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Abstract. Epistemic querying extends standard ontology inferencing
by allowing for deductive introspection. We propose a technique for epis-
temic querying of OWL 2 ontologies not featuring nominals and univer-
sal roles by a reduction to a series of standard OWL 2 reasoning steps
thereby enabling the deployment of off-the-shelf OWL 2 reasoning tools
for this task. We prove formal correctness of our method, justify the
omission of nominals and universal role, and provide an implementation
as well as evaluation results.

1 Introduction

Ontologies play a crucial role in the Semantic Web and the Web Ontology
Language (OWL, [7]) is the currently single most important formalism for
web-based semantic applications. OWL 2 DL — the most comprehensive
version of OWL that still allows for automated reasoning — is based on
the description logic (DL) SROZQ [5]. Querying ontologies by means of
checking entailment of axioms or instance retrieval is a crucial and promi-
nent reasoning task in semantic applications. Despite being an expressive
formalism, these standard querying capabilities with OWL ontologies lack
the ability for introspection (i.e., asking what the knowledge base “knows”
within the query language). Autoepistemic DLs cope with this problem
and have been investigated in the context of OWL and Semantic Web.
In particular, they allow for introspection of the knowledge base in the
query language by means of epistemic operators, such as the K-operator
(paraphrased as "known to be”) that can be applied to concepts and
roles.

The K-operator allows for epistemic querying. E.g., in order to formu-
late queries like "known white wine that is not known to be produced in
a French region” we could do an instance retrieval w.r.t. the DL concept

K White Wine I —E|Klocatedln.{FrenchRegion}.
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This can e.g. be used to query for wines that aren’t explicitly excluded
from being French wines but for which there is also no evidence of being
French wines either (neither directly nor indirectly via deduction). For
the knowledge base containing

{ White Wine ( MountadamRiesling) , locatedIn ( MountadamRiesling, AustmlianRegion) }

the query would yield MountadamRiesling as a result, since it is known to
be a white wine not known to be produced in a France, while a similar
query without epistemic operators would yield an empty result. Hence, in
the spirit of nonmonotonicity, more instances can be retrieved (and thus
conclusions can been drawn) than with conventional queries in this way.
Another typical use case is integrity constraint checking: testing whether
the axiom

K Wine E dKhasSugar.{ Dry} LI AKhasSugar.{ OffDry} LI AK hasSugar.{ Sweet}

is entailed allows to check whether for every named individual that is
known to be a wine it is also known (i.e. it can be logically derived from
the ontology) what degree of sugar it has.!

However, epistemic operators (or other means for nonmonotonicity)
have not found their way into the OWL specification and current rea-
soners do not support this feature; former research has been focused on
extending tableaux algorithms for less expressive formalisms than OWL
and have not paced up with the development of OWL reasoners towards
optimized tableaux for expressive languages; in particular, some expres-
sive features like nominals require special care when combined with the
idea of introspection by epistemic operators.

In this paper, we take a different approach to make epistemic querying
possible with OWL ontologies; namely, we reuse existing OWL reasoners
in a black box fashion while providing a mechanism for reducing the
problem of epistemic querying to standard DL instance retrieval; our
approach reduces occurrences of the K-operator to introspective look-ups
of instances of a concept by calls to a standard DL reasoner, while we keep
the number of such calls minimal; we have implemented this approach in
form of a reasoner that accepts epistemic queries and operates on non-
epistemic OWL ontologies

Our contributions are the following:

! Note that this cannot be taken for granted even if Wine T JhasSugar.{Dry} U
3hasSugar.{ Off Dry} U 3hasSugar.{ Sweet} is stated in (or can be derived from) the
ontology.



We introduce a transformation of epistemic queries to semantically
identical non-epistemic queries by making introspective calls to a stan-
dard DL reasoner and by propagating the respective answer sets as
nominals to the resulting query.

— We prove the correctness of this transformation in the light of some
difficulties that occur with the common domain and rigid term as-
sumptions that underly autoepistemic DLs.

— We present an efficient algorithm for implementing the above trans-
formation with a minimal number of calls to a standard DL reasoner
for the introspective look-ups of instances.

— Based on this algorithm, we provide a reasoner capable of answering

epistemic queries by means of reduction to standard DL reasoning in

the framework of the OWL-API extended by constructs for epistemic
concepts and roles to be used in epistemic queries. First experiments
show that our approach to epistemic querying is practically feasible.

The rest of this paper is structured as follows: Section 2 puts our
approach into context with related work. Section 3 introduces the de-
scription logic SROZQ and its extension with the epistemic operator
K. In Section 4, we provide the formal justification for our method of
reducing SROZOK axiom entailment from SRZQ knowledge bases. In
Section 5, we describe principle problems arising from allowing the use
nominals or universal role in the knowledge base. In Section 6, we discuss
the implementation issues and some evaluation results. We conclude in
Section 7.

2 Related Work

In the early 80s Hector J. Levesque argued for the need for a richer query
language in knowledge formalisms [6]. He describes that the approach to
knowledge representation should be functional rather than structural and
defends the idea of extending a querying language by the attribute knows
denoted by K (a modality in Modal Logic terminology). In [8], Raymond
Reiter makes a similar argument of in-adequacy of the standard first-
order language for querying. Nevertheless, he discusses this issue in the
context of databases. Similar lines of argumentation can be seen in the
DL-community as well [3,4,2,1] where several extensions of DLs have
been presented as well as algorithms for deciding the reasoning services
in such extensions. The extension of the DL ALC [9] by the epistemic
operator K called ALCK, is presented in [3]. A tableau algorithm has
been designed for deciding the satisfiability problem. Answering queries



in ALCK put to ALC knowledge bases is also discussed. In this work we
mainly focus on DLs extended with the epistemic operator K following
notions presented in [3]. However, we consider more expressive DLs rather

than just ALC.

3 Preliminaries

In this section, we present an introduction to the description logic SROZQ
and its extension with the epistemic operator K.

3.1 Description Logics SROZQ

We start by presenting the syntax and semantics of SROZQ. It is an
extension of ALC with inverse roles(Z), role hierarchies(H), nominals(O)
and qualifying number restrictions(Q). Besides it also allows for several
role constructs and axioms.

Definition 1. For the signature of SROZQ we have finite and disjoint
sets No, Ngr and Ny of concept names, role names and individual names
respectively.? Further the set Ny is partitioned into two sets namely,

Rs and R, of stmple and non-simple roles respectively. The set R of
SROIZO-roles is

R:=U|Ng| Ny

where U is called the universal role. Further, we define a function Inv on
roles such that Inv(R) = R~ if R is a role name, Inv(R) = Sif R =5~
and Inv(U) :=U.

The set of SROZ Q-concepts is the smallest set satisfying the following
properties:

— every concept name A € N is a concept;

— T(top concept) and L (bottom concept) are concept;

— if C, D are concepts, R is a role, S is a simple role, aq,...,a, are
individual names and n a non-negative integer then following are con-
cepts:

2 Finiteness, in particular for Ny, is required for the further considerations. However
note that the signature is not bounded and can be extended whenever this should
be necessary.



-C (negation)
35.Self  (self)

CnD  (conjunction)
CuD  (disjunction)
VR.C universal quantification)

<nS.C (at least number restriction)
>nS.C (at most number restriction)

(
(
(
JR.C  (existential quantification)
(
(
{ai1,...,a,} (nominals / one-of)

An RBoz axiom is an expression of one the following forms:

1. Rio---oR, C R where Ry,...,R,,ReER and if n =1 and Ry € Rg
then R € Ry,

2. Ref(R) (reflexivity), Tra(R) (transitivity), lIrr(R) (irreflexivity), Dis(R, R')
(role disjointness), Sym(R) (Symmetry), Asy(R) (Asymmetry) with
R,R e R.

RBox axioms of the first form i.e., Rio---0o R, T R are called role
inclusion axioms (RIAs). An RIA is complez if n > 1. Whereas the RBox
axioms of the second form e.g., Ref(R), are called role characteristics. A
SROZQ-RBox R is a finite set of RBox axioms such that the following
conditions are satisfied:?

— there is a strict (irreflexive) total order < on R such that
e for R € {S,Inv(S)}, we have that S < R iff Inv(S) < R and
e every RIA is of the foorm RoRC R, Inv(R)E R, Ryo...R, C R,
RoRjo---oR, C Ror Rio---oR,oRC Rwhere R,R,...,R, € R
and R; < Rfor 1 <i<n.
— any role characteristic of the form Irr(S), Dis(S,S”) or Asy(S) is such
that S,S” € Rg i.e., we allow only for simple role in these role char-
acteristics.

A SROZQ general concept inclusion axiom (GCI) is an expression of
the form C C D, where C' and D are SROZ Q-concepts. A SROZQ-TBox
is a finite set of SROZQ-GClIs.

An SROIQ-ABox axiom is of the form C(a), R(a,b),a =bora#b
for the individual names a and b, SROZQ-role R and a SROZQ-concept
C. A SROTQ-ABozx is a finite set of SROZO-ABox axioms.

3 These conditions are enforced to attain decidability. We usually call an RBox to be
regular because of the first condition.



A SROZQ-knowledge base is a tuple (T, R,.A) where T is a SROZ Q-
TBox, SROZQ-R is a role hierarchy and SROZQ-A is a ABox. O

To define the semantics of SROZQ, we introduce the notion of inter-
pretations.

Definition 2. A SROTIQ-interpretation T = (AZ,-Z) is composed of a
non-empty set AL called the domain of Z and a mapping function -~
that:

— AT C AT for every concept name A;

— RT C AT x AT for every R € Np;

— af € AT for every individual name a.

such

Further the universal role U is interpreted as a total relation on A i.e.,
UT = AT x AT. The bottom concept L and top concept T are interpreted
by ® and AT respectively. Now the mapping .7 is extended to roles and
concepts as follows:

ERCE = {A(ﬂi%)l\ (y,z) € R?}
(35.Self)* ; {z| (z,2) € ST}
(cnbDY= ctnD?

)
(CuDY = ctubD?*
(VR.C)L = {p1 € A|VYpa.(p1,p2) € RE — py € CT}
ER.C)I = {p1 € A|3pa.(p1,p2) € RE Apy € CF}
(<nS.O)F = {p1eA|#{p2| (p1,p2) € ST Ap2 € CT} < n}

(>nS.C) = {p1 € A|#{p2| (p1,p2) € ST Apy € C7} > n}
{ay,...,an}f = {af,... a O

where C, D are SROZO-concepts, R, S are roles, n is a non-negative in-
teger and #M represents the cardinality of the set M.

Given an axiom «a (TBox, RBox or ABox axiom), we say the an inter-
pretation Z satisfies a, written Z |= «, if it satisfies the condition given
in Table 1. Similarly Z satisfies a TBox T, written Z |= T, if it satisfies
all the axioms in 7. The satisfaction of an RBox and an ABox by an
interpretation is defined in the same way. We say Z satisfies a knowledge
base X = (T,R,.A) if it satisfies 7, R and A. We write Z = X. We call
7 amodel of ¥. A knowledge base is said to be consistent if it has a model.

We now present the extension of the DL. SROZQ by the epistemic
operator K. We call this extension SROZ QK.



Table 1. Semantics of SROZQ axioms

Axiom « TEa,if
Rio---oR,CR|Rfo---ocREZCR?

Tra(R) RToRT C R*

Ref(R) (z,z) € RT for all z € AT

Irr(S) (z,x) ¢ ST for all z € AT

Dis(S,T) (z,y) € ST implies (z,y) € T* for all z,y € AT
Sym(S) (z,y) € ST implies (y,z) € S for all z,y € AT
Asy(S) (x,y) € ST implies (z,y) € ST for all 2,y € AT
CCD crC D

C(a) af et

R(a,b) (a®,b") € RT

a=1b at =a*

a#b at £ bt

3.2 K-extensions of SROIQ

The embedding of the epistemic operator K into the description logic
ALC was first proposed in [2]. The logic obtained is called ALCK. A
similar approach has been taken in [3], which we follow in this work. We
consider SROZQ as the basis DL and call its K-extension SROZQOK. In
SROIQK we allow K in front of the concepts and role names. In the
following we provide the formal syntax and semantics of such language
where N¢, Ng, N;, R are as in Definition 1.

Definition 3. A SROZQK-role is defined as follows:

— every R € R is a SROZQK-role;
— if Ris a SROZQK-role than so are KR and R™.

We call a SROZ QK -role an epistemic role if K occurs in it. An epistemic
role is simple if it is of the form KS where S is a simple SROZQ-role.
Now SROZQK-concepts are defined as follows:

— every SROZQ-concept is an SROZQ-concept;
— if C and D are SROZQK-concepts, and .S and R are SROZQIK roles
with S being simple, then the following are SROZ QK -concepts:

KC|~C|CND|CUD|VR.C|3R.C|<nS.C|>nS.C 0
The semantics of SROZQK is given as possible world semantics in

terms of epistemic interpretations. Thereby following assumptions are
made:

1. all interpretations are defined over a fixed infinite domain A (Common
Domain Assumption);



2. for all interpretations, the mapping from individuals to domains ele-
ments is fixed: it is just the identity function (Rigid Term Assump-
tion).

Definition 4. An epistemic interpretation for SROZ QK is a pair (Z, W)
where 7 is a SROZ Q-interpretation and W is a set of SROZ Q-interpretations,
where Z and all of W have the same infinite domain A with N; C A. The
interpretation function 2"V is then defined as follows:

atVWV = a forac Ny

ATW — AT for A€ Ngo

RTW = R? for Re Ng

TIW = A  (the domain of T)

0

(C M D)I,W — CI,W N DI,W

(C L D)Z’W — CZ’W U DZ,W

(_|C)I,W - A \ CI,W

(VR.C)Z’W = {pl €A | Vpg.(pl,pg) c RI’W — P2 € CI’W}

(HR.C)I’W = {pl e A | Hpg.(pl,pg) e RTW A p2 € CI’W}
)
)
)

—
N
=
|

(<nR.OYIW = {d|#{ec CTW | (d,e) € REW} <n}
{d] #{c € CTW | (d,¢) € R} > n}
(KO = Ngew(CT7)
(KR)I’W = ﬂjew(RJ’W)

where C' and D are SROTZ QK -concepts and R is a SROZQK-role. Fur-
ther for an epistemic role (KR)™, we set [(KR)_]I = (KR™)Z. O

Vv

S

=

Q
€
s
|

From the above one can see that KC' is interpreted as the set of ob-
jects that are in the interpretation of C' under every interpretation in W.
Note that the rigid term assumption implies the unique name assump-
tion (UNA) i.e., for any interpretation Z € W and for any two distinct
individual names a and b we have that a # b”.

The notions of GCI, assertion, role hierarchy, ABox, TBox and knowl-
edge base, and their interpretations as defined in Definition 1 and 2 can
be extended to that of SROZ QK by allowing for SROZ QX -concepts and
SROTIQK-roles in their definitions.

An epistemic model for a SROZQK-knowledge base ¥ = (T, R, A) is
a mazimal non-empty set W of SROZ Q-interpretations such that (Z, V)
satisfies 7, R and A for each Z €¢ W. A SROZQK-knowledge base ¥ is
said to be satisfiable if it has an epistemic model. The knowledge base
¥ entails an axiom ¢, written ¥ ||= ¢, if for every epistemic model W



of ¥, we have that for every Z € W, the epistemic interpretation (Z,V)
satisfies . By definition every SROZ Q-knowledge base is an SROZ QK-
knowledge base. Note that a given SROZOQ-knowledge base X' has up
to isomorphism only one unique epistemic model which is the set of all
models of X' having infinite domain and satisfying the unique name as-
sumption. We denote this model by M(X).

4 Deciding Entailment of Epistemic Axioms

In this section we provide a way for deciding epistemic entailment based
on techniques for non-epistemic standard reasoning. More precisely, we
consider the problem whether a SROZQK axiom « is entailed by a SRZQ
knowledge base X', where SRZQ is defined as SROZQ excluding nomi-
nals and the universal role. That is, we distinguish the querying language
from the modeling language. One primary use of the K operator that we
focus on in this paper is for knowledge base introspection in the query,
which justifies to exclude it from the modeling language in exchange for
reducibility to standard reasoning. The reasons for disallowing the use of
nominals and the universal role will be discussed in Section 5.

The basic, rather straightforward idea to decide entailment of an ax-
iom containing K operators is to disassemble the axiom, query for the
named individuals contained in extensions for every subexpression pre-
ceded by K, and use the results to rewrite the axiom into one that is free
of Ks. While we will show that this idea is theoretically and practically
feasible, some problems need to be overcome that arise from the defini-
tion of epistemic models, in particular the rigid term assumption and the
common domain assumption.

As a consequence of the rigid name assumption, every Z € M(X)
satisfies the condition that individual names are interpreted by different
individuals (this condition per se is commonly referred to as the unique
name assumption). In order to enforce this behavior (which is not en-
sured by the non-epistemic standard DL semantics) we have to explicitly
axiomatize this condition.

Definition 5. Given a SRZQ knowledge base 3, we denote by Yyna
the knowledge base ¥ U{a # b | a,b € Ni,a # b}. O

Fact 6. The set of models of Yyna is exactly the set of those models of
X that satisfy the unique name assumption.

As another additional constraint on epistemic interpretations, the do-
main is required to be infinite (imposed by the common domain assump-



tion). However, standard DL reasoning as performed by OWL inference
engines adheres to a semantics that allows for both finite and infinite
models. Therefore, in order to show that we can use standard inferencing
tools as a basis of epistemic reasoning, we have to prove that finite mod-
els can be safely dismissed from the consideration, without changing the
results. We obtain this result by arguing that for any finite interpretation
we find an infinite one which “behaves the same” in terms of satisfaction
of axioms and hence will make up for the loss of the former. The following
definition and lemma provide a concrete construction for this.

Definition 7. For any SRZQ interpretation Z, the lifting of Z to w is
the interpretation Z, defined as follows:

— A% .= AT x N,

— a%v := (a%,0) for every a € Ny,

— A% .= {{x,i) | x € AT and i € N} for each concept name A € N,

— vt = {((z,4),(2',i)) | (x,2') € rT and i € N} for every role name
r € Np. O

Lemma 8. For all (z,i) € AT and all SRIQ-concepts C that (x,i) €
CT if and only if x € CT.

Proof. The proof is by the induction on the structure of C":

— For the atomic concept, T or L it follows immediately from the defi-
nition of 7.
— Let C = —D. For any = € AT we have that
z € (-D)*
s g D
& (z,i) ¢ DT for i € N (Induction)
& (z,i) € (-D)% for i € N,
— Let C = C; N Cy. For any z € AT we have that
x e (Ch 1 CQ)I
& reCfandxeCF
& (x,i) € CT and (z,i) € C* for i € N (Induction)
& (z,i) € (C1 M Cy)%e for i € N.
— Let C = 3R.D for R € R. For any z € AT we have that
r € (AR.D)*
& there is a y € AT such that (z,y) € R? and y € D*
& there is (y,1) € A% for i € N with ((x,14), (y,4)) € R™ and (y,i) €
D% (Def 7 and Induction)
& (z,i) € (AR.D)



— The rest of the cases can be proved analogously.

Lemma 9. Let X be a SRZQ knowledge base. For any interpretation T
we have that
ZE XY if and only if 7, = X.

Proof. First we note that it follows immediately from the definition of
7., that for any SRZQ-role R € R and ((z,1), (y,4')) € A%~ for 4,5’ € N
we have that ((z,i), (y,4')) € R% if an only if (z,y) € RT and i = i for
an interpretation Z. Now for any RIA Ry o... R, C R we have that:
ZTERio...R,CR
©TIkERfo...RECR?
& for any o, ..., 2, € AT, whenever (z;_1,1;) € RiI for 1 < i < n then
(zo,7,) € RT
& for any xg,...,z, € AT and any j € N, whenever ((x;_1,5), (z;,)) €
RZ.I“’ for 1 < i < n then ((zq,7), (zn, ) € R
< ZyERio...R,CR.
The second last equivalence holds as (x;—1,x;) € RiI for 1 <i<nand
any non-negative integer j implies that ((x;—1,7), (zi,J)) € RZ-Z“’. Similary
((zi_1,§i1), (x5, ji)) € RT for 1 < i < n implies that (z;_1,2;) € R?
and that all j;, s are equal. And the same holds for the role R.

Similary, for any role characteristic Ref(R), we have that:
T = Ref(R)
& (z,7) € R for all z € AT
< ((z,7), (z,5)) € R% for any j € N and z € AT
& ((x,4), (x,5)) € R% for any (x,j) € ATv as ATv = AT x N
< T, = Ref(R).
In the same way, we can prove for any of the rest of the role character-
istics that whenever 7 models it so does Z,,. Consequently we have that
for any role hierarchy R, Z = R if and only if Z,, = R.

Invoking Lemma 8, we get that for any GCI C' £ D and for any
interpretation Z, C* C D7 if and only if C*« C D”. Further for any
TBox 7,Z =T ifand only if Z,, = T.

Finally for an ABox A we show that for each assertion in o € A,
7 = « if and only if Z,, = a.

— « is of the form C'(a): Now for an interpretation Z it follows from the
definition of Z,, that e’ = (a’,0). As we have already shown that
ar € CT if and only if (af,i) € C%~ for i € N. Hence we get that
a® € C7 if and only if (a,0) € CT.



— Analogously we can show an interpretation Z satisfies an assertion if
and only if 7, does so.

The actual justification for our technique of rewriting axioms con-
taining Ks into K-free ones exploiting intermediate reasoner calls comes
from the fact that (except for some remarkable special cases) the semantic
extension of expressions proceeded by K can only contain named individ-
uals. We prove this by exploiting certain symmetries on the model set
M(X). Intuitively, one can freely swap or permute anonymous individ-
uals (i.e., domain elements which do not correspond to any individual
name) in a model of some knowledge base without losing modelhood, as
detailed in the following definition and lemma.

Definition 10. Given an interpretation Z = (A%, 1), a set A with Ny C
A, and a bijection ¢ : AT — A with ¢(a’) = a for all a € Ny, the renam-

ing of Z according to ¢, denoted by ¢(Z), is defined as the interpretation
(A, -#D) with:

— a“p(I ©(a?) = a for every individual name a
— A¥@D) = {p(2) | z € AT} for every concept name A
=

— pe ((2), 0(w)) | (z,w) € PT} for every role name P O

Lemma 11. Let X be a SRZQ knowledge base and let I be a model of
X with infinite domain. Then, every renaming ¢(Z) of T satisfies p(Z) €
M(X).

Proof. By definition, the renaming satisfies the common domain and
rigid term assumption. Modelhood w.r.t. X' immediately follows from the
isomorphism lemma of first-order interpretations [10] since Z and ¢(7)
are isomorphic and ¢ is an isomorphism from Z to ¢(Z). O

This insight can be used to “move” every anonymous individual into
the position of another individual which serves as a counterexample for
membership in some given concept D, unless the concept is equivalent
to T. This allows to prove that KD contains merely named individuals,
given that it is not universal.

Lemma 12. Let X be a SHIQ knowledge base. For any epistemic con-
cept C =KD with Xyna £ D =T and x € A, we have that x € CT-M(X)
iff « is named such that there is an individual a € Nt with = o©M()
and Yyna = D(a).



Proof. 7 =7
Suppose that z € CT-M(E) | Tt means that

T € m D7
TJEM(X)

To the contrary, suppose that there is no a € Nj such that aZM(*) =

x and Yyna E D(a) ie., z is an anonymous element. Since Yyna F~
T = D, there is a model Z’ of Yyna such that DT # AT’ This implies
that there is a y € AL such that y ¢ DZ'. Considering 7',,, we can
invoke Lemma 9 to ensure Z’,, = Yyna, moreover Lemma 8 guarantees
(y,1) € DT'=. On the other hand, by construction, (y,1) is anonymous.
Let ¢ : AT x N — A be a bijection such that p(a%) = o for all a € N;
and ¢((y,1)) = 2. Such a ¢ exists, as | AT x N| = |A| and 7', satisfies the
unique name assumption. By Lemma 11, we get that p(Z’,) € M(X).
By the choice of ¢ we get 2 ¢ D¥Z) due to (y,1) &€ D% and the fact
that ¢ is an isomorphism. In particular,

acg_iﬂDJ

TEM(D)

which is a contradiction.

” <: 7

Suppose there is a € Ny such that aZM(*) = 2 and Yyna = D(a). This
implies that for any Z € M(X) we have that 2 € D. Hence we get that
z € KDTME),

A similar property can be proved for the roles as well. Before, we have to
take care of the exceptional case of the universal role.

Claim 13. Let X be a knowledge base. For the universal role U we have:

KUI,M(Z) — UI,./\/((E)

The claim follows trivially as U7 = A x A for any J € M(X). This
means that ﬂjeM(Z) UJ = A x A. Thus, as in the case of concepts,
whenever an epistemic concept contains a role of the form KU, it will be
simply replaced by U. That, for SRZQ knowledge bases, no other role
than U is universal (in all models) is straightforward and can be shown
using the construction from Definition 7.

We can now also show that the extension of every role preceded by K
(except for the universal one), consists only of pairs of named individuals.



Lemma 14. Let X be a SRIQ knowledge base. For any epistemic role
R = KP with P # U, and z,y € A we have that (x,y) € RIM() ifr
there are individuals a,b € Ny such that M) — z, pLME) — y and
EUNA lZ P(a, b)

Proof 7 <7

By assumption we have that Yyna E P(a,b). Therefore, we have that
(z,y) € P for any interpretation Z € M(X). Hence (z,y) € KP.

” j ”

Suppose there is no such a,b € N;. We distinguish two cases.

First assume there are a,b with z = «ZM*) and y = ¥HME) but
Suna ¥ P(a,b). Then, there is an interpretation 7’ with (a',b%') ¢ PZ'.
Considering 7, we can invoke Lemma 9 to ensure 7', E Yyna and
by construction we also obtain (a%,b%) ¢ PTo. Let ¢ : AT x N = A
be a bijection such that ¢(c%) = ¢ for all ¢ € N;. Such a ¢ exists,
as |AT x N| = |A| and T/, satisfies the unique name assumption. By
Lemma 11, we get that ¢(Z',) € M(X). Moreover (a?Ze) p?(Zo)) o
P | In particular,

(@b)=@neg (| P’
)

TJeEM(E

which is a contradiction.

Second, assume at least one of x,y is anonymous. W.l.o.g. let = be
anonymous, the other case follows by symmetry. Considering Z,, we again
have Z,, = Yyna by Lemma 9. By construction, (z,1) is anonymous and
((z,1),(y,0)) ¢ PZ. Let ¢ : AT x N = A be a bijection such that
o({r,1)) = z and »((y,0)) = y. Such a ¢ exists, since |AT x N| = |A4|
and 7, satisfies the unique name assumption. By Lemma 11, we get that
©(L,) € M(X). Moreover (z¥Z) y#(Zw)) ¢ P#(Zw) In particular,

@y ¢ [ P7

TEM(E)

which again is a contradiction. O

Having established the above correspondences, we are able to define a
translation procedure that maps (complex) epistemic concept expressions
to non-epistemic ones which are equivalent in all models of Y.



Definition 15. Given a SRZQ knowledge base X', we define the function
@5 mapping SROZQK concept expressions to SROZQ concept expres-
sions as follows (where we let {} =0 = 1):

C — C if C is an atomic or one-of concept, 35.Self, T or L;
T if EUNA ':@E(D)ET
KD = {{a € N1 | Suxa E ®5(D)(@)}  otherwise
IKS.Self — {a € N; | Zuna E S(a,a)}
CinCy — ¢2(Cl) M @2(02)
CiuUCy — @2(01) U@z,‘(CQ)
-C — D5 (C)
3R.D — 3R.$x(D) for non-epistemic role R
JKP.D — {a € Ny ‘ db € N;y.Yuna ': P(a,b) A JUNA ): @E(D)(b)}
VR.D — VR.®x(D) for non-epistemic role R;
VKP.D — =& 5 (IKP.—D)
>nS.D — >nS.$5(D) for non-epistemic role S
>nKS.D — {a € Ny | #{b € N1.Zuna = P=(D)(b) A Xuna | S(a,b)} > n}
<nS.D — <nS.®@x(D) for non-epistemic role S;
<nKS.D — =P (>(n+1)KS.D)
EKU.D — EU.®x(D) for = € {V, 3, >n, <n}

Dy :

Now we present an example that demonstrate how to use the trans-
lation function in checking epistemic entailments.

Example 16. Consider the knowledge base X' which is presented picto-
rially in Figure 16. Suppose we want to check if

Professor LI Grad Professor

TEACHES
JENROLLED.Grad
C 21 C 324 m
4 | ee2s2 | JENROLLED Grod

\ ENROLLED

Fig. 1. Pictorial Representation of X'



Y |= 3KENROLLED.K Grad(ee282) (1)

Note that the concept IKENROLLED.K Grad represents the individuals
(courses) for which X' knows an enrolled student who is also known to
be graduate. To check ee282 is such a course, we reduce the concept to a
non-epistemic one using the translation function. First of all we compute
the set of all individuals that are known to be graduate, i.e., the inter-
pretation of the concept KGrad. The only known graduate is mary as it is
explicitly asserted by Y. Peter is explicitly asserted to be non-graduate
whereas Susan is asserted to be a student and no further information is
provided about her. In other words, there can models where Susan is a
graduate and other models where she is a non-graduate. Hence she does
not belong to the interpretation of the concept Grad in all possible worlds
(interpretations) i.e., she does not belong to the interpretation of KGrad.
What we do next is to compute all courses in which Mary is enrolled in
every possible worlds i.e., we compute the set

{a € N | Yuna = ENROLLED(a, mary)}

According to Figure 16 this yields {cs221}. Now the epistemic entailment
(1) can be answered by checking if Yyna E {cs221}(ee282), which of
course is not the case.

Further, lets check the following epistemic entailment

X H: VK TEAC’HES.KIntermediateCourse(bob) (2)

The epistemic concept here represents the class of all individuals
(people) which are known by X to teach a course which is intermedi-
ate and known to Y. According to the translation function, the concept
VK TEACHES. KIntermediateCourse is translated into the following concept

D5 (HK TEACHES .— KIntermediateCourse)

which further is translated into

—{a € N;1|3b € N;.Xyna | TEACHES (a,b)AXuna = P (—KIntermediateCourse)(b)}

Computing @y, (—KntermediateCourse) yields {65221 , 83234 } In similar fash-
ion, we can compute the instances of the concept in (2) which yields
{8221, 5324, ee282, mary, susan, peter, bob}. These are the individuals known
to teach known intermediate courses only. Hence it is indeed the case that
the entailment in (2) holds. O



In the above example, we have seen the reduction of an epistemic concept
to a non-epistemic one with intermediate reasoner calls using the trans-
lation function @5. We have also seen how to check epistemic entailment
using the non-epistemic concept obtained from the translation. To see if
this method is indeed correct, first in the following lemma, we show that
the extension of a SROZQK-concept and the extension of the SROZ Q-
concept, obtained using the translation function @y, agree under each
model of the knowledge base.

Lemma 17. Let X be a SRIQ-knowledge base, x be an element of A,
and C be a SROZQK concept. Then for any interpretation T € M(X),
we have that CTME) = (d5(C))FME),

Proof. The proof is simply by induction on the structure of the formula.
For the base case; C' is an atomic concept, and the cases where C = T
or C'= 1, the lemma follows immediately from the definition of @5. For
the cases, where C' = C1 M Cy, C = C; UCy or C = —D, it follows from
the standard semantics and induction hypothesis. We focus on the rest of
the cases in the following.

i. C =KD and Yynpa £ D =T:
By Lemma 12, z € (KD)HM(*) if and only if there is an a € Ny
with £ = a®M) and Yyna = D(a). This is equivalent to z €
{a € Nr | Yuxa = D(a)}*M) and hence, by definition of @5, to
z € (P(KD))TME),

ii. C=KDand Yyxa ED=T:
Note that it trivially holds that if z € CZM() then z € (H(C))TM)
as ®(C) = T. Hence we just prove that whenever z € ($(C))LME)
then z € CTM(E) also. To contrary, suppose this is not the case i.e.,
z € (9(C)IMP) but 2 ¢ CTM¥), Hence, by definition, we get that

azgﬂDJ

TEM()

Therefore, there is an interpretation 7' € M(X) such that = ¢ DT
Since M (X)) is an epistemic interpretation, hence Z' € M(X) respects
the unique name assumption and therefore, 7/ = Yyna with DT £ A.
Hence Yyna £ D = T, which is a contradiction.
iii. C = dP.D and P is a simple role:

By semantics, € (IP.D)2M) if and only if there is y € A such
that (z,y) € PLM(E) and Y € DTM() - and therefore by induction,
y € (®(D))LME), Hence it is equivalent to 2 € (®(K D))TME),



iv. C =3dKP.D:
z € (3KP.D)EM)
& there is y € A such that (z,y) € (KP)ZM(*) and y € DTM()

< there is y € A and by Lemma 12 there are a,b € Ny such that:
— oy = g M),

—y= bI,./\/l(E)7

— Yuna E P(a,b)
and by induction hypothesis, y € ®(D)ZM(), Note that x is related
to y via P under every interpretation in M (X'), hence by the rigid term
assumption we get that X' = &(D)(b), particularly Yyna = @(D)(b).

&> there is y € A and by Lemma 12 there are a,b € Ny such that:
~ = g IME),
—y= bI,M(Z)’
anda € {ce N;|3de N;: X = P(e,d) N X = d(D)(d)}
szec{ceN;|3de N: X = Ple,d) N X = (D) (d)}LM>)
& 2 € [B(3KP.D)EME)
v. The rest of the cases can be proved in a similar fashion.

Moreover Lemma 17 allows to establish the result that the translation
function @5, can be used to reduces the problem of entailment of SROZOK
axioms by SRZQ knowledge bases to the problem of entailment of SROZQ
axioms, formally put into the following theorem.

Theorem 18. For a SRZQ knowledge base X', SROZOK-concepts C
and D and an individual a the following hold:

1. ¥ |=C(a) ezactly if Xuna E @5(C)(a).
2. X |= CC D ezxactly if Yyna = Px(C) C &x(D).

Proof. For the first case, we see that ¥ = C(a) is equivalent to a?M(*) ¢
CT-M(¥) which by Lemma 17 is the case exactly if aZ M) € @5 (C)TME)
for all Z € M(X). Since @5 (C) does not contain any Ks, this is equiv-
alent to aZ € @x(C) and hence to Z = &5 (C)(a) for all T € M(X).
Now we can invoke Fact 6 and Lemma 9 to see that this is the case if and
only if Yyna = @5 (C)(a). The second case is proven in exactly the same
fashion. O

Hence standard DL-reasoners can be used in order to answer epis-
temic queries. It can be seen from the definition of @5 that deciding
epistemic entailment along those lines may require deciding many clas-
sical entailment problems and hence involve many calls to the reasoner.
Nevertheless, the number of reasoner calls is bounded by the number of
Ks occurring in the query.



5 Semantical Problems Caused by Nominals and the
Universal Role

One of the basic assumptions that is made regarding the epistemic in-
terpretations is the common domain assumption as mentioned in Sec-
tion 3. It basically has two parts: all the interpretations considered in an
epistemic interpretation share the same fixed domain and the domain is
infinite. However, there is no prima facie reason, why the domain that
is described by a knowledge base should not be finite, yet finite models
are excluded from the consideration entirely. We have shown that this
is still tolerable for description logics up to SRZQ due to the fact that
every finite model of a knowledge base gives rise to an infinite one that
behaves the same (i.e. the two models cannot be distinguished by means
of the underlying logic), as shown in Lemma 9. However, this situation
changes once nominals or the universal role are allowed. In fact, the ax-
ioms T C {a,b,c} or T C <3U.T have only models with at most three
elements. Consequently, according to the prevailing epistemic semantics,
these axioms are epistemically unsatisfiable. In general, the coincidence of
= and = under the UNA which holds for nonepistemic KBs and axioms
up to SRZQ does not hold any more, once nominals or the universal role
come into play.

We believe that this phenomenon is not intended but rather a side
effect of a semantics crafted for and probed against less expressive de-
scription logics, as it contradicts the intuition behind the K operator. A
refinement of the semantics in order to ensure an intuitive behavior also
in the presence of very expressive modeling features is subject of ongoing
research.

6 A System

To check the feasibility of our method in practice, we have implemented
a system that we called EQuIKa* and performed some first experiments
for epistemic querying.

Implementation The EQuIKa system implements the transformation @
of an epistemic concept to its non-epistemic version from Definition 15
involving calls to an underlying standard DL reasoner that offers the
reasoning task of instance retrieval. To obtain an efficient implementation
of @ it is crucial to keep the number of calls to the DL reasoner minimal.

4 Epistemic Querying Interfance Karlsruhe.



Algorithm 1 translate (X, C') — Translate epistemic query concepts to
non-epistemic ones
Require: a SRZQ knowledge base X', an epistemic concept C
Ensure: the return value is the non-epistemic concept ®(C)
translate (X, C = KD)
X := retrievelnstances (X, translate (X,D))
return {...,0;,...} ,0,€X
translate (X, C' = 3KR.D)
Xp := retrievelnstances (X, translate (X,D))
X := retrievelnstances (¥, 3R.{...,0:,...}) ,0i € Xp
return {...,0;,...} ,0,€X
translate (X, C' = VKR.D)
Xp := retrievelnstances (X, translate (X,—D))
X := retrievelnstances (¥, 3R.{...,0:,...}) ,0i € Xp
return +{...,0;,...} ,0,€X
translate (¥, C' => nKR.D)
Xp := retrievelnstances (X, translate (X,D))
X := retrievelnstances (X, > nR.{...,0:,...}) ,0i € Xp
return {...,0;,...} ,0,€X
translate (X, C =< nKR.D)
Xp := retrievelnstances (X, translate (X,D))
X := retrievelnstances (X, > (n+ 1)R.{...,0:,...}) ,0i € Xp
return —+{...,0;,...} ,0,€X
translate (X, C =...)

With Algorithm 1 we provide such an efficient implementation, exploiting
the fact that extensions of epistemic roles (that occur in role restrictions)
only contain known individuals. It shows the transformation in terms of
virtual recursive translation functions for the various cases of epistemic
concept expressions®.

From Algorithm 1, it can be seen that the number of calls to the un-
derlying DL reasoner is at most twice the number of K-operators that
occur in the original query. This is much better than a naive implemen-
tation of @ according to Definition 15 with iteration over intermediate
retrieved individuals.

The EQulIKa system is implemented on top of the OWL-API® ex-
tending its classes and interfaces with constructs for epistemic concepts
and roles, as shown by the UML class diagram in Figure 2. The new

5 The less interesting cases of non-epistemic concept expressions are not exposed, as
their implementation trivially follows Definition 15.
5 http://owlapi.sourceforge.net/



Extended OWLAPI

s
_ OWLCI i i OWLCH i
] N
winterfaces  winterfaces )
OWLBooleanClassExpression OWLObjectPropertyExpression
A

A

winterfaces winterfaces
‘OWLObjectEpistemicConcept OWLObjectEpistemicRole

EQulKaReasoner Translator

Hquerny(in ce : OWLObjectEpistemicConcept, in a : OWLIndividual) : bool | [+visiliin ce : OWLClassExpression) : OWLClassExpression

Fig. 2. The EQulKa-system extending the OWL-API

Table 2. Concepts used for instance retrieval experiments.

Ci1 |3hasWineDescriptor. WineDescriptor

ECY3IKhasWineDescriptor.K WineDescriptor

Cy |VYhasWineDescriptor. WineDescriptor

ECyVKhasWineDescriptor.K WineDescriptor

Cs |JhasWineDescriptor. WineDescriptor M dmadeFromFruit. WineGrape

ECs3IKhas WineDescriptor.K WineDescriptor M IKmadeFromFruit.K WineGrape

Cy | White Wine M —3locatedIn.{ FrenchRegion}

EC KWhite Wine M —3KlocatedIn.{ FrenchRegion}

Cs | Wine M —3hasSugar.{Dry} M —3hasSugar.{ Off Dry} M —3hasSugar.{ Sweet}

ECs|KWine N =3KhasSugar.{ Dry} N ~3KhasSugar.{ Off Dry} M ~K3hasSugar.{ Sweet

types OWLObjectEpistemicConcept and OWLObjectEpistemicRole are de-
rived from the respective standard types OWLBooleanClassExpression and
OWLObjectPropertyExpression to fit the design of the OWL-API.

Using these types, the transformation @ is implemented in the class
Translator following the visitor pattern mechanism built in the OWL-API,
which is indicated by the virtual translation functions with different argu-
ments in Algorithm 1. Finally, the EQulKaReasoner uses both a Translator
together with an OWLReasoner to perform epistemic reasoning tasks.

Ezperiments For the purpose of testing, we consider two versions of the
wine ontology” which we call Winel and Wine2 each with number of in-
stances 483 and 1127 respectively. As a measure for our test, we consider
the time required to compute the instances of a concept. This suffices as

" http://www.w3.org/TR/owl-guide/wine.rdf



Table 3. Evaluation

lOntolong Concept ‘ tc,) ‘ |Ci| H Concept ‘ tec,) ‘ |EC;| ‘ #Callgc,
Ci 2.186 159 EC, 0.53 132 3

Wine 1 Co 0.004 483 ECs 0.037 0 2
Cs 30.68 159 ECs 7.60 3 6
Cy 0.189 0 ECy 156.92 72 3
Cs 65.09 80 ECs 353.29 119 7
(& 10.15 371 EC, 1.01 308 3

Wine 2 Co 0.10 1127 ECs 0.038 0 2
Cs 228.53 371 ECs 21.86 7 6
Cy 0.211 0 ECy 1145.32 168 3
Cs 311.12 240 ECs 2526.85 331 7

entailment check can not be harder than instance retrieval. We consider
different epistemic concepts. For each concept C' of these concepts, we
consider a non-epistemic concept obtained from C by dropping the K-
operators occuring in it, which are given as in Table 2. Given a concept
C, by t(c) we represent the time in seconds required to compute the in-
stances of the concept C. Similary |C;| represent the number of instances
computed. Finally for an epistemic concept EC;, #Callgc, represents the
number of calls required by EQulKa to translate it to its non-epistemic
equivalent. Table 3 provides our evaluation results for every ontology
and every concept under consideration. One can see from the evaluation
results in Table 3 that the time required to compute the number of in-
stances is feasible; it is roughly in the same order of magnitude as for
non-epistemic concepts. Note also that the runtime comparison between
epistemic concepts EC; and their non-epistemic counterparts tc, should
be taken with a grain of salt as they are semantically different in general,
as also indicated by the fact that there are cases where retrieval for the
epistemic concept takes less time than for the non-epistemic version. As
a general observation, we noticed that instances retrieval for an epistemic
concept where a K-operator occurs within the scope of a negation, tends
to require much time.

7 Conclusion

We have provided a way to answer epistemic queries to restricted OWL 2 DL
ontologies via a reduction to a series of standard reasoning steps. This
enables the deployment of today’s highly optimized OWL inference en-
gines for this non-standard type of queries. Experiments have shown that



the approach is computationally feasible with runtimes in the same order
of magnitude as standard (non-epistemic) reasoning tasks.

We identify the following avenues for future research: first and fore-
most we want to extend the expressivity of the underlying knowledge
base to full OWL 2 DL, including nominals and the universal role. To
this end, we have to alter the semantics and relinquishing the common
domain assumption, to retain an intuitive entailment behavior. Second,
we will provide a language extension to OWL 2 for epistemic operators
in order to provide for a coherent way of serializing epistemic axioms. Fi-
nally we will investigate to which extent the promoted blackbox approach
can be extended to the case where the epistemic operator occurs inside
the considered knowledge base — note however, that in this case there is
no unique epistemic model anymore.
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