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Deterministic thermostats are frequently employed in nonequilibrium molecular dynamics
simulations in order to remove the heat produced irreversibly over the course of such simulations.
The simplest thermostat is the Gaussian thermostat, which satisfies Gauss’s principle of least
constraint and fixes the peculiar kinetic energy. There are of course infinitely many ways to
thermostat systems, e.g., by fixingoiupium+1. In the present paper we provide, for the first time,
convincing arguments as to why the conventional Gaussian isokinetic thermostatsm=1d is unique
in this class. We show that this thermostat minimizes the phase space compression and is the only
thermostat for which the conjugate pairing rule holds. Moreover, it is shown that for finite sized
systems in the absence of an applied dissipative field, all other thermostatssmÞ1d perform work on
the system in the same manner as a dissipative field while simultaneously removing the dissipative
heat so generated. All other thermostatssmÞ1d are thus autodissipative. Among allm thermostats,
only the m=1 Gaussian thermostat permits an equilibrium state. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1900724g

I. INTRODUCTION

In 1829 Gauss established the dynamical principle now
known as Gauss’s principle of least constraint,1 stating that a
system subject to constraints will follow trajectories which,
in a least-squares sense, differ minimally from their uncon-
strained Newtonian counterparts. The principle applies to all
constraints whether they are holonomicsinvolving con-
straints that depend only on coordinatesd or nonholonomic
swhich involve nonintegrable constraints on velocityd.
Gauss’s principle was employed independently by Hooveret
al.2 and Evans3 to develop time reversible deterministic ther-
mostats for molecular dynamics computer simulations. In
particular, the heat produced irreversibly by an external field
can be removed from the system by simple modifications to
the equations of motion in the form of thermostatting
constraints.4,5

In a real physical system heat is removed by conduction,
radiation, or convection to the boundaries. The process can
be represented explicitly by modeling isothermal reservoirs
surrounding the system of interest. The reservoirs exchange
heat with the system via interparticle interactions. Gaussian
thermostats avoid the need to model these complex system-
reservoir interactions. They also minimize system size de-
pendence and simulation time. The effect of the reservoirs is
thus reproduced in a simple manner that can be employed in
nonequilibrium simulations to allow for the possibility and
maintenance of a steady state.

The removal of heat by thermostatting forces leads to
volumes in phase space being no longer preserved, i.e., a
reduction in the volume of accessible phase space or phase
space compression.6 For real, macroscopic systems this

phase space compression and the associated dimension loss
are insignificantly small7 and the system evolves to a strange
attractor of similar dimensionality to the unperturbed system.
In small systems the reduction can be more pronounced.

II. GAUSS’S PRINCIPLE OF LEAST CONSTRAINT

For a system described by coordinatesr ;sr 1,r 2,…d
and timet, constraints confine trajectories to a hypersurface
sthe constraint planed, defined bygsr , ṙ ,td=0. Differentiating
g with respect to time results in the differential constraint
equation, which imposes a condition on the acceleration vec-
tor of particles within the system:8

bsr , ṙ ,td · r̈ + gsr , ṙ ,td = 0, s1d

whereb andg are9

b =
]g

] ṙ
,

g = ṙ ·
]g

]r
+

]g

]t
. s2d

While unconstrained trajectories obeying Newtonian equa-
tions of motion, r̈ u=F /m, are free to leave the constraint
plane, constrained trajectories following the equations of
motion, r̈ =sF /md−sjb /md, are prevented from doing so by
the application of the additional constraint “force” −jb sat-
isfying Eqs.s1d and s2d:
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j =
sb · r̈ u + gd

b · b/m
. s3d

When multiple constraints are imposed, each constraint force
is added and the constraint multipliers, which may be
coupled, are then determined. For a simple Gaussian thermo-
stat which fixes the kinetic energy of the system such that
gsr , ṙ ,td=smṙ 2/2d−Ekin=0, the constrained equations of mo-
tion are r̈ =sF /md−jṙ , and it can easily be shown thatj
=F ·ṙ /mṙ 2.

It is important to note that there is no unique means of
projecting the unconstrained trajectories onto the constant
hypersurface and although Gauss’s principle defines one
method, a multiplicity of methods may be employed. We
discuss such methods in what follows.

A. m thermostats in equilibrium and nonequilibrium
systems

The properties of a number of “m” thermostats and er-
gostatsswhich fix the internal energy of the systemd have
been explored in the weak field regime.10,11 In these papers
the system was described by the equations of motion

q̇id =
pid

m
+ CidgFeg,

ṗid = Fid + DidgFeg − aupidum−1pid, s4d

where Einstein notation is used,d ,g=x,y,z, qid is the posi-
tion of theith particle in thed direction,pid is the momentum
of the ith particle in thed direction,Cidg andDidg couple the
system with the external fieldFeg, and

a =

o
i=1

N

o
d,g=x,y,z

spidDidg/m− FigCidgdFeg

o
i=1

N

o
d=x,y,z

upidum+1/m

;
− J ·FeV

o
i=1

N

o
d=x,y,z

upidum+1/m

s5d

is the ergostat multiplier that was used to fix the internal
energy as a constant.J is thesintensived dissipative flux and
is related to the unthermostattedsadiabaticd rate of change of
the internal energy H0 via dH0/dtuad=−JsGdV·Fe. Note that
in the absence of the perturbing field and when the internal
energy of the system is held constant,a is obviously zero
and hence does no work on the system at equilibrium. It was
shown that for a range of perturbing fields and different val-
ues ofm, the Gaussian ergostatsfor which m=1d minimized
the magnitude of the change in acceleration brought about by
the constraint.10 The average value of the phase space com-
pression factorL sequivalent to the logarithmic time rate of
change of theN-particle distribution functiond was also stud-
ied for these systems and it was shown to be minimal for a
Gaussian ergostatted system.10

In this paper we focus on the isokinetic case. Since the
kinetic energy is not constant in the unthermostattedsadia-

baticd system, the isokinetic thermostatting multipliera is
not instantaneously zero at equilibrium. We employ a series
of m thermostats to fix either the second moment of the mo-
mentum distributionsor equivalently fix the kinetic energy
K2d or the “sm+1dth” moment of the velocities,Km+1

=oi=1,d
N upidum+1/2m and consider systems at equilibrium and

also those under the influence of a weak “color” fieldFe.
8

The m-thermostatted equations of motion for theith particle
in this system are

q̇id =
pid

m
,

ṗid = Fid + ciFed − aupidum−1pid + zd, s6d

whereci =s−1di and denotes the color of theith particle,zd

=asoi=1
N pidupidum−1/Nd is a Gaussian constraint introduced to

keep the momentum in thed direction fixed. WhenK2 is
fixed, the thermostatting variablea can easily be determined
to be

aK2
=

o
i,d

Fidpid + Fedcipid

o
i,d

upidum+1
. s7d

Similarly, fixing thesm+1dth momentKm+1 with a m thermo-
stat, gives

aKm+1
=

o
i,d

Fid pidupidum−1 + Fed cipidupidum−1

o
i,d

spid
2md − o

d
So

i

upidum−1pidD2YN
. s8d

Clearly, settingm equal to 1 in either case returns the usual
Gaussian thermostat. Note, however, that in the first case,
whereK2 is fixed andm is varied, Gauss’s principle of least
constraint is only satisfied for the thermostatted constraint
when m=1. In the latter case, whereKm+1 is fixed, Gauss’s
principle is obeyed for the themostatting and total momen-
tum constraints for all values ofm. Those constraints that
satisfy Gauss’s principle are constrained via the least pos-
sible change in accelerationsmost direct pathd to the con-
straint surface, whereas those that violate it may require
greater perturbation from the unconstrained trajectories.

The systems we consider in this paper all satisfy the
condition that, in the absence of the thermostat, they preserve
volumes in phase space, i.e., adiabatic incompressibility of
phase spacesAIGd.8 The presence of a thermostat, however,
leads to the possibility of phase space compression that is
quantified by the phase space compression factorL. The
phase space compression factor is the rate of change of the
logarithm of the N-particle distribution function f(G ,t),
whereG; (q ,p),

LsGd = −
d ln fsG,td

dt
=

]

]G
· Ġ, s9d

and describes the reduction in the available phase space to
the system. For an equilibrium system where am thermostat
fixes K2, L is

194106-2 Bright, Evans, and Searles J. Chem. Phys. 122, 194106 ~2005!
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LsGd = − ams1 − 1/Ndo
id

upidum−1 + A + B, s10d

where

A = −

o
i=1,d

N

FidSupidum−1pid − s1/Ndo
j=1

N

upjdum−1pjdD
o

i=1,d

N

upidum+1

and

B = asm + 1d
o

i=1,d

N

spid
2md − s1/Ndo

d
So

i=1

N

upidum−1pidD2

o
i=1,d

N

upidum+1

.

A similar expression can be derived for Gaussian thermostats
that fix Km+1:

LsGd = − ams1 − 1/Ndo
id

upidum−1 + C + D, s11d

where

C = − m

o
i=1,d

N

FidSpid
2m−1 − s1/Ndupidum−1o

j

N

upjdum−1pjdD
o
i,d

spid
2md − o

d
So

i

upidum−1pidD2YN

and

D = 2ma

o
i=1,d

N Supidu3m−1 − s2/Ndpid
2m−1o

j=1

N

supjdum−1pjdd + s1/N2dpid
m−1So

j=1

N

upjdum−1pjdD2D
o
i,d

spid
2md − o

d
So

i

upidum−1pidD2YN
.

In both systemsL can be written as

LsGd = − amo
id

upidum−1 + ONs1d s12d

and is related by a simple equation to the rate of change of
the fine grained Gibbs entropySstd;−kBedGfsG ,td
3ln fsG ,td, i.e., dS(t)/dt=kBkL(t)l. For the case of a stan-
dard Gaussian isokinetic thermostatsm=1d, Eq. s10d shows
that L is simply given byL=−3Na(1+c/N) wherec is a
constant. Since in this casea can be written as

a=−Ḣ0/2mK2 where K2 is a constant it is clear that if a

steady state is reached thenkḢ0l=0 and thereforekal=0 and
kLl=0 for all N. The question, however, of whether the same
holds true for isokineticsK2d systems and for Gaussian iso-
Km+1 systems withmÞ1 remains untested.

The dynamic behavior of a system can also be described
in terms of its Lyapunov exponents, which measure the ex-
ponential rate of divergence of nearby trajectories in phase
space. If we define a displacement vectorDG j(t)=G j(t)
−G(t) measuring separation between nearby pointsG j(t) and
G(t) in phase space then, in the limit of small displacements,
the vectors become tangent vectors obeying equations of mo-

tion: dĠi =T ·dGi whereT =]Ġ /]G is the Jacobian or stability
matrix of the flow. The maximum Lyapunov exponent, which
is only defined in the long time limit, is given byl1

= limt→`s1/tdlnsudG1(t)u / udG1(0)ud.8,12 This describes the
asymptotic rate of exponential separation of two nearby

points in phase space. Consider a set of tangent vectors
hdGi ; i =1,2,… ,2dNj that evolve according to the equations
of motion, but are constrained to remain orthogonal to each
other so thatdGi is orthogonal to vectorshdG j ; j , ij. The
value ofd is the number of Cartesian dimensions considered
and 2dN is therefore the dimension of phase space. This set
of orthogonal tangent vectors will give the full set of 2dN
Lyapunov exponents, defined by li =limt→`s1/td
3lnsudGi(t)u / udGi(0)ud. Phase volumes defined by these tan-
gent vectors will grow exponentially at a rate given by the
sum of the corresponding Lyapunov exponents, and the time
evolution of an infinitesimal volume in the full phase space
is given by the total sum of all the Lyapunov exponents. It is
related to the phase space compression by the simple relation
L=oi=1

2dNli.
The conjugate pairing rulesCPRd states that the

sum of conjugate pairs of Lyapunov exponentssli

+l2dN+1−i , ∀ id is zero at equilibrium12 and equal to a
constant,13 independent of the pair index, in a field driven
system. For systems satisfying the CPR, it is possible to
calculate transport coefficients and entropy production from
the maximalsi =1 and i =2dNd exponents alone.13 Systems
that are symplectic in the absence of thermostatssthis in-
cludes all Hamiltonian systemsd, and are thermostatted ho-
mogeneously by a Gaussian isokinetic thermostat, satisfy
CPR—apart from certain zero exponents.14,15

In previous work10 it was shown that CPR is violated in

194106-3 Time-reversible thermostats J. Chem. Phys. 122, 194106 ~2005!
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nonequilibrium isoenergeticm-thermostatted systemssm
Þ1d. Equilibrium and nonequilibrium isokinetic systems,
however, were not explored. We discuss the Lyapunov spec-
tra and adherence to CPR in such systems here.

III. RESULTS

To explore the behavior ofm-thermostatted systems
when different moments of the kinetic energy are fixed, we
simulated a number of two-dimensionals2Dd, soft disk sys-
tems both at equilibriumszero fieldd and in the presence of a
weak color fieldFe=sFex,0d. The particles interact via a
short rang Weeks–Chandler–AndersonsWCAd potential16

and standard periodic boundary conditions were employed.
The equations of motion were integrated using a fourth-order
Runge–Kutta integration scheme with a time step of 0.0005
sall units are reduced Lennard-Jones unitsd. The temperature
in the simulations was fixed atT=1.0 sor alternatively, a
temperature ofT was established at the beginning of the
simulation and the resulting value ofKm+1 held constantd and
the number of particlesN was either 4 or 50. Two reduced
densities, 0.4 and 0.8, were simulated andm was varied be-
tween 0.1 and 6.

A. Comparison of thermostats in equilibrium systems

Figures 1 and 2 illustrate the behavior of a typical sys-
tem, in the absence of field, for which the second moment of
the momentumsor K2d has been fixed with varying values of
m. It is clear that botha and −L are minimized, and are
equal to zero for the standard Gaussianp thermostatsm=1d.
The fact that botha andL are nonzero for all other values of

m is indicative of the importance of adherence to Gauss’s
principle even at equilibrium. The thermostat in these cases
smÞ1d does work on the system, driving it away from equi-
librium in the same manner as a dissipative field but at the
same time extracts the dissipative heat so generated so as to
generate a nonequilibrium steady statesrather than a true
equilibrium stated.

This result can be described with reference to Gauss’s
principle of least constraint. In fixing the second moment of
the temperature,K2, with a psm=1d thermostat, the least
change in acceleration is applied to trajectories resulting in
minimal deviation from the unconstrained trajectory paths.
In terms of the phase space, this corresponds to the shortest
projection path of the unconstrained system to the constraint
plane. In this case, the time average of fluctuations in the
constraint force and the phase space compression are both
zero if the system is at equilibrium.

For all other values ofm the constraint force is no longer
minimal; work is done on the system by the thermostat and
the phase space is compressed. This is an important result as
it indicates the importance of thermostat constraints that ad-
here to Gauss’s principle even at equilibrium. Indeed in the
absence of an explicitly applied external fieldFe=0, it is
only a m=1 Gaussian isokinetic thermostat that generates an
equilibrium state. All otherm thermostats areautodissipative
and possess no equilibrium state.

It is also interesting to consider the properties of a
m-thermostatted system in whichKm+1=oi,dupidum+1/2m is
constrained such that Gauss’s principle is satisfied form
Þ1. For example,m=3 constrains the fourth moment of the
momentum:K4=oi,dupidu4/2m via the thermostatting variable
aK4

=oi,d Fid pid
3 / foi,d pid

6 −odsoipid
3 d2/Ng.

The results for a typical system over a range of values of
m are plotted in Figs. 3 and 4. Clearly in this case the average
value of the thermostatting variable is zero, independent of

the value ofm. This is to be expected since in this caseḢ0

=−2mKm+1a, where we have used the equations of motion
given by Eq.s6d and the fact that the total momentum is

zero. If the system is to reach a steady state,kḢ0l=0 and
sinceKm+1 is held constant,kal=0 for all m and allN. How-
ever, this doesnot imply that kLl=0 unlessm=1 sdiscussed
aboved, since L and a are not directly proportional when
mÞ1 fsee Eq.s11dg.

While theKm+1 thermostat applies the minimum change

FIG. 1. a vs m for a m thermostat fixingK2. The system consists of four
particles at equilibrium with a reduced density of 0.8.

FIG. 2. L sscaled in terms of the number of particlesd vs m for m thermostats
fixing K2. The system size is four particles and the reduced density 0.8.

FIG. 3. a vs m for m thermostats fixingKm+1. The system size is four
particles and the reduced density is 0.8.
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in acceleration in projecting the trajectories onto the con-
straint planesnote that this plane differs depending on the
value ofm and hence the particular constrained momentd, it
acts like a dissipative field, attempting to change the shape of
the velocity distribution function while simultaneously re-
moving the dissipative heat generated by this attempt to de-
form the shape of the velocity distribution function. This is
evident in Fig. 4 where the phase space compression shows a
similar behavior to them-thermostatted systems which do
not satisfy Gauss’s principle, exhibiting a clear maximum for
the casem=1 constrainingK2. Referring to Eq.s12d, while a

averages to zero, correlations between its fluctuations with
those ofoi=1,d

N upidum−1 lead to nonzero phase space compres-
sion L. Thus while Gauss’s principle holds true at every
phase point, on average the overall phase space contracts.

In order to understand the behavior of these systems, it is
important to ask what happens to the iso-KxN particle distri-
bution function

fKx
sGd =

exp„− bFsGd…dfKxsGd − Kx,0g

E dG exp„− bFsGd…dfKxsGd − Kx,0g

over time. For systems with finiteN, we consider whether, as
has been previously suggested,8 the isokinetic distribution
function is preserved bym-thermostatted dynamics at equi-
librium? si.e., is ]fKx

/]t=0 whenFe=0?d

] fKx

]t
= − Ġ ·

] fKx

]G
− fKx

]

]G
· Ġ

= SbḞ + ma o
i=1,d

N

upidum−1 + ONs1dD fKx
. s13d

Consider first the case wherex=2, i.e., the second moment
of the momentum is constrained. In this case

] fK2

]t
=1− b o

i=1,d

N

Fid pid + m o
i=1,d

N

Fid pid

o
i=1,d

N

upidum−1

o
i=1,d

N

upidum+1

+ ONs1d2 fK2
. s14d

For the standard Gaussian thermostat,m=1, this reduces to

] fK2

]t
= S− b o

i=1,d

N

Fid pid +
sdN− d − 1d

K2
o

i=1,d

N

Fid pidD fK2
= 0 iff b =

sdN− d − 1d
K2

. s15d

Clearly for mÞ1 the distribution function is preserved only whenoi=1,d
N upidum−1= b

moi=1,d
N upidum+1 or b

=moi=1,d
N upidum−1/2mKm+1. This will only be true in the thermodynamic limit since for finiteN, Km+1 fluctuatessK2 is constantd.

For the casex=m+1, a similar result can be derived, i.e.,

] fKm+1

]t
=1− b o

i=1,d

N

Fid pid + m

o
i=1,d

N

Fid pidupidum−1o
id

upidum−1

o
i,d

spid
2md − o

d
So

i

upidum−1pidD2YN
+ ONs1d2 fKm+1. s16d

It is clear that formÞ1 there is nob for which this distribution is preserved. However, in the thermodynamic limit where

b = m

o
i=1,d

N

Fid pidupidum−1o
id

upidum−1

o
i=1,d

N

Fid pidFo
i,d

spid
2md − o

d
So

i

upidum−1pidD2YNG
the iso-Km+1 distribution is preserved.

We can interpret the action of them thermostat in both cases as an additional external field on the system superimposed
over a regular Gaussianp thermostat, i.e., if we rewrite the equation of motion for the momentum in the equilibrium system

FIG. 4. L sscaled in terms of the number of particlesd vs m for m thermostats
fixing Km+1. Four particles were simulated at a reduced density of 0.8.
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as

ṗid = Fid − apid − aS pid

upidu
upidum − pidD + zd, s17d

then we can identify the termam=afspid / upidudupidum−pidg
with a dissipative field which attempts to change the shape of
the distribution function. In the process the phase space vol-
ume is not preserved by the dynamics, resulting in a constant
decrease of the Gibbs entropy of the system and constant
compression of the occupied phase space. The new distribu-
tion function thus evolves to a strange attractor, possessing a
lower dimensionality than the equilibrium distribution func-
tion of the regular Gaussiansm=1d thermostatted system.

B. Influence of system size on thermostat
properties

All the results above relate to a small system in which
the distribution function at equilibrium is not conserved by
mÞ1 dynamics. It is interesting to compare the behavior of
botha andL in small and large system limits. Figures 5 and
6 plot the behavior of these variables form-thermostatted
systems fixingK2 containing 4 and 50 particles, respectively.
Similar results were obtained form-thermostatted systems
fixing Km+1.

For the K2 thermostatted systems,Ḣ0=−oi,d Fid pid /m
and therefore it is clear thatkoi,d Fid pidl=0 for any system
that is at equilibrium or is in a steady state. If there is no
explicit field applied, then in the thermodynamic limit,aK2
;kaK2

l=koi,d Fid pidl / koi,dupidum+1l=0 si.e., there are no

fluctuations inaK2
d, consistent with the numerical results.

The same conclusion can be drawn by noting that in the
thermodynamic limit,

fK2
sGd =

exp„− bFsGd…dfK2sGd − K2,0g

E dG exp„− bFsGd…dfK2sGd − K2,0g

and that this distribution is even with respect to transforma-
tion of the coordinatesq→−q. SinceaK2

is odd with respect
to this transformation,aK2

;kaK2
l=0. A similar argument

can be used to showaKm+1
=kaKm+1

l=0, and that in field free
K2 or Km+1 thermostatted systemsL;kLl=0.

Note that the minimum in botha and −L become less
pronounced as the system size is increased, confirming the
theoretical results indicating that in the thermodynamic limit
these variables average to zero.

C. Lyapunov spectra and the conjugate pairing rule

The Lyapunov exponents may be calculated numerically
via several schemes discussed in detail previously.15 The cal-
culations presented here correspond to a method in which the
equations of motion of a mother trajectory and an additional
2dN daughter trajectoriessgenerated via infinitesimal dis-
placements to the motherd are simulated and constrained to
remain orthogonal to and a fixed phase space distance from
mother. The Lyapunov exponents are obtained from the dis-
tance constraint multiplier as discussed in Ref. 14. We con-
firmed our results via alternative calculation methods.

In Figs. 7 and 8 we plot Lyapunov spectra for severalm
thermostattedFe=0 systems. Clearly for bothm thermostats
fixing K2 andKm+1 the only value ofm for which the conju-
gate pairing rule is satisfied ism=1, i.e., the standard Gauss-
ian thermostat. Other values ofm shift the spectrum to more
negative values. In the light of Figs. 2 and 4 this result is
unsurprising. As the phase space is compressed the rate of
contraction of infinitesimal areas in phase space dominates
the rate of expansion with a resulting shift in the spectrum.
The changes are most prominent in the smallest exponents
and indicate evolution towards a strange attractor. We can

FIG. 5. Comparison of variation ofa with m for m thermostats fixingK2 in
systems of differing sizes4 or 50 particlesd. The reduced density in both
systems is 0.8.

FIG. 6. ScaledL vs m for m thermostats fixingK2 with varying system size
s4 or 50 particlesd. The reduced density is 0.8 in both cases.

FIG. 7. Lyapunov spectra form thermostats fixingK2 with m=1 sfilled
circlesd and m=5 sfilled squaresd. The exponent pair indexi denotes pair
sli ,l4N+1−id and the sums of exponent pairs are denoted by the broken lines
with open circlessm=1d and open squaressm=5d. The systems consist of
four particles at a reduced density of 0.8 andFe=0.
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estimate the dimension of this attractor by calculating the
Kaplan–Yorke dimension of them-thermostatted systems.
The Kaplan–YorkesKY d dimension17 DKY is given by

DKY = NKY +

o
i=1

NKY

li

ulNKY+1u
, s18d

whereNKY is the largest integer for whichoi=1
NKYli is positive.

Volume elements associated with Lyapunov exponentsi
.DKY contract in time.17,18 For a system withm=1, DKY

=16, i.e., no phase space contraction occurs. In contrast, for
a system withm=5, such as illustrated in Figs. 7 and 8,
DKY =14.8 and 15.4 form thermostats fixingK2 and Km+1,
respectively, indicative of the phase space contraction in
these systems. The behavior of Lyapunov spectra, the
Kaplan–Yorke dimension, and satisfaction of CPR with vary-
ing values ofm and varying perturbing fields will be exam-
ined in more detail in a forthcoming paper.

D. Influence of weak fields on thermostat properties
in small systems

We also examined the effect of a weak color field on
systems thermostatted via the family ofm thermostats dis-
cussed above. The external field does work on the system
that is then converted into heat that must be removed by the
action of the thermostat. Equations17d suggests that the dis-
sipative action of am thermostatsi.e.,amd and its thermostat-
ting action in response to an external field can be treated
independently. We can test this by comparing a series of
m-thermostatted systems at equilibrium with those under the
action of finite fields.

Figures 9 and 10 demonstrate that the influence of a
weak color fieldsapplied here in thex directiond does little to
alter the results presented above. As shown in Figs. 9 and 10
the degree to whicha and L change withm changes little
with the superimposed field, i.e., a weak field produces a
simple shift and does not change the relative behavior of the
thermostats.

E. Uniqueness of the Gaussian m=1 thermostat:
Momentum rescaling

It is interesting to consider howm thermostatting alters
the momentum distribution, and thus how it might be ex-
pected to change the Lyapunov spectrum of the system. It is
straightforward to show that continual, uniform rescaling of
the momentum of each particle produces the same dynamics
as am=1 thermostat. Using the finite difference relation to
determine the time evolution of the unthermostattedsadia-
baticd equations of motion for a system gives limdt→0pid

adst
+dtd=pidstd+sFidstd+DidgstdFegddt. The time evolved mo-
mentum in the thermostatted system is then

lim
dt→0

pidst + dtd = pidstd + fFidstd + DidgstdFeggdt − astdpidstddt

= pid
adst + dtd − astdpid

adst + dtddt + Osdt2d

= f1 − astddtgpid
adst + dtd + Osdt2d. s19d

Thus, the effect of the thermostatting term is a simple linear
rescaling of the momentum:pid

adst+dtd→ f1−astddtgpid
adst

+dtd=pidst+dtd. The momentum of every particle is scaled
by the same factor,f1−astddtg. In the case of a thermostat
wheremÞ1,

lim
dt→0

pidst + dtd = pid
adst + dtd − astdupid

adst + dtdum−1

3pid
adst + dtddt + Osdt2d

= s1 − astdupid
adst + dtdum−1dtdpid

adst + dtd. s20d

In this case a different momentum rescaling is required for

FIG. 8. Lyapunov spectra form thermostats fixingKm+1 with m=1 sfilled
circlesd and m=5 sfilled squaresd. The exponent pair indexi denotes pair
sli ,l4N+1−id and the sums of exponent pairs are denoted by the broken lines
lines with open circlessm=1d and open squaressm=5d. The systems consist
of four particles at a reduced density of 0.8 andFe=0.

FIG. 9. a vs m for a series ofm thermostats fixingK2 at varying color field
strengths. The system consists of four particles at reduced density 0.8.

FIG. 10. L vs m for a series ofm thermostats fixingK2 at varying color field
strengths. The system consists of four particles at a reduced density of 0.8.
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different particles and for different directions, depending
upon the magnitude of the momentum in the different direc-
tions. This means that themÞ1 thermostats change the
shape of the momentum distribution.

Rescaling the momentum can alternatively be considered
as a rescaling of time: i.e., changing the rate of the clocks
that measure the momentum evolution. Form=1 the time
rescaling is identical for all particles regardless of their mo-
mentum. However whenmÞ1, the time rescaling is different
for different particles.

This observation has implications on the Lyapunov spec-
tra of m-thermostatted systems. From the definition of the
Lyapunov exponentsli =limt→`s1/2tdlnfdGi

2std /dGi
2s0dg de-

scribing the asymptoticsexponentiald rate of separation of
nearby points in phase space. Nonuniform rescaling of time
can be expected to result in a violation of the conjugate pair-
ing rule because fast and slow particles will be affected dif-
ferently by the rescalingssd. The data presented in this paper
for mÞ1 thermostatted systems confirms this failure.

The failure of CPR formÞ1 thermostatted systems can
also be understood by considering the structure of the stabil-
ity matrix of the flow.15 The stability matrix for them=1
thermostatted systems is infinitesimallym symplectic to
Os1/Nd, however, this structure is broken when amÞ1 ther-
mostat is used. As the symmetry is broken by terms ofOs1d,
it might be anticipated that the CPR will not be obeyed, even
in the thermodynamic limit. This will be investigated in fu-
ture work.

IV. CONCLUSION

As pointed out by Klages5 since artificial thermostatting
mechanisms are models of what occurs in nature it is impor-
tant to consider a range of different thermostatting mecha-
nisms and to understand which thermostats may be used to
correctly model specific systems. The present paper points
out that some proposed thermostatting mechanisms have un-
desirable physical properties and should be used with cau-
tion. We have provided evidence for the unique status of the
Gaussian isokinetic thermostat. We have shown, using a se-
ries of m thermostats that fix the kinetic temperatureK2

=oi=1,d
N upidu2/2m of a system, that the Gaussianm=1 thermo-

stat minimizes both the change of particle accelerations
within the system and the phase space compression. While
the significance of the Gaussian thermostat has been sug-
gested previously by work on nonequilibrium systems, our
work here is significant as it clearly identifies for the first
time why the Gaussian isokinetic thermostat is the optimum
choice for use in simulations. Indeed we show that among all
m thermostats, it is theonly choice.

In this paper we have explored both equilibrium and
weakly driven systems and our results clearly indicate that in
the absence of a dissipative external field:sid all m thermo-
stats that violate Gauss’s principle do not generate an equi-
librium state andsii d among m thermostats that satisfy
Gauss’s principle to fix them+1 moment of the velocity
distribution, only the conventional Gaussian isokinetic ther-
mostatsm=1d possesses an equilibrium state.

Thermostats that either violate Gauss’s principle or

while obeying Gauss’s principle, attempt to constrain mo-
ments other than the second moment of the velocity distri-
bution sKm+1=oi=1,d

N upidum+1/2m with mÞ1d, result in a finite
rate of phase space compression due to a continuous attempt
to deform the shape velocity distribution from its canonical
form. These autodissipative thermostats fail to generate an
equilibrium state. This is evidenced by the continuous com-
pression of the accessed phase space. These results indicate
that in order to permit an equilibrium state, thermostats must
constrain the second moment of the velocity distribution and
while so doing they must satisfy Gauss’s principle of least
constraint. In the absence of explicit dissipative fields, such a
system will on average preserve the phase space volume, the
Kaplan–Yorke dimension will match the ostensible phase
space dimension and the conjugate pairing rule will be sat-
isfied for adiabatically symplectic systems. For all other
choices ofm thermostats, continuous phase space compres-
sion occurs, the Kaplan–Yorke dimension will be less than
the ostensible phase space dimension and the CPR cannot be
satisfied.

A weak field does nothing to alter the autodissipative
action ofm thermostats. Exploration of larger systems how-
ever suggests that for largeN the autodissipative action of
the thermostat is minimal and in the thermodynamic limit the
properties of the system become those of a system thermo-
statted with a conventional Gaussian isokinetic thermostat.
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