of the expected duration of
the task; if the deadline tightness is set to medium, the maximum available duration given to the tasks is
between 100% and 120% of the expected duration of the task; and if the deadline tightness is set to high, the
maximum available duration is between 80% and 100% of the expected duration of the task. Environments
are named based on values of these three criteria in the ordermentioned above. For instance, environment
AMM is one that has a combination of simple and complex tasks (A), with medium frequency of arrival (M)
and medium deadline tightness (M).

The experimental results described in Table 4 show the performance of the various strategies in the
environment, AMM, which, as mentioned before, contains a combination of simple and complex tasks. The
frequency of task arrival in this environment is medium and ranges between 10 and 15 tasks in the 500 time
unit interval. The deadline tightness is also medium. Simple tasks have a minimum duration of 8 time units
and a maximum duration of 20 time units while complex tasks take a minimum duration of 50 time units
and a maximum duration of 120 time units. Also the utility gained by completing a single task can range
between 6 and 24 while the utility gained from a complex task is between 70 and 80. Each strategy was
evaluated over 300 runs and each run has an associated task arrival model, lasts 500 time units and has an
average of 15 meta-level control decision points per run.

Column 1 is row number; Column 2 describes the various comparison criteria; Columns 3-6 represent
each of the four algorithms. Rows 1 and 2 of the table describethe average utility gained (AUG) by each
of the strategies and the corresponding standard deviations. The heuristic strategies (SHS and NHS) signifi-
cantly (p< 0.05) outperform the deterministic and random strategies with respect to utility gain. This shows
that heuristic strategies that dynamically adjust their decisions to environmental state perform significantly
better than strategies that do not take state information into account in their decision making process.

SHS has about a 10% improvement in utility gain than NHS. Detailed analysis of the data shows that

26

NHS assigns incorrect amounts of slack in the schedule whichis required to handle unexpected meta-level
activities. This leads to frequent reschedule calls and an increase in time spent on control actions. The SHS
is able to allocate accurate amounts of slack because it has access to the task arrival model information and
is able to avoid unnecessary control actions (particularlyreschedules). This shows that knowledge about the
future allows an agent to make better meta-level decisions on time allocations.

Row 3 shows the percent of the 500 time units for each run that was spent on control actions (CT) and
row 4 shows the percent of tasks that were rescheduled (RES) per run in the midst of their execution. For
the above mentioned reason, NHS has a significant number of reschedules resulting in time being spent on
control actions instead of being spent the utility derivingdomain actions. Row 3 shows that the duration
spent on control actions by NHS is significantly (p< 0.05) higher than that of SHS. The deterministic
strategy does not automatically reschedule but invests a lot of time on control actions since the fixed strategy
is time-intensive. The random strategy spends the least amount of time on control (11.77%) because it
attempts relatively few tasks (there is a high probability of a task being dropped randomly upon arrival).

Row 5 is the percent of total tasks completed (PTC). This was found to be less than 50% for this
environment. This is because this environment is fairly dynamic (in terms of frequency of occurrence of
exogenous events) and has tight constraints (the deadlinesof task are of medium tightness) that limit the
number of tasks that can be successfully completed

Row 6 is percent of tasks delayed on arrival (PTDEL). Here tooabout 45% of the tasks are delayed in
case of the heuristic strategies signifying there is significant overlap among the tasks in terms of resource
usage. In other words, new tasks often arrive at the agent when the agent is busy with other tasks.

Environment
AMM AMT AHT ALM AML AHL ALL CLL

A
ve

ra
ge

 U
til

ity
 G

ai
n

0
20
40
60
80

100
120
140
160
180
200
220
240

RND DET NHS SHS

Figure 11: Average utility comparison between heuristic strategies and baseline strategies over 8 different
environments. The error bars are one standard deviation above and below each mean

We ran experiments for all 27 environments that were generated by the enivronment generator. The
results showed that meta-level control was advantageous ineight of these environments. Figure 11 shows
the utility comparisons over these eight environments. Theheuristic strategies (SHS and NHS), as in the
case of environment (AMM) described previously, significantly outperform (p<0.05) the baseline strategies
(Deterministic and Random) over all eight types of environments. In the discussion of the results, we
emphasize the characterisitcs of the environments that justify the cost of explicit meta-level control.

Table 5 provides the detailed information on the performance comparison. Columns 2-5 show the av-
erage utility gained by each of the four algorithms for that environment. Column 6 named p1 shows the
statistical significance (p-value) of SHS with respect to NHS. Column 7 named p2 shows the statistical

27

Environment SHS NHS Deter. Rand. p1 p2 p3

AMM 205.49 192.10 121.90 89.97 0.032 0.0001 0.0001
AMT 117.34 115.69 82.17 67.33 0.4391 0.0001 0.0001
AHT 124.80 123.96 61.77 86.20 0.6906 0.0001 0.0001
ALM 135.05 124.74 115.93 48.21 0.004 0.0001 0.0001
AML 231.44 218.07 140.80 105.16 0.0045 0.0001 0.0001
AHL 229.07 218.86 94.55 127.47 0.0024 0.0001 0.0001
ALL 151.31 145.03 130.80 51.76 0.2596 0.0001 0.0001
CLL 163.77 157.27 103.33 50.86 0.0643 0.0001 0.0001

Table 5: Utility comparisons over a number of environments.Columns 2-5 show the average utility gained
by each of the four algorithms for that environment. Column 6named p1 shows the statistical significance
(p-value) of SHS with respect to NHS. Column 7 named p2 shows the statistical significance of SHS with
respect to the deterministic algorithm. Column 8 named p3 shows the statistical significance of NHS with
respect to the deterministic algorithm.

significance of SHS with respect to the deterministic algorithm. Column 8 named p3 shows the statistical
significance of NHS with respect to the deterministic algorithm. It can be observed from the table that the
SHS strategy is significantly better than the NHS (p<0.05) in some environments (ALM, AML, AHL). All
three environments can be characterized as medium constrained environments. In environment ALM, the
arrival frequency is loosely constrained while the deadline tightness is MEDIUM. On detailed analysis of
the data, it was found that there were extended periods in which no tasks arrived at the agent and then there
would be burst of task arrivals. So information on the natureof future tasks allowed the agent to make
better decisions during those periods of resource contentions (caused by the medium deadlines). In the other
two environments, the deadline tightness was LOOSE while the arrival frequency was either MEDIUM and
HIGH. Since the tasks have loose deadlines, they can be processed whenever resources are available with-
out detrimentally affecting the utility. However since thearrival frequency is medium to tightly constrained,
there is a very high probability of overlapping tasks contending for resources. The arrival model informa-
tion will allow the agent to dynamically adjust its decisions on tasks and use the bounded resources in an
efficient way. It can be deduced that the arrival model information available to the SHS is advantageous only
in environments that are neither tightly constrained or loosely constrained.

The reason for the improved performance by the heuristic strategies when compared to the deterministic
and random strategies is found in Figure 12 which shows the percent of control time comparisons over the
same set of environments. As described in earlier, control actions do not have associated utility of their
own. Domain actions produce utility upon successful execution and the control actions serve as facilitators
in choosing the best domain actions given the agent’s state information. So resources such as time spent
directly on control actions do not directly produce utility. When excessive amounts of resources are spent
on control actions, the agent’s utility is reduced since resources are bounded and are not available for utility
producing domain actions.

The heuristic strategies use control activities that optimize their use of available resources (time in this
case). The deterministic strategy on the other hand always makes the same control choice, the expensive
call to the detailed scheduler, independent of context. Hence the deterministic strategy has higher control
costs, than the heuristic strategies and has less resources(time) to execute domain actions and accrue utility.
The random strategy has low control costs but it doesn’t reason about its choices leading to bad overall

28

Environment
AMT AHT ALM AML AHL ALL CLL SLL

A
ve

ra
ge

 P
er

ce
nt

 o
f C

on
tr

ol
 T

im
e

0

10

20

30

40

50

60

RND DET NHS SHS

Figure 12: Average percent control time comparison betweenheuristic strategies and baseline strategies
over 8 different environments

Environment# SHS NHS Deter. Rand.

AMM 20.37% 23.92% 39.27% 11.77%
AMT 24.95% 20.32% 36.59% 8.07%
AHT 35.26% 34.09% 55.82% 17.24%
ALM 10.11% 10.32% 14.42% 4.61%
AML 23.45% 22.73% 38.77% 12.12%
AHL 31.23% 28.73% 48.12% 18.11%
ALL 10.99% 10.44% 14.83% 4.82%
CLL 11.08% 10.99% 12.39% 4.29%

Table 6: Control time comparisons over a number of environments; Column 1 is the environment type;
Columns 2-5 represents the % of total time spent on control actions by each of the four algorithms for that
environment;

performance. Table 6 provides the details about the percentof total available time per episode (500 units)
that was spent on control actions.

Table 7 compares the percentage of tasks that were successfully completed by the four algorithms in
different environments. In tightly constrained environments like those with tight task deadlines (AMT,
AHT), the number of tasks completed is relatively low because often there aren’t enough resources to execute
the task and process all the external events also. In looselyconstrained environments like ALM, CLL and
ALL, task arrival is few and far between allowing the agent tocomplete one task successfully and to move
on to the next task.

3.2 Multi-Agent Experiments

An agent in a multi-agent setting not only makes decisions onthe three events described in the single agent
setup, but is extended to make decisions on tasks that cross agent boundaries. We provide performance
comparisons of the four different strategies to meta-levelcontrol: Naive Heuristic Strategy (NHS); Sophisti-
cated Heuristic Strategy (SHS); Deterministic Strategy; and Random Strategy within a multi-agent context.

29

Environment# SHS NHS Deter. Rand.

AMM 41.08% 39.64% 30.52% 21.56%
AMT 28.60% 27.51% 21.7% 19.87%
AHT 22.08% 21.28% 12.47% 13.97%
ALM 56.86% 56.66% 55.09% 22.15%
AML 45.11% 39.61% 21.14% 21.27%
AHL 33.80% 28.75% 22.0% 19.04%
ALL 65.12% 63.39% 52.84% 23.48%
CLL 76.95% 71.78% 28.11% 24.51%

Table 7: Comparison of percent of tasks completed over a number of environments; Column 1 is the en-
vironment type; Columns 2-5 represents the % of total time spent on control actions by each of the four
algorithms for that environment;

The experimental setup is similar to the single agent set up except for the fact that two more decisions are
added to the decision process, whether to negotiate with another agent about a non-local task and whether
to renegotiate if a previous negotiation falls through. These two new decisions specifically require coordi-
nation with another agent for completing the task. The following are the heuristics for the two additional
meta-level decisions. The NHS is a myopic variant of these heuristics. Table 8 describes SHS rules required
to support each of the actions in Figure 5 for thePresence of task requiring negotiationevent trigger. The
event occurs when theMetaNeginformation gathering action completes execution. Table 9describes SHS
rules required to support each of the actions in Figure 7 for theFailure of negotiationevent trigger.

ID NTUG NTDL NLUG NLDL NLS P(HPT) MLC Decision

1 L * H * L H/M Drop Negotiation and Reschedule (B1)
2 H * L * H L Choose NegMech1 (B2)
3 M * L/M * H L Choose NegMech1 (B2)
4 H M/LS L * H L/M Choose NegMech2 (B3)

Table 8: SHS rules forPresence of Task requiring Negotiationevent trigger. The column headers are ID
= Heuristic Rule Number; NTUG = New Task Utility Goodness; NTDL = New Task Deadline;NLUG =
Utility Goodness of Non-Local agent’s task set; NLDL = Deadline of Non-Local task set; NLS = Slack
in Non-Local schedule; P(HPT) = Probability of Arrival of High Priority Tasks in the near future; MLC
Decision = Meta-level Control Action Choice. The column values are the following : H = HIGH; M =
MEDIUM; L =LOW; T = TIGHT; LS = LOOSE; * = all possible values; -= no value.

Experimental results describing the behavior of two interacting agents is presented in Figure 13 and
Table 10. Performance comparison of the various strategiesin an environment, AMM, over a number
of dimensions are provided. The results show that the combined utilities of the two agents when using
the heuristic strategies is significantly higher than the combined utilities when using the deterministic and
random strategies. The utility obtained from using SHS is significantly higher than NHS and also 14%
more tasks are completed using SHS than the NHS. These preliminary results are encouraging since in this
specific environment, the performance of the multi-agent system supports the hypothesis of this paper.

We have now presented two context sensitive heuristic strategies: the Naive Heuristic strategy (NHS)
that uses myopic information to make meta-level control action choices; and the Sophisticated Heuristic

30

ID NTUG NTDL NLUG NLDL NLS P(HPT) MLC Decision

1 * T * * * * No ReNegotiation (C1)
2 M * L/M * H L Renegotiate using NegMech1 (C2)
3 H LS/M L * H L/M Renegotiate using NegMech2 (C3)

Table 9: SHS rules forFailure of Negotiationevent trigger. The column headers are ID = Heuristic Rule
Number; NTUG = New Task Utility Goodness; NTDL = New Task Deadline;NLUG = Utility Goodness of
Non-Local agent’s task set; NLDL = Deadline of Non-Local task set; NLS = Slack in Non-Local schedule;
P(HPT) = Probability of Arrival of High Priority Tasks in thenear future; MLC Decision = Meta-level
Control Action Choice. The column values are the following :H = HIGH; M = MEDIUM; L =LOW; T =
TIGHT; LS = LOOSE; * = all possible values; - = no value.

Environment
AMM

A
ve

ra
ge

 U
til

ity
 G

ai
n

0

20

40

60

80

100

120

RND DET NHS SHS

Figure 13: Average utility comparison between heuristic strategies and baseline strategies in a multi-agent
environment. The error bars are one standard deviation above and below each mean

strategy (SHS) that uses current state information and predictive information about the future to make non-
myopic action choices. A description of the decision rules used in each of these strategies is provided.
The experimental evaluation described in this section leadto the following conclusions : Meta-level control
reasoning is advantageous in resource-bounded agents in different types of environments; the high-level
features are good indicators of the agent state and facilitate effective meta-level control; the heuristic strate-
gies establish the positive effects of meta-level control in resource-bounded agents because they outperform
deterministic and random strategies; and predictive information about future arrival tasks is useful in some
environments and not in others.

4 Reinforcement Learning Strategy

Can an agent automatically learn meta-level control policies for specific environments based on the high-
level state information described in Section 2? Does this learned policy outperform the corresponding
hand-crafted policy for that environment as described in Section 3? These are the two questions addressed
in this section.

The high-level goal of this paper is to create agents which can maximize the social utility by successfully
completing their goals. These agents also necessarily havelimited computation, and detailed models of the

31

Row# SHS NHS Deter. Rand.

1 AUG 111.44 89.84 77.56 45.56
2 σ 2.33 6.54 12.45 15.43
3 CT 9.21% 8.09% 14.28% 7.15%
4 RES 0% 14.28% 19.93% 1.49%
5 PTC 71.32% 56.34% 54.17% 57.78%
6 PTDEL 8.8% 3.98% 0% 59.96%

Table 10: Performance evaluation of four algorithms for twoagents in a environment AMM with a com-
bination of tasks, medium frequency of arrival and medium deadline tightness. Column 1 is row number;
Column 2 describes the various comparison criteria; Columns 3-6 represent each of the four algorithms;
Rows 1 and 2 show the average utility gain (AUG) and respective standard deviations (σ) per run; row 3
shows the percentage of the total 500 units spent on control actions(CT); row 4 is percent of tasks resched-
uled (RES); Row 5 is the percent of total tasks completed (PTC); Row 6 is percent of tasks delayed on arrival
(PTDEL)

task environments are not readily available. Reinforcement learning is useful for learning the utility of
these control activities and decision strategies in such contexts. Section 4.1 describes the construction of a
Markov decision process-based [32] meta-level controllerwhich uses reinforcement learning techniques to
approximate an optimal policy for allocating computational resources. This approach to meta-level control
implicitly deals with opportunity cost as a result of the long-term effects of the meta-level decisions on
utility. Sections 4.3 describes the complexities of the issues faced by multi-agent reinforcement learning
agents. Experimental results describing the performance of the learned polices in both the single-agent and
multi-agent cases are provided.

4.1 Reinforcement Learning

Reinforcement Learning [1, 21, 49, 50, 48, 55, 56] is a mathematical framework used by agents to learn how
to map situations to actions so as to maximize a numerical reward signal. Supervised Learning (commonly
used in research in machine learning, statistical pattern recognition and artificial neural networks) is learning
from examples provided by a knowledgeable external supervisor. Reinforcement Learning is different from
supervised learning in that the agent does not learn what actions to take from a “supervisor”. Instead the
usual approach taken by reinforcement learning agents involves discovering which actions yield the most
reward by trying them out, associating expected reward values with different agent states, and using reward
values to choose actions.

Two key features of reinforcement learning are the exploration-exploitation trade-off and credit assign-
ment. A reinforcement learning agent, to maximize its reward, must prefer (exploit) actions which it has
tried in the past and found to be effective in producing rewards. But to discover such actions, the agent
has to try (explore) actions it has not selected before. The agent should be able to explore the action space
to make better action selections in the future while at the same time progressively favor those actions that
appear best.

The temporal credit assignment problem involves distributing rewards over a sequence of state-action
pairs that lead up to that reward. When actions are not rewarded immediately but receive a large positive
or negative reward some time later, it is called delayed reinforcement. Reinforcement learning algorithms
typically use a scheme for assigning the appropriate creditto all preceding state-action pairs after receiving

32

a delayed reinforcement.
The learning approach adopted for the meta-level control problem is based on the algorithm developed

in [46] where reinforcement learning is used in the design ofa spoken dialogue system. Their problem is
similar to the meta-level control problem in that it is also asequential decision making problems and there
is a bottle neck associated with collecting training data. As described in the experimental setup in Section 3,
each episode lasting 500 simulation time clicks takes about180 real-world seconds. It takes about 150
real-world hours to obtain data from 3000 training episodesmaking data collection quite expensive.

As discussed previously, our MDP-based meta-level controller (MLC) uses a set of high-level qualitative
features that is constructed to abstract the real state information as much as possible without losing critical
information. The appropriate actions to take in each state are defined and the reward function is determined
by the utilities accrued by each completed domain task. The meta-level control policy is a mapping from
each state to an action. An initial meta-level control policy which randomly chooses an action at each
state and collects a set of episodes from a sample of the environment is implemented. Each episode is a
sequence of alternating states, actions and rewards. As described in [46], the transition probabilities of the
form P (s′|s, a) are estimated, which denotes the probability of a transition to states′, given that the system
was in states and took actiona from many such sequences. The transition probability estimate is the ratio
of the number of times in all the episodes, that the system wasin s and tooka and arrived ats′ to the
number of times in all the episodes, that the system was ins and tooka irrespective of the next state. The
MDP model representing system behavior for a particular environment is obtained from state set, action
set, transition probabilities and reward function. Confidence in the accuracy of the model depends on the
extent of exploration performed in the training data with respect to the chosen states and actions. In the final
step the optimal policy in the estimated MDP is determined using the Q-value version of the standard value
iteration algorithm [48].γǫ[0, 1) is a discount-rate parameter which determines the present value of future
utility gains. In the experimental section, we vary the discount rate to determine its effect on the meta-level
control decisions. The expected cumulative reward (or Q-value) Q(s,a) of taking actiona from states is
calculated in terms of the Q-values of successor states via the following recursive equation [48]:

Q(s, a) = R(s, a) + γ
∑

s′

P (s′|s, a)max
a′

Q(s′, a′)

When the value iteration algorithm converges11 , an optimal meta-level control policy (according to the
estimated model) is obtained by selecting the action with the maximum Q-value at each state. The optimality
of the policy depends on the accuracy with which the estimated MDP represents the particular environment.

4.2 Single-Agent Experiments

The experimental setup is as described in the previous sections. The training data for the RL strategy
consisted of 3000 episodes with each episode executing for 500 time steps . The training data as mentioned
earlier is exploratory in that at each decision point one action from a set of allowable actions is chosen at
random. After the 3000 episodes were completed, the estimated transition probabilities and reward function
were determined. The meta-level control policy was determined using the Q-value version of value iteration
as described above in the algorithm. The policy was then usedon a test run consisting of 300 simulation test
episodes.

11The algorithm iteratively updates the estimate of Q(s,a) based on the current Q-values of neighboring states and stops when the
update yields a difference that is below a threshold.

33

Environment
AMM AMT AHT ALM

A
ve

ra
ge

 U
til

ity
 G

ai
n

0
20
40
60
80

100
120
140
160
180
200
220
240

NHS SHS RL3K

Figure 14: Utility comparison of learning method to heuristic strategies for four different environments. The
error bars are one standard deviation above and below each mean

The results described in Figure 14 show the utility accrued by the reinforcement learning, SHS and
NHS strategies for four environments AMM, AHT, AMT and ALM. The data collection bottleneck de-
scribed previously limited the number of environments considered to four. The four environments were
chosen to represent problem classes where interesting behavior of meta-level control could occur: medium
constrained environments (AMM, ALM) and tightly constrained environments (AHT, AMT). The following
performance results are established experimentally:

1. In two of the environments, AMT and AHT, the RL strategy using the policy based on 3000 train-
ing episodes performed significantly better (p< 0.05) than the SHS with respect to utility and had
significantly lower control duration.

2. In the two other environments, AMM and ALM, the RL strategyusing the policy based on 3000
training episodes performed as well as (no significant difference at p< 0.05) than the SHS with
respect to utility and had significantly lower control duration.

3. In loosely constrained environments like ALM, agents have enough resources to complete tasks suc-
cessfully within the deadlines without too much contentionof resources.

Figure 15 describes the percent of total time spent on control actions. The RL method spends signif-
icantly less time on control actions (p< 0.05) than the heuristic strategies in all four environments. The
RL optimizes its actions in a non-myopic fashion since it canlearn a more accurate model of the sequential
decision making process than the heuristic strategies.

Learning Curve Saturation: Figure 16 describes the effect of increasing training dataon the perfor-
mance of the learned policies. After every 1000 episodes, the cumulative transition probabilities and reward
function were estimated and the corresponding policy was computed. This policy was then applied to 300
test episodes and the average results were computed. The performance of the agent improves with added
training but the improvement does not increase proportionately with the training size. This seems to indi-
cate that increased training data will not necessarily guarantee a monotonic improvement in performance
and that the performance improvement will flatten out after acertain amount of training. This threshold is
determined for each specific environment experimentally inthis paper. 3000 seemed to be a good threshold

34

Environment
AMM AMT AHT ALM

A
ve

ra
ge

 P
er

ce
nt

 o
f C

on
tr

ol
 T

im
e

0

20

40

NHS SHS RL3K

Figure 15: Control time comparison of learning method to heuristic strategies for four different environments

Training Episodes

1000 2000 3000

A
ve

ra
ge

 U
til

ity
 G

ai
n

110

120

130

140

150

160

170

180

190

200

210

AMM AMT AHT ALM

Figure 16: Relation of average utility to increasing training data

for training size for the four environments described. The dip in the curve for AHT at episode 2000 is a local
minima which occurred because of the tightly constrained environment. On deeper analysis of the data, we
found that tasks in episode 2000 had extremely tight deadlines12 and hence considerably fewer number of
tasks could be completed. Figure 17 describes the relation of the percent of control durations to increasing
training size.

Table 11 describes the actual values of the measures described in the preceding discussion.
Significance of discounting: γ in the dynamic programming formulation denotes the discount factor.

The discount factor determines how much value is given to future rewards. Whenγ is set to 1.0, the agent
gives a lot of importance to the long term effects of its current decision. Whenγ is set to 0.0, the agent does
a one-step look ahead and is very myopic in its decision making. Figure 18 describes the utility gained by
the agent after 3000 training episodes. Three meta-level control policies withγ set to 1.0, 0.5 and 0.0 are
computed. These polices are then used to evaluate 300 test episodes and the average utilities over these 300
episodes are computed. Table 12 describes the values of the utility gained and the corresponding percent
of control time for the three different polices. Column 1 is the type of environment, Column 2 describes

12This is determined by the simulation environment.

35

Training Episodes

1000 2000 3000

P
er

ce
nt

 o
f A

ve
ra

ge
 C

on
tr

ol
 T

im
e

0

5

10

15

20

25

30

35

AMM AMT AHT ALM

Figure 17: Relation of control time durations to increasingtraining data

Environment RL-3000 RL-2000 RL-1000 SHS NHS

AMM-UTIL 207.69 200.05 198.65 205.49 192.10
AMM-CT 18.39% 16.33% 18.14% 20.37% 23.92%

AMT-UTIL 155.56 145.11 140.57 117.34 117.25
AMT-CT 17.81% 17.31% 17.58% 24.95% 20.32%

AHT-UTIL 160.68 138.84 153.97 124.80 123.96
AHT-CT 26.83% 27.46% 23.17% 35.26% 34.09%

ALM-UTIL 140.32 130.09 119.64 135.05 124.74
ALM-CT 7.24% 6.84% 2.74% 10.11% 10.32%

Table 11: Utility and control time comparisons over four environments; Column 1 is the environment type;
Column 2, 3 and 4 represent the performance characteristicsof the RL policy after 3000, 2000 and 1000
training episodes respectively; Column 4 and 5 represent the performance characteristics of SHS and NHS
respectively;

the performance characteristics when the agent has a completely myopic view (γ=0.0), Column 3 describes
the performance characteristics and control time when the agent has a partially myopic view (γ=0.5) and
Column 4 describes the performance characteristics when the agent gives a lot of priority to long term effects
of its decisions.

In medium constrained environments such as AMM and ALM, the average utility gained using the
policy with γ set to 1.0 is significantly better (p<0.05) than the partially myopic policy withγ=0.5 and the
myopic policy withγ=0.0. In tightly constrained environments such as AMT and AHT, the difference in
performance of the non-myopic policy, the partially myopicpolicy and the myopic policy was not significant
at the 0.05 level. These environments are so tightly constrained and are too dynamic to be able to effectively
predict the future events and act on that information.

4.3 Multi-Agent Experiments

The agents in this domain are in a cooperative environment and have approximate models of the others
agents in the multi-agent system. The agents are willing to reveal information to enable the multi-agent

36

Environment
AMM AMT AHT ALM

A
ve

ra
ge

 U
til

ity
 G

ai
n

0

40

80

120

160

200

240

gamma=0.0 gamma=0.5 gamma=1.0

Figure 18: Utility gains with varying discount rate (γ = 0.0, 0.5, 1.0). The error bars are one standard
deviation above and below each mean

Environment γ=0.0 γ=0.5 γ=1.0

AMM-UTIL 185.19 190.46 207.69
AMM-CT 19.56% 18.63% 18.38%

AMT-UTIL 151.48 151.99 155.56
AMT-CT 17.95% 17.90% 17.80%

AHT-UTIL 149.40 154.26 155.56
AHT-CT 26.42% 26.23% 17.81%

ALM-UTIL 122.16 122.74 140.32
ALM-CT 6.88% 6.90% 7.24%

Table 12: Comparison of utility gain and percent of control time for four different environments while
varying the discount rate (γ = 0.0, 0.5, 1.0)

system to perform better as a whole. In this section, we look at multi-agent scenarios similar to the 2-rover
scenario described in Section 2. The multi-agent aspect of the problem arises only when there is task re-
quiring coordination with another agent. The agent rewardsin this domain are neither totally positively
correlated (team problem) nor are they totally negatively correlated (zero-sum game). Multi-agent rein-
forcement learning has been recognized to be much more challenging than single-agent learning, since the
number of parameters to be learned increases dramatically with the number of agents. In addition, since
agents carry out actions in parallel, the environment is usually non-stationary and often non-Markovian as
well [27]. The experiments describe results on the convergence rates of the policies of the two agents in
simple scenarios.

The meta-level control decisions that are considered in themulti-agent set up are: when to accept, delay
or reject a new task, how much effort to put into scheduling when reasoning about a new task, whether to
reschedule when actual execution performance deviates from expected performance, whether to negotiate
with another agent about a non-local task and whether to renegotiate if a previous negotiation falls through.
For all the experiments the costs described in Section 3.1 are assumed. Additionally, the decision to negotiate
and whether to renegotiate is assumed to take 1 unit of time. Transmission delay is 1 unit of time. The

37

Environment RL-3000 SHS NHS

AMM-UTIL 118.56 111.44 89.84
AMM-CT 8.86% 9.21% 8.09%

Table 13: Utility and control time comparison for a multi-agent environment; Column 1 is the environment
type; Column 2 represents the performance characteristicsof the RL policy after 3000 training episodes;
Column 3 and 4 represent the performance characteristics ofSHS and NHS respectively;

amount of time for the the other agent to repond is not fixed butbased on the duration of the meta-level
decisions at the other agent.

The task environment generator in the multi-agent setup also randomly creates task structures while
varying the complexity of tasks, frequency of arrival and tightness of deadline as described in Section 3.1
for two agents instead of one. Experimental results describing the behavior of two interacting agents is
presented in Figure 19 and Table 13. AgentRoverB’swas fixed to the best policy it was able to learn in the
single agent environment. AgentRoverAthen learned its meta-level control policy within these conditions.
We did not address the deep issues involved in Multi-agent Reinforcement Learning involving concurrent
learning [61] by agents. Performance comparison of the heuristic strategies to the RL strategy in a single
environment, AMM, is provided. The results show that the combined utilities of the two agents when
using the RL strategy is as good as the SHS strategy which usesenvironment characteristic information in
its decision making process. The RL strategy also learns policies that significantly outperform the NHS
strategy in this environment. The performance of the multi-agent system supports the hypothesis of this
paper.

Environment
AMM

A
ve

ra
ge

 U
til

ity
 G

ai
n

0

20

40

60

80

100

120

NHS SHS RL3K

Figure 19: Average utility comparison between heuristic strategies and RL strategy (3000 training episodes)
in a multi-agent environment. The error bars are one standard deviation above and below each mean

We have described a reinforcement learning approach which equips agents to automatically learn meta-
level control policies. The empirical reinforcement learning algorithm used is a modified version of the
algorithm developed by [46] for a spoken dialog system. Bothproblem domains have the bottle neck of
collecting training data. The algorithm optimizes the meta-level control policy based on limited training
data. The utility of this approach is demonstrated experimentally by showing that the meta-level control
policies that are automatically learned by the agent perform as well as the carefully hand-generated heuristic

38

policies. The sequential effects of the problem domain was verified by showing that varying the value of
future rewards significantly affects the agent’s performance.

5 Related Work

There has been enormous amount of work on intelligent agent control e.g. [3, 10, 28, 54, 60]. These sys-
tems describe flexible and goal-directed mechanisms capable of recognizing and adapting to environmental
dynamics and resource bounds. The emphasis in these works isto build an adaptive control layer which
reasons about domain-level costs. They do not, however, explicitly reason about the control costs. The
meta-level control architecture described in this paper reasons explicitly about control costs and includes
reasoning about costs at all levels of computation.

We will first discuss two well-known agent architectures that have some form of meta-level control. The
Procedural Reasoning System (PRS) [11] is a hybrid system, where beliefs are expressed in first-order logic
and desires represent system behaviors instead of fixed goals. It is an architecture for embedded systems
that need to deliberate in real-time. A PRS agent consists ofa database of the system’s current beliefs, a set
of current goals, a library of plans (called knowledge areasor KAs) and an intention structure. The KAs
describe sequences of actions and tests that can be performed to meet a goal or react to a situation. The in-
tention structure consists of a partially ordered set of those plans chosen for execution. An interpreter works
with these components to select an appropriate KA based on beliefs and goals, place that plan in the inten-
tion structure and execute it. Meta-level KAs are functionally similar to the meta-level control layer in the
agent architecture presented in this paper. The meta-levelKAs are used to decide among multiple applicable
domain KAs in a particular situation, reason about failure to satisfy goals, and manage the flow of control
among intentions (including determining when to continue applying meta-level KAs versus executing the
current domain-level plan). KAs are interruptible when external events cause changes to the database, thus
allowing rapid response to changing environmental situations. PRS can be configured to respond to world
events within a bounded amount of time though there is no explicit end-to-end reasoning nor performance
guarantees. PRS is not concerned with cost of meta-level reasoning explicitly and thus differs significantly
from the work presented here.

Hayes-Roth [16] describes an opportunistic control model that can support different control modes ex-
pected of an intelligent agent. The control model handles multiple goals, limited resources, and dynamic
environments. She argues that in dynamic environments, it is often necessary to make decisions that may not
be optimal, but are rather satisfactory under the current conditions. The meta-level control work described in
this paper similarly computes approximate solutions rather than optimal solutions. The system she develops
that solves problems closest to the complexity to the problems we are interested in is Guardian [17]. It is an
experimental intelligent agent based on a blackboard architecture for monitoring patients in a surgical ICU.
The agent consists of a manager that filters and processes inputs, a satisficing control cycle to bound the
amount of time spent doing meta-level reasoning, and an anytime diagnosis component. Large amounts of
input data arrive at the agent periodically. Much of this is low level data that just confirms current patterns,
but occasionally important or unexpected information arrives. The input manager dynamically builds and
modifies filters to sending new important information to be processed by the reasoning component while
not overburdening it with needless detail as problem-solving progresses. High-level control takes the form
of plans that are dynamically created at runtime by control knowledge sources. They emphasize that such
dynamic construction is necessary because of the changing requirements of the filters in different problem-
solving situations.

Guardian has an agenda based control mechanism. Its satisficing control cycle chooses the best action to

39

perform by processing actions most likely to be rated highlyfirst. As soon as an action is found that is good
enough or the time limit for control reasoning has run out, the best action found so far is recommended. This
time limit is set dynamically by control plans that can adjust the sequence and type of knowledge that is used
in a specific situation; control input filters to separate outimportant data; and adjust the satisficing control
cycle to quickly determine how to respond to it. Guardian, however, is not equipped with an overall planning
mechanism to guide its real-time behavior. It does not reason about long-term effects of choices explicitly.
Though Guardian has some ability to dynamically balance theamount of computation to invest in control
versus domain activities, it does it in a qualitative and implicit manner, rather than the more quantitative and
non-myopic approach taken in our work.

More generally, flexible, autonomous systems in complex environments generally require the ability
to reason about resource allocation to computation at any point in time. Doyle’s ’rational psychology’
project [9] is based on the idea that computations, or state changes, are also actions to be reasoned about.
He used the idea of bounded rationality in the context of beliefs, intentions and learning. Horvitz [20] also
studied rational choice of computation in the context of designing intelligent systems.

The basic idea of bounded rationality arises in the work of Simon with his definition of procedural ratio-
nality [43]. Simon’s work has addressed the implications ofbounded rationality in the areas of psychology,
economics and artificial intelligence [45]. He argues that people find satisfactory solutions to problems
rather than optimal solutions because people do not have unlimited processing power. In the area of agent
design, he has considered how the nature of the environment can determine how simple an agent’s control
algorithm can be and still produce rational behavior. In thearea of problem-solving, Simon and Kadane [44]
propose that search algorithms for finding solutions to problems given in terms of goals are making a trade-
off between computation and solution quality. A solution that satisfies the goals of a problem is a minimally
acceptable solution. Good’s type II rationality [13] is closely related to Simon’s ideas on bounded ratio-
nality. Type II rationality, which is rationality that takes into account resource limits, is a concept that has
its roots in mathematics and philosophy rather than psychology. Good creates a set of normative princi-
ples for rational behavior that take computational limits into account. He also considers explicit meta-level
control and how to make decisions given perfect informationabout the duration and value of each possible
computation.

In order to make the trade-offs necessary for effective meta-level control, the meta-level controller needs
some method for predicting the effect of more computation onthe quality of a plan. One method for do-
ing this is to use a performance profile. The idea comes from the study of anytime algorithms. Anytime
algorithms can be interrupted at any point to return a plan that improves with more computation [6]. The
performance profile gives the expected improvement in a planas a function of computation time. An al-
ternative to using performance profiles is to use the performance of the planner on the current problem to
predict the future. Nakakuki and Sadeh use the initial performance of a simulated annealing algorithm on
a machine shop scheduling problem to predict the outcome fora particular run [30]. They have found that
poor initial performance on a particular run of the algorithm is correlated with poor final performance. This
observation is used to terminate unpromising runs early andrestart the algorithm at another random initial
state.

Anytime algorithms can be combined to solve complex problems. Zilberstein and Russell [59] look
at methods for combining anytime algorithms and performingmeta-level control based on multiple perfor-
mance profiles. Combining anytime algorithms produces new planning algorithms that are also character-
ized by a performance profile. Compilation techniques described in [60], can be used to compile programs

40

consisting of both anytime and traditional algorithms13 . Hansen and Zilberstein [14] extend previous work
on meta-level control of anytime algorithms by using a non-myopic stopping rule. It finds an intermediate
strategy between continuous monitoring and not monitoringat all. It can recognize whether or not moni-
toring is cost-effective, and when it is, it can adjust the frequency of monitoring to optimize utility. This
work has significant overlap with the foundations of the meta-level control reasoning framework described
in this paper. It deals with the single meta-level question of monitoring and considers the sequential effects
of choosing to monitor at each point in time. It keeps the meta-level control cost low by using a lookup-table
for the policy.

Harada and Russell [15] describe initial work where the computational process is explicitly modeled. It
provides initial ideas for using search as the model of computation in the Tetris domain. They propose the
use of Markov Decision Processes and reinforcement learning as their solution approach. This work was
not pursued further14. The methodology in this research was developed independently of their effort. It
was built for a complex domain where the meta-level decisions have down-stream effects. The domain is
characterized by uncertainty in action durations and utility accrued. Russell and Wefald [39] define meta-
level control as the ability of an agent to choose between executing a computational action which changes
the internal state of an agent and a physical action which changes the environment. They show that the
agent will continue to deliberate only if it is possible thatthe computation will change the agent’s current
choice of physical action. They describe an ideal control algorithm as one that will continue to perform the
computation with the highest expected net value until no computation has positive expected value. When
there is no computation left, the external action that is preferred according to the internal state resulting
from the last computation is executed. They view the meta-level control problem as one of calculating the
expected values of various computations. Since the computations can be arbitrarily long, they approximate
the expected value computation using simplifying assumptions. Particularly, they use the agent’s own utility
estimation function to estimate the expected value of computations. They also make the analysis tractable
by making myopic assumptions such as the meta-greedy and single step assumptions which could lead to
underestimation of some computations. From their model, itis clear that the knowledge necessary to assign
values to computations resides in the probability distribution for the future utility estimates of the top-level
actions (external actions). They assume that these probability distributions can be obtained by gathering
statistics on past computations. The approach we take in ourwork is a constructive one that Russell calls
meta-level rationality. By approximating the correct meta-level decisions, the agents attempt to produce
high expected utility within the resource limits. However,the agents provide no guarantees about their
optimality. In our model we choose between an external action and sequence of computational actions in
a single episode. We reason about and execute sequences of such sequences that consist of both external
actions and computational actions that can occur in a singleepisode. Like Russell and Wefald [39], our goal
is to choose the sequence of control and domain (external) actions that would maximize performance in the
long run.

Goldman et al [12] develop computationally feasible heuristics that make greedy deliberation scheduling
decisions quickly in the context of SA-CIRCA, a self-adaptive control architecture. They model the meta-
level the deliberation scheduling problem as a MDP. Their work, however, does not handle the problem of
trading off deliberation versus domain activities. In their framework, the execution subsystem does not com-
pete for resources with the deliberation system and the choices involve only deliberative activities. Schut
and Wooldridge [41] have independently observed that a Markov Decision Process-based model towards de-
cision making is most similar to the bounded optimality model. The abstract representation of states in our

13The performance profile of a traditional algorithm is presumably a single step function.
14Personal communication with second author.

41

MDP for meta-level control allows us to bound the complexityof the problem. Schut and Wooldridge [41]
provide a useful and in-depth comparison of continuous deliberation scheduling [3], discrete deliberation
scheduling [39] and bounded optimality [38] methods for single-agent meta-level control. Russell, Subra-
manian and Parr [38] cast the problem of creating resource-bounded rational agents as a search for the best
program that an agent can execute. This definition of rationality does not depend on the method used to
create a program or the method it uses to do computation but only on the behaviors that result from running
the program. In searching the space of programs, the agents,called bounded-optimal agents, can be optimal
for a given class of programs or they can approach optimal performance with learning, again given a limited
class of possible programs. The computation of bounded optimal agents can still be very hard and additional
assumptions are made in this work to tackle the complexity. Our approach to meta-level control involves
construction of agents similar to these bounded optimal agents [38]. We too do not assume complete acces-
sibility to the environment, which makes our approach applicable to a wide range of problems and delivers
an execution model which makes it relevant to real-world applications. While our model has targeted only
finite horizon problems (episodic environments), our modelaccounts for computational resources and takes
advantage of the Markov Decision model to bound computation.

Algorithms for sequential Reinforcement Learning (RL) tasks have been studied mainly within a sin-
gle agent context [1, 50, 55]. Some of the later work described below have applied RL methods such as
Qlearning to multi-agent settings. In many of these studies, the agents learn about either simple dependent
tasks or independent tasks. Sen et al. [42] describe 2-agentblock pushing experiments, where the agents
try to make the block follow a line by independently applyingforces to it. Tan [52] reports on grid-world
predator-prey experiments with multi-agent RL, focusing on the sharing of sensory information, policies,
and experience among the agents. Unfortunately, just slightly harder prisoner’s dilemma problems [40]
have uncovered discouraging results. The standard Q-learning algorithms are not guaranteed to converge
in non-stationary environments where all agents are learning simultaneously. The agents had to keep de-
tailed accounts of their entire history and interaction patterns, in addition to implementing long exploration
schedules to achieve convergence.

Crites and Barto [?] apply multi-agent RL algorithms to elevator dispatching,where each elevator car
is controlled by a separate agent. The agents don’t communicate with each other and an agent treats the
other agents as a part of the environment. The problem is complicated by the fact that their states that
are not fully-observable and they are non-stationary due tochanging passenger arrival rates. Littman and
Boyan [25] describe a distributed RL algorithm for packet routing, using a single, centralized Q-function,
where each state entry in the Q-function is assigned to a nodein the network which is responsible for storing
and updating the value of that entry. In our work, the entire Q-function, not just a single entry, is stored
by each agent. Littman [26] experiments with Q-learning agents that try to learn a mixed strategy that is
optimal against the worst possible opponent in a zero-sum 2-player game.

Lagoudakis and Littman [24] describe a RL-based approach for dynamically selecting the right algo-
rithm for a given instance based on instance features while minimizing overall execution time. This problem
has several interesting overlaps with the meta-level control problem although they only reason about a single
problem instance at any point in time. The sequential natureof the decision process in our work complicates
the reasoning process. Other multi-agent learning research has used purely heuristic algorithms for complex
real-world problems such as learning coordination strategies [47] and communication strategies [22] with
varying success.

The meta-level control architecture described in this paper differs from the above mentioned works in
that it uses RL to make meta-level control decisions in a complex sequential decision making, cooperative
multi-agent environment. It emphasizes the necessity for alternative ways of performing computations and

42

it dynamically reasons about the cost of computation based on the current context.
Many researchers in AI have addressed the need for abstractions to solve large-scale planning problems.

Abstraction is the process by which a system simplifies its decision making process by choosing only the
information relevant to decision making process and ignoring the irrelevant information. In the RL litera-
ture, temporal abstraction and hierarchical control have been used to combat the curse of dimensionality in a
principled way. The aim of hierarchical RL is to discover andexploit hierarchical structure within a Markov
decision problem. The options formalism of Sutton, Precup and Singh [51] describes closed-loop policies
for taking action over a period of time. They show that options can be used interchangeably with primitive
actions in both planning methods and learning methods. The foundation of the theory of options is provided
by the existing theory of Semi-Markov Decision Processes (SMDPs) and associated learning methods. Parr
and Russell [31] developed an approach to RL in which the policies considered are constrained by hier-
archies of partially specified machines. This allows for theuse of prior knowledge to reduce the search
space. The SMDP -based framework allows knowledge to be transferred across problems and for compo-
nent solutions to be recombined to solve larger and more complicated problems. The MAXQ framework
of Dietterich [8] relies on creating a hierarchy of SMDPs whose solutions can be learned simultaneously.
He shows that hierarchical RL using the MAXQ framework can bemuch faster and more compact than flat
RL. He also shows that recursively optimal policies can be decomposed into recursively optimal policies of
individual subtasks and these subtask policies can be re-used wherever the same subtask arises.

These works emphasize the importance and advantages of abstraction in RL. The meta-level control
work however is different from these works because it uses abstract representation of the state based on the
similarity of states. In other words, A number of the agent’sreal states are represented by a single abstract
state because of their similarity of their feature values (excluding time) which is different from the temporal
abstractions described in the above three works.

6 Conclusions

This paper explores the issue of meta-level control in complex agents situated in social and dynamic envi-
ronments. As discussed in the introduction, complex agentscan concurrently perform several different goals
of varying worth and deadlines, dynamically choose alternate ways to achieve these goals and make choices
on how much effort to spend on deliberative actions. Deliberations about the tasks may involve resource-
intensive computation. Also, the control decisions made bythe agent may have down-stream effects on the
availability of resources and processing available to future tasks. Meta-level control is the ability of an agent
to optimize its long-term performance by choosing and sequencing its deliberation and execution actions
appropriately. It reasons about the cost of computation at all levels as a first-class entity.

This paper establishes the following hypothesis:Meta-level control with bounded computational over-
head allows complex agents to solve problems more efficiently in dynamic open multi-agent environments.
Meta-level control is computationally feasible through the use of an abstract representation of the agent
state. This abstraction concisely captures critical information necessary for decision making while bound-
ing the cost of meta-level control and is appropriate for usein automatically learning the meta-level control
policies.

Main Results

A meta-level agent architecture for bounded-rational agents which supports alternative approaches for delib-
erative computation is described. The meta-level control has limited and bounded computational overhead

43

and supports reasoning about costs of planning, schedulingand negotiation as first-class entities. Accounting
for costs of reasoning at all levels is necessary for guaranteeing the performance characteristics of real-time
systems. An experimental testbed to evaluate the agent performance was set up using the MASS simulation
environment where the architecture described was fully implemented. Tasks of varying complexity were
used to study the performance of the architecture using various policies for meta-level control. A determin-
istic policy was used as a base-line for evaluation. An agentwhile deciding to trade off deliberation versus
execution action is in effect reasoning on whether to retaincontrol of its resources or to decide to perform
a task to gain the associated utility while at the same time giving up control of the required resources. One
of the interesting contributions of this work is the way it exploits knowledge of the tasks from the task
structures. The state features are computed using thresholds which are specific to the task being analyzed.

This paper establishes that meta-level control in resource-bounded rational agents is beneficial using em-
pirical evidence. Two context sensitive hand-generated heuristic strategies are defined: the Naive Heuristic
strategy (NHS) that uses myopic information to make meta-level control action choices; and the Sophisti-
cated Heuristic strategy (SHS) that uses current state information and predictive information about the future
to make non-myopic action choices. The heuristic strategies significantly outperform (p<0.05) determin-
istic and random strategies confirming the importance of meta-level control. We also experimentally show
that a few abstract features which accurately capture the state information and task arrival model enable the
meta-level control component to make computationally-bound decisions which significantly improve agent
performance.

An observation made from the experiments is that the cost of control actions in terms of resources used
is an important factor in determining the need for meta-level control. Meta-level control is advantageous
in environments where the control costs are high enough so that the resources available for domain actions
are significantly constrained. When the cost of control actions becomes significantly inexpensive in a non-
stationary environment, the hand-generated rules have to be rewritten to account for this fact. The learning
method, on the other hand, can automatically construct a policy offline which adapts to the new costs.

This work also provides insight into the usefulness of reinforcement algorithms in complex multi-agent
sequential decision-making problems. A reinforcement learning approach which equips agents to automat-
ically learn meta-level control policies is described. This empirical algorithm is a modified version of the
algorithm developed by [46] for a spoken dialog system. Bothproblem domains have the bottle neck of
collecting training data. The algorithm optimizes the meta-level control policy based on limited training
data consisting of 3000 runs. The utility of this approach isdemonstrated experimentally by showing that
the meta-level control policies that are automatically learned by the agent perform as well as if not better
than the carefully hand-generated heuristic policies at the p<0.05 level. One surprising and useful result was
that the agents were able to learn useful meta-level controlpolicies with a small amount of training (3000
episodes). The sequential effects of the problem domain were verified by showing that varying the value of
future rewards significantly affects the agent’s performance.

Applying this work

This paper shows that meta-level control can be effective inreal-time environments, characterized by un-
certainty and limited computational resources. In these environments, computational commodities such as
time, memory, or information can be traded for gains in the value of computed results. It also shows that
efficient and inexpensive meta-level control which reasonsabout the costs and benefits of alternative compu-
tations leads to improved agent performance in resource-bounded environments. This is a flexible, run-time
approach which seeks to optimize rather than satisfice solution quality.

44

This work also shows that a meta-level control policy can be learned in a non-deterministic, inaccessible
and model-free environment. In an inaccessible environment, an agent must maintain some internal state
to try to keep track of the environment, since it is not possible for states to be identified just based on
percepts. The learning strategy allows for meta-level control in uncertain environments whose model is not
available. The empirical reinforcement learning algorithm allows the agent to construct a partial model of
the environment and use the information to define effective action policies.

Additionally, the paper has identified scenarios in which predictive information about future task arrivals
has limited utility. If the environment is characterized byhigh frequency of arrival of tasks with tight
deadlines, then the meta-level controller will constantlyhave to reevaluate its decisions every time a new task
arrives. These decisions are valid when made within a myopiccontext because of the dynamic environment.
Hence predictive information about the future does not necessarily improve performance. If the environment
is characterized by low frequency of arrival of tasks and thetasks have loose deadlines, then the environment
is loosely constrained. In such environments, the downstream effects of decisions is minimal, since the
tasks are spaced out enough so that there is minimal contention of resources by multiple tasks. This means
predictive information about the future does not provide any additional performance advantage.

We plan to extend this work by introducing more complex features that will make the reasoning process
more robust. And finally, we plan to reason about coordination, organizational adaptation and commu-
nication as control actions [34] to achieve our overall goalof introducing efficient meta-level control in
cooperative multi-agent systems.

7 Acknowledgments

We would like to thank Professor Shlomo Zilberstein for his help in constructing the model described in
Section 2.1 and Professor Andy Barto for his valuable comments on the Reinforcement Learning Algorithm.
We also thank the two anonymous reviewers and Dr. Claudia Goldman for their detailed comments.

”Effort sponsored by the Defense Advanced Research Projects Agency (DARPA) and Air Force Re-
search Laboratory Air Force Materiel Command, USAF, under agreement number #F30602-99-2-0525
P00005. The U.S. Government is authorized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the Defense Advanced Research Projects Agency (DARPA), Air
Force Research Laboratory or the U.S. Government.”

References

[1] A. Barto, R. Sutton, and C. Anderson. Neuronlike adaptive elements that can solve difficult learning
control problems.IEEE Transactions on Systems, Man, and Cybernetics, SMC-13:834–846, 1983.

[2] D. Bertsekas and J. Tsitsiklis.Neuro-Dynamic Programming. Athena Scientific, Belmont, MA, 1996.

[3] M. Boddy and T. Dean. Decision-theoretic deliberation scheduling for problem solving in time-
constrained environments,Artificial Intelligence, 67(2):245-286, 1994.

[4] C. Boutlier. Sequential Optimality and Coordination inMultiagent Systems. InProceedings of the
Sixteenth International Joint Conference on Artificial Intelligence, 1999.

45

[5] R. Crites and A. Barto, ”Improving Elevator PerformanceUsing Reinforcement Learning”, Multi-ag
In Advances in Neural Information Processing Systems, pages 8: 1017–1023”, 1996.

[6] T. Dean and M. Boddy. An analysis of time-dependent planning. In Proceedings of the Seventh
National Conference on Artificial Intelligence (AAAI-88), pages 49–54, Saint Paul, Minnesota, USA,
1988. AAAI Press/MIT Press.

[7] K. Decker. Taems: A framework for environment centered analysis and design of coordination mech-
anisms. InFoundations of Distributed Artificial Intelligence, Chapter 16, pages 429–448. G. O’Hare
and N. Jennings (eds.), Wiley Inter-Science, January 1996.

[8] T. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decomposition.
Journal of Artificial Intelligence Research, 13:227–303, 2000.

[9] J. Doyle. What is rational psychology? toward a modern mental philosophy.AI Magazine, 4(3):50–53,
1983.

[10] A. Garvey and V. Lesser. Issues in design-to-time real-time scheduling. InAAAI Fall 1996 Symposium
on Flexible Computation, November 1996.

[11] M. Georgeff and A. Lansky. Reactive reasoning and planning. In Proceedings of the Sixth National
Conference on Artificial Intelligence, Seattle, WA, pages (2) 677–682, 1987.

[12] Goldman, R.; Musliner, D.; and Krebsbach, K. Managing online self-adaptation in real-time environ-
ments. InLNCS, volume 2614. SV. 6–23, 2003.

[13] I. J. Good. Twenty-seven principles of rationality. InV. P. Godambe and D. A. Sprott, editors,Foun-
dations of statistical inference, pages 108–141. Holt Rinehart Wilson, Toronto, 1971.

[14] E. Hansen and S. Zilberstein. Monitoring anytime algorithms. SIGART Bulletin, 7(2):28–33, 1996.

[15] D. Harada and S. Russell. Extended abstract: Learning search strategies. InProc. AAAI Spring
Symposium on Search Techniques for Problem Solving under Uncertainty and Incomplete Information,
Stanford, CA, 1999., 1999.

[16] B. Hayes-Roth. Opportunistic control of action in intelligent agents. InProceedings of IEEE Transac-
tions on Systems, Man and Cybernetics, pages SMC–23(6):1575–1587, 1993.

[17] B. Hayes-Roth, S. Uckun, J.E. Larsson, D. Gaba, J. Barr,and J. Chien. Guardian: A prototype in-
telligent agent for intensive-care monitoring. InProceedings of the National Conference on Artificial
Intelligence, pages 1503–1511, 1994.

[18] B. Horling, V. Lesser, and R. Vincent. Multi-agent system simulation framework. In16th IMACS World
Congress 2000 on Scientific Computation, Applied Mathematics and Simulation, EPFL, Lausanne,
Switzerland, August 2000.

[19] B. Horling, V. Lesser, R. Vincent, and T. Wagner. The Soft Real-Time Agent Control Architecture.
Autonomous Agents and Multi-Agent Systems, 12(1):35–92, 2006.

[20] E. Horvitz. Reasoning under varying and uncertain resource constraints. InNational Conference on
Artificial Intelligence of the American Association for AI (AAAI-88), pages 111–116, 1988.

46

[21] L. Kaelbling. Learning in Embedded Systems. PhD thesis, Stanford University, 1990.

[22] M. Kinney and C. Tsatsoulis. Learning communication strategies in multiagent systems, InApplied
Intelligence, pages 9(1):71-91, 1998.

[23] K. Kuwabara. Meta-level Control of Coordination Protocols. InProceedings of the Third International
Conference on Multi-Agent Systems (ICMAS96), pages 104–111, 1996.

[24] M. Lagoudakis and M. Littman. Reinforcement learning for algorithm selection. InProceedings of
the Seventeenth National Conference on Artificial Intelligence (AAAI-2000), page 1081, 2000.

[25] M. Littman and J. Boyan. A distributed reinforcement learning scheme for network routing. Technical
Report CS-93-165, 1993.

[26] M. Littman. Markov games as a framework for multi-agentreinforcement learning. InProceedings
of the 11th International Conference on Machine Learning (ML-94), pages 157–163, New Brunswick,
NJ, 1994. Morgan Kaufmann.

[27] M. Mataric. Reinforcement learning in the multi-robotdomain, 1997.

[28] D. J. Musliner, J. A. Hendler, A. K. Agrawala, E. H. Durfee, J. K. Strosnider, and C. J. Paul. The
Challenges of Real-Time AI. InIEEE Computer, pages 28(1):58–66, 1995.

[29] D. Musliner. Plan Execution in Mission-Critical Domains. InWorking Notes of the AAAI Fall Sympo-
sium on Plan Execution - Problems and Issues, 1996.

[30] Y. Nakakuki and N. Sadeh. Increasing the efficiency of simulated annealing search by learning to
recognize (un)promising runs. InProceedings of the Twelfth National Conference on Artificial Intelli-
gence (AAAI-94), pages 1316–1322, 1994.

[31] R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. In Michael I. Jordan,
Michael J. Kearns, and Sara A. Solla, editors,Advances in Neural Information Processing Systems,
volume 10. The MIT Press, 1997.

[32] M. L. Puterman.Markov decision processes - discrete stochastic dynamic programming.Games as a
Framework for Multi-Agent Reinforcement Learning. John Wiley and Sons, Inc., New York, 1994.

[33] A. Raja. Meta-level Control in Multi-Agent Systems. PhD thesis, University of Massachusetts at
Amherst, Amherst, Massachusetts, June 2003.

[34] A. Raja, G. Alexander, and V. Mappillai. Leveraging Problem Classification in Online Meta-Cognition.
In Proceedings of AAAI 2006 Spring Symposium on Distributed Plan and Schedule Management, Stan-
ford, pages 97–104, March 2006.

[35] A. Raja, V. Lesser, and T. Wagner. Toward Robust Agent Control in Open Environments. InPro-
ceedings of the Fourth International Conference on Autonomous Agents, pages 84–91, Barcelona,
Catalonia, Spain, July, 2000. ACM Press.

[36] S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.

[37] S. Russell and E. Wefald.Do the right thing: studies in limited rationality. MIT press, 1992.

47

[38] S. J. Russell, D. Subramanian, and R. Parr. Provably bounded optimal agents. InProceedings of the
Thirteenth International Joint Conference on Artificial Intelligence (IJCAI-93), pages 338–344, 1993.

[39] S. Russell and E. Wefald. Principles of metareasoning.In Proceedings of the First International
Conference on Principles of Knowledge Representation and Reasoning, pages 400–411, 1989.

[40] T. Sandholm and R. Crites. Multiagent reinforcement learning in the iterated prisoner’s dilemma,
Biosystems Journal, 37:147-166, 1995.

[41] M. Schut and M. Wooldridge. The control of reasoning in resource-bounded agents.Knowledge
Engineering Review, 16(3):215–240, 2001.

[42] S. Sen, M. Sekaran, and J. Hale. Learning to coordinate without sharing information. InProceedings
of the Twelfth National Conference on Artificial Intelligence, pages 426–431, Seattle, WA, 1994.

[43] H. Simon. From substantive to procedural rationality.In Method and Appraisal in Economics (S. J.
Latsis, Ed.) Cambridge University Press, pages 129–148, 1976.

[44] H. Simon and J. Kadane. Optimal problem solving search:All-or-none solutions. Artificial Intelli-
gence, 6:235-247,1974.

[45] H. Simon. Models of Bounded Rationality, Volume 1. The MIT Press, Cambridge, Massachusetts,
1982.

[46] S. Singh, M. Kearns, D. Litman, and M. Walker. Empiricalevaluation of a reinforcement learning spo-
ken dialogue system. InProceedings of the Seventeenth National Conference on Artificial Intelligence,
pages 645–651, 2000.

[47] T. Sugawara and V. Lesser. On-line learning of coordination plans. InProceedings of the 12th Inter-
national Workshop on Distributed Artificial Intelligence, pages 335–345,371–377, 1993.

[48] R. Sutton and A. Barto.Reinforcement Learning. MIT Press, 1998.

[49] R. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis, University of Mas-
sachusetts Amherst, 1984.

[50] R. Sutton. Learning to predict by the method of temporaldifferences.Machine Learning, 3(1):9–44,
1988.

[51] R. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning.Artificial Intelligence, 112(1-2):181–211, 1999.

[52] M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. InProceedings of
the Tenth International Conference on Machine Learning, pages 330–337, 1993.

[53] R. Vincent, B. Horling, and V. Lesser. An agent infrastructure to build and evaluate multi-agent sys-
tems: The java agent framework and multi-agent system simulator. InLecture Notes in Artificial Intel-
ligence: Infrastructure for Agents, Multi-Agent Systems,and Scalable Multi-Agent Systems., volume
1887. Wagner and Rana (eds.), Springer,, January 2001.

48

[54] T. Wagner, A. Garvey, and V. Lesser. Criteria-DirectedHeuristic Task Scheduling.International
Journal of Approximate Reasoning, Special Issue on Scheduling, 19(1-2):91–118, 1998. A version
also available as UMASS CS TR-97-59.

[55] C. Watkins.Learning from Delayed Rewards. PhD thesis, Cambridge, England, 1989.

[56] S. D. Whitehead and D. H. Ballard. Learning to perceive and act by trial and error.Machine Learning,
7(1):45–83, 1991.

[57] X. Zhang and V. Lesser. Multi-linked negotiation in multi-agent system.Proceedings of the First
International Joint Conference on Autonomous Agents And MultiAgent Systems (AAMAS 2002), pages
1207–1214, 2002.

[58] S. Zilberstein and A. Mouaddib. Reactive control of dynamic progressive processing. InIJCAI, pages
1268–1273, 1999.

[59] S. Zilberstein and S. J. Russell. Efficient resource-bounded reasoning in AT-RALPH. In James
Hendler, editor,Proceedings of the First International Conference of Artificial Intelligence Planning
Systems (AIPS 92), pages 260–268, College Park, Maryland, USA, 1992. Morgan Kaufmann.

[60] S. Zilberstein and S. J. Russell. Optimal composition of real-time systems.Artificial Intelligence,
82(1-2):181–213, 1996.

[61] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.International
Conference in Machine Learning, 929-936, 2003.

49

