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We demonstrate a novel pulse-compression technique that uses the self-confinement of two-dimensional spatial
solitons propagating in bulk nonlinear media to increase the spectral bandwidth followed by a grating pair for
recompression. Output pulses of 19-fs duration with 0.6-,J energies are routinely obtained at a repetition rate
of 8.6 kHz. Unlike other high-energy compression methods, soliton compression offers both high repetition
rates and a potentially unlimited wavelength range.

Femtosecond pulse compression techniques that
employ self-phase modulation in an optical fiber to
generate spectral bandwidth have developed to the
point where it is now possible to generate optical
pulses as short as 6 fs.1 However, fiber damage
thresholds and parasitic higher-order nonlinear pro-
cesses typically limit the amount of energy that can
effectively be compressed to less than 10 nJ. Appli-
cations such as mode-selective excitation of coherent
phonons by means of impulsive stimulated Raman
scattering 2 and strong-field physics'-' require
new methods of compression that produce short-
duration optical pulses while maintaining high ener-
gies. In recent years progress has been made in
extending the energy range of compressed pulses.
Efforts by Rolland and Corkum, who used self-phase
modulation in bulk materials, have succeeded in
generating 100-,J, 24-fs pulses.6 Although this
technique is applicable over a wide wavelength
range, energies of at least 300 ,.tJ are required, ne-
cessitating the use of a high-energy, low-repetition-
rate amplifier system. Schoenlein et al.' and Boyer
et al.8 have produced 22- and 16-fs pulses, respec-
tively, with -0.5-,uJ energies by amplifying and
compressing broad-bandwidth pulses produced
through continuum generation7 or fiber coupling.8
These techniques can be employed at kilohertz repe-
tition rates; however, the choice of dyes available for
broad-bandwidth amplification limits their wave-
length range.

In this Letter we report on a new method of pulse
compression, which produces 19-fs, 0.6-,uJ optical
pulses at a repetition rate of 8.6 kHz. Our method
relies on the self-trapping and stable propagation of
two-dimensional bright spatial optical solitons in
bulk nonlinear media. In close analogy with tempo-
ral solitons, in which the balancing of group-velocity
dispersion and self-phase modulation lead to
dispersion-free propagation,9 the balancing of dif-
fraction by the spatial nonlinear index profile results
in diffraction-free propagation.' 0 Although self-
trapping of beams in three dimensions is unstable
and leads to catastrophic self-focusing, recent experi-
ments have demonstrated the stable propagation of

two-dimensional spatial solitons in CS2 liquid"' and
in guided-wave geometries.12l'4 The self-trapped
propagation of the spatial soliton itself maintains
the high intensity necessary for large phase modula-
tion, which generates the necessary bandwidth for
pulse compression. Unlike other high-energy com-
pression methods, soliton compression offers both
high repetition rates and a potentially unlimited
wavelength range.

The basic experimental apparatus for generating
and compressing spatial solitons is as follows. Pulses
of 75-fs duration and 0.1-nJ energies from a balanced
colliding-pulse mode-locked ring dye laser operat-
ing at 620 nm were amplified to 30 /.tJ at a repeti-
tion rate of 8.6 kHz in a two-stage optical amplifier
pumped by a 20-W copper-vapor laser. To achieve
these pulse energies, we used a dye cell in the second
stage.' 5 Following recompression to 75 fs with
a two-prism sequence in a double-pass geometry,
the pulses were spatially filtered to improve beam
quality and ensure the formation of clean spatial
solitons. The energy throughput of the prism
sequence-spatial filter was 11 /%J. We chose an
8-mm-thick piece of bulk fused silica as the non-
linear medium, which has a positive nonlinear index
(n2 = 2.7 x 10-16 cm2 /W), as required for bright
spatial solitons as well as minimal linear and two-
photon absorption. Pulses were focused on the
front face of the glass in an elliptical profile by a
cylindrical-spherical lens combination. We used
beam diameters of w = 900 gum (l/e peak intensity)
in the long dimension (which we denote x; see the
graph of Fig. 1) and aj. = 30 pum in the short dimen-
sion (denoted y). At low powers, the beam diffracts
significantly only along the S dimension. At suffi-
ciently high powers, nonlinear self-focusing balances
-diffraction, resulting in stable, nondiffractive soli-
ton propagation. In the absence of filamentation,
the beam profile in the long, x dimension should re-
main constant in the glass, since the sample length
is less than the theoretical self-focusing distance.
In order to ensure that filamentation did not occur,
we used a two-beam interference technique." A
second beam, identical to the first, copropagates
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Fig. 1. Time-averaged spatial beam profiles at (a) the
input face, (b) the output face (peak power 470 kW), and
(c) the output face (peak power 47 MW). The fringes re-
sult from the interference of two beams, which prevents
filamentation in the glass (explained in the text).
Graph: S (soliton) and x (nonsoliton) dimensions.

simultaneously through the glass at a slight angle in
the x dimension. The resulting interference fringes
maintain the beams in narrow channels in which
diffraction compensates for the self-focusing. Since
the power contained in each channel is less than the
critical power for self-focusing, each beam propa-
gates without filamentation. To implement this
procedure, the output from the spatial filter was
split into two equal-energy beams in a conventional
pump-and-probe geometry. The path length of each
arm was adjusted for zero time delay at the front
face of the glass. The angle between the two beams
was set to 3° in the glass to minimize beam walk-
off in the glass while maintaining a suitable in-
terference fringe spacing (-30 gm) to ensure beam
stability.

A small portion of the output was split off and
used for diagnostic purposes. Soliton formation
was monitored by imaging the output face of the
glass onto a charge-coupled-device (CCD) camera.
The output spectrum was monitored by imaging the
elliptical output beams onto the entrance slit of a
monochromator-optical multichannel analyzer
(OMA). The slit was set parallel to 9 with a width
of 50 ,m (approximately 1/10 of the imaged beam)
for spatial resolution of the spectral broadening.
Only one of the two output beams was sent to the
compressor. Following the fused silica, a second
cylindrical-spherical telescope reshaped and colli-
mated the beam. An adjustable slit placed parallel
to 9 was then used to select the region of maximum
spectral broadening. Pulses were compressed in a
single pass through a pair of 600-line/mm gratings.'6
The transmission through the grating pair was
60%. Pulse durations were measured in a conven-
tional noncollinear autocorrelator by using a 100-,um
KDP crystal.

We first verified the formation and propagation of
stable spatial solitons in the glass. Figure 1 pre-
sents beam profiles at both the input and output
faces. At low powers [Fig. 1(b)] the beam has dif-
fracted to 150 ,m [five times the width at the front

face shown in Fig. 1(a)], consistent with the ex-
pected diffraction given the 30-,um input width, the
8.0-mm path length, and nO, = 1.46 for fused silica.
For a peak power of 47 MW [Fig. 1(c)] the beam has
collapsed down nearly to the input width. At the
soliton power P8 = 2nw/n 2 a~ki, nondiffractive
propagation of the fundamental N = 1 soliton with
beam diameter a, will occur. Here k is the wave
vector of the light in the glass. For our parameters,
we expect propagation of an N = 1 soliton with
a, = ain at P8 = 33 MW We note that, for powers
that satisfy 0.25P, < P < 2.25P8, stable, nondiffrac-
tive soliton propagation is expected but with a width
a, different from the input beam width ain.17 We
therefore expect that some spectral broadening will
occur even when P < P, because of the formation
and propagation of solitons of width ain> a,. The
beam shown in Fig. 1(c) is actually an integrated
spatial profile, corresponding to a temporal average
over the different spatial profiles resulting from
different intensities contained within the temporal
profile of the pulse. Unlike in previous experiments
using ion-exchanged glass waveguides,'4" 5 we saw
no evidence of soliton deformation caused by two-
photon absorption in our undoped, bulk fused-silica
samples. This finding was corroborated by measur-
ing the transmission through the glass as a function
of input power. No measurable decrease in trans-
mission was observed.

The spectra of the pulse before and after soliton
formation are displayed in Fig. 2 for a peak power
of 65 MW In obtaining Fig. 2 we selected the
high-intensity spatial region of the soliton in the
x direction corresponding to the maximum spec-
tral broadening. The observed width of 32 nm
(5.3x broadening) is consistent with the expected
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Fig. 2. Frequency spectra of pulses before
and after (AA = 32 nm) soliton formation.
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Fig. 3. Autocorrelation trace of a compressed pulse.
The FWHM is 19 fs, assuming a sech2 pulse shape.
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broadening caused by self-phase modulation, given
by' 9 AAout/AAi. = [1 + (0.880)2]1/2 _ 6, where
+ = 2lr n2 LImax/AO, Imax = 3 x 10"l W/cm 2 is the
peak intensity in the glass, L is the path length, and
Ao is the center wavelength. Lower-intensity re-
gions of the beam showed decreased spectral broad-
ening. It is important to note that appreciable
spectral broadening was observed only when accom-
panied by soliton formation (as evidenced by a re-
duction in the output beam width), demonstrating
that spatial soliton propagation is essential in
achieving the spectral broadening necessary for
compression. A representative autocorrelation
trace of a compressed pulse is shown in Fig. 3. The
FWHM of 19 fs (sech2 pulse shape) gives a time-
bandwidth product of 0.45, near the transform limit
of 0.315. The slight energy present in the wings of
the pulse could be completely suppressed by adjust-
ing the grating separation at the expense of an in-
crease in pulse width to 21 fs. Typical output pulse
energies were 0.6 ,tJ. The spatial mode, measured
by focusing the compressed, reshaped output with
a 5x microscope objective and scanning the focal
spot with a 2-/,m pinhole, was Gaussian with a 1/e
intensity diameter within 10% of the diffraction-
limited value.

In addition to the expected variations in spectral
broadening across the x beam profile, we also ob-
served both an unexpected spatial variation (or
chirp) in the center wavelength along x and nonsym-
metric spectral broadening toward higher frequen-
cies, as seen in Fig. 2. Moreover, measurements of
the far-field output spatial profile revealed a deflec-
tion of the maximum intensity position with respect
to the low power position. To understand these ef-
fects further, we repeated our experiments, using
single beams. In the absence of the stabilizing
beam, formation of the soliton at P, was accompa-
nied by filamentation in the nonsoliton (x) dimen-
sion and continuum generation. We were able to
avoid filamentation by working at P = 0U8P. The
spectrum broadened to only 23 nm at the beam cen-
ter; however, neither spatial chirp nor deflection was
observed. The absence of spatial chirp in single-
beam solitons suggests that two-beam stabilization
is responsible for these unexpected effects. Pulses
that are initially spatially overlapped will suffer
both spatial and temporal walk-off as they propagate
through the glass, owing to the finite propagation
angle. In addition, each beam induces spatially and
temporally varying refractive-index changes, which
act as time-varying nonlinear prisms for the other.
Finally, temporal broadening will occur as each
beam propagates through the glass; consequently,
the phase modulation induced on each beam by the
other will be nonsymmetric in x. A detailed analy-
sis of these effects would examine the evolution of
temporal, spatial, and spectral profiles during pulse
propagation as influenced by diffraction, nonlinear
refraction, group-velocity dispersion, self- and cross-
phase modulation, and beam walk-off. Although
such an analysis is beyond the scope of this Letter,
we note that no spatial chirping effects were reported
in previous picosecond spatial soliton experiments

that used the two-beam stabilization technique.""2

This suggests that spatial chirping is due predomi-
nantly to femtosecond pulse durations, in which lim-
ited beam overlap and group-velocity dispersion play
a significant role.

In summary, we have used the stable propagation
of optical spatial solitons to compress optical pulses to
durations of 19 fs while maintaining near-microjoule
energies at 8.6-kHz repetition rates. Spatial soliton
pulse compression combines both the wide wave-
length range and high-energy throughput available
from bulk nonlinear materials with the high repeti-
tion rates of copper-vapor laser-based amplifier sys-
tems. Finally, we note that this experiment is the
first to our knowledge to examine the interplay of
spatial and temporal optical nonlinearities that
occur simultaneously as solitons propagate in non-
linear media.

It is a pleasure to acknowledge stimulating discus-
sions with Y. Silberberg.
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