A Reliable Return Address Stack:

Microarchitectural Features to Defeat Stack Smashing

Dong Ye

David Kaeli

Department of Electrical and Computer Engineering
Northeastern University
Boston, Massachusetts 02115
{dye, kaeli}@ece.neu.edu

Abstract

Buffer overflow vulnerability is one of the most
common security bugs existing in today’s soft-
ware systems. In this paper, we propose a
microarchitectural design of a return address
stack aiming to detect and stop stack smashing.
This approach has been used in other proposals
to guard against buffer overflow vulnerabilities.
Our contribution is a design that handle multi-
path execution, speculative execution, abnormal
control flow, and extended call depth. Our solu-
tion makes no assumption about the presence of
architecturally visible calls and returns.

1 Introduction

The significance of buffer overflow vulnerabilities
has been widely acknowledged [2, 9]. A major
form of attack that exploits this vulnerability is
to overflow the buffers allocated on the stack and
overwrite the return address residing at a higher
address. On the function return, the PC will
address the injected attack code. Upon execu-
tion of the return, execution will be hijacked to
the attack code, which obtains the privilege level
that the hijacked process possesses at the point
of being smashed [6].

Various software-based approaches have been
proposed to tackle this problem. Inspecting the

number of security alerts reported by CERT,
buffer overflow related problems accounted for
more than half of all the alerts reported since
1997 [2]. Among the 28 CERT advisories re-
ported in 2003, 24 of them were due to buffer
overflow vulnerabilities or exploitation of buffer
overflow vulnerabilities [2].

In recent years a number of hardware-based
approaches have been proposed to address stack
smashing attacks [5, 7, 10]. We believe that
due to the sheer frequency of the stack smashing
attacks and the serious consequences resulting
from these attacks, stack smashing exploits re-
quire hardware-based countermeasures.

A Reliable Return Address Stack (RRAS) is
a microarchitecture-level return address stack
(uLRAS) that can guard against stack smashing
attacks. The pRAS has been widely employed
in microprocessors for decades to improve the
control-flow prediction accuracy for function re-
turns [8]. Because return addresses stored on the
microarchitectural stack are only updated upon
function calls and returns, it is impossible for
memory-based attacks such as stack smashing
to overwrite the return addresses on the uRAS.
However the return address that resides on top
of this stack is not always correct, so we cannot
count on it for detecting attacks. A new imple-
mentation of the yRAS is required.

In this paper, we first present security expo-

sures related to using a pRAS to provide the cor-
rect return address, followed by both a structural
and algorithmic description of our new RRAS
design. We also compare the RRAS with other
published designs in the literature. We then con-
clude the paper and provide directions for future
work.

2 Design Issues

To guarantee the correctness of the return ad-
dress, the puRAS has to address the following
problems, all of which lead to a mismatch be-
tween the return address on the yRAS and the
address found on the program stack (even before
it is smashed):

1. The return addresses on the yRAS can be
lost between context switches.

2. The uRAS is a finite-sized table. The run-
time nesting depth of function calls may ex-
haust this depth.

3. In multi-threaded processors, calls and re-
turns issued by different threads can be in-
terleaved.

4. In processors that support speculative exe-
cution, calls and returns along a speculative
path may update the yRAS, but may be
squashed later.

5. Calls and returns may not be
properly nested; examples include
setymp()/longjmp() in C and exception

handling in C++ and Java.

6. Some hacker code may use architectural call
and return instructions for purposes other
than function calls and returns, which can
in turn lead to two situations: i) a call with-
out a corresponding a return and ii) a return
without a corresponding call. The scenarios
will cause the conventional pRAS to fail to
produce the proper return address.

To accommodate arbitrary levels of nesting
depth, it is necessary to provide a reserved mem-
ory structure for a pRAS spill. This backup
memory needs to be allocated in a separate seg-
ment so that a potential buffer overflow vulner-
ability existing in another segment does not af-
fect the backup memory. Given the necessity of
this backup memory, the RRAS includes backup
memory as part of the thread state. This mech-
anism also helps out with context switch man-
agement by spilling and recovering the return
addresses of all the outstanding function calls.
A per-thread return address stack is also neces-
sary in order to properly handle multi-path exe-
cution [3].

A traditional gRAS assumes that the return
address associated with the last call is on the
top of the stack. Most RAS mechanisms can
only index the top entry on the stack, while in
the reality, the correct address may be just a bit
deeper on the stack. This situation can easily
occur due to control speculation or call/return
sequences that are not properly nested.

To address these issues, the RRAS searches
the entire uRAS to locate the correct return ad-
dress, searching from the top down. The ratio-
nale for this approach is:

1. Most of time, the correct return address is
on the top of the stack. If we look one en-
try deeper (just one entry deeper), we can
greatly increase the chance of locating the
correct return address [8]. The cases where
the correct return address resides deep on
the stack are rare and handling these cases
is already very costly.

2. No special repair mechanism is needed
to synchronize the microarchitectural stack
with the program stack.

The RRAS makes two changes to the tradi-
tional pRAS to enable us to locate correct return
addresses reliably and efficiently:

1. Return addresses on the RRAS can only

be popped upon commitment of function
returns (though return addresses can be
pushed before a function call commits).

2. Each return address on the RRAS is accom-
panied by the entry address of the called
function.

Upon commitment of a function return, the
RRAS pops all the entries above the located en-
try. This insures that the RRAS remains closely
(though not necessarily fully) synchronized with
the state of the program stack, and also facilitate
future searches.

Recursion tends to generate nested function
calls and can consume many entries on the
#RAS. Although correctness of return address
is still ensured by providing backup memory, it
comes at the cost of expensive memory opera-
tions. Using modest record keeping, the RRAS
can identify direct recursion on the fly. ' The
RRAS captures multiple executions of the same
direct recursion with a single entry on the mi-
croarchitectural stack. It does not need to push
multiple identical return addresses onto the stack
for direct recursions. Instead, it is able to reuse
the single return address entry for all of the re-
turns associated with the direct recursion.

Both the traditional pRAS [8] and previous
enhancements to the yRAS [5, 7, 10] depend
upon two properties being present to function

properly:

1. The instruction set architecture must pro-
vide explicit instructions for implementing
calls and returns.

2. Any code running on the platform must al-

!Direct recursion is the most frequently used form of
recursion. Our design of the RRAS addresses direct re-
cursions with special hardware, but leaves the handling
of indirect recursions to memory backup. However, the
same hardware approach can be easily extended to han-
dle indirect recursion. The cost of this hardware increases
linearly with the maximum distance of indirect recursions
that can be handled without resorting to memory backup.

ways use these instructions for implement-
ing function calls and returns.

We will refer to the execution state where these
two prerequisites are present as the restrictive
mode.

The RRAS is able to function properly, even
if one or both of these conditions can not be met
(we call this state as the non-restrictive mode.)
The RRAS is designed to identify the essential
runtime behavior of a function (i.e., the return
address of a function will be the instruction ad-
dress after the call site address), and then dy-
namically redirect fetching accordingly. Since
the RRAS only handles true function calls and
returns (versus architectural calls and returns),
the hacker code usage of call and return instruc-
tions is treated simply by the RRAS as normal
jump instructions.

3 Implementation

Next we present the implementation logic of the
RRAS.

3.1 Structure

Each return address is paired with the entry
address of the called function. The entry ad-
dress is actually the destination address of this
call. Maintaining a pair of addresses enables the
RRAS to identify function calls solely based on
an address basis, and is independent of needing
explicit call and return opcodes. The logic for
the identification process was first described by
Kaeli and Emma [4]. A special table is added
to augment the RRAS. This table is called the
Address Pair Table (APT). The APT stores the
entry and exit address pairs of all active func-
tions. The APT supplies the associated entry
address, given the exit address, upon a function
return. This entry address is all that is needed
to locate the return address on the microarchi-
tectural stack in the case of a non-recursive call.

When a function is called recursively, multiple
entries on the RAS will have identical entry ad-
dresses, though may have different return ad-
dresses. Also, we need to consider the case where
function calls and returns that are not nicely
nested. Given these cases, we cannot guarantee
the correctness of the return address using an
entry on the RAS by only matching the function
entry address associated with this stack entry.
The APT also works with the traditional BTB
to differentiate between normal jumps and jumps
for implementing function calls and returns when
running in an unrestrictive mode.

Figure 1 shows the structure of the RRAS. We
introduce 3 bit-wide tags which are associated
with each on the stack. The bits A, R, and O
are defined as follows:

e An entry on the RRAS with A == 1 indi-
cates that there is additional entries below
it that have the same entry address.

e An entry on the RRAS with R == 1 indi-
cated that this entry is for a direct recursion.

e An entry in the APT with O == 1 indi-
cates that there is at least one entry cur-
rently on the RAS having the same entry
address. This means an entry that is going
to be pushed onto the RAS with the same
entry entry address is a recursive function
call and thus the A bit of this entry should
be set.

3.2 The Address Pair Table

We use the sample program shown in Figure 2
to illustrate how the APT functions. A function
call/return in the RRAS is identified using the
algorithm described in [4]. After being identi-
fied, the address pair for the call and return will
be recorded in the APT. Some further enhance-
ments to the RRAS needed to identify calls and
returns include:

e storing information about the calling func-
tions (i.e., entry/exit address, as well as an
indication of whether an invocation of this
function is still outstanding on the call path)
in the APT,

e differentiating between jumps used for calls
and returns versus normal jumps by inter-
rogating the APT or the BTB, and avoiding
stack updates in the latter case, and

e treating jumps as potential calls and re-
turns if not found in either the APT or the
BTB (this is essentially the identification
process).

We will use the example in Figure 2 to step the
identification of a function entry/exit pair in the
APT, and the process of locating the correct re-
turn address stored in the RAS.

1. When the CALL at 100 is executed, the tar-
get of 700 (i.e., the entry address of the sub-
routine PRINT) is checked against the APT
along path 1. Suppose this is the first time
that PRINT is called, so no associated entry
has been created on the APT. Since we are
not sure whether an instruction is a normal
jump (we treat all architectural call/return
instructions as normal jumps initially) or a
jump to implement function call, a new en-
try is created in the RAS along path 2, with
an entry address of 700, and a return ad-
dress of 110. Since this is the first time the
PRINT function has been encountered dur-
ing execution, the APT will not produce
a match on the entry address of 700, and
the “A” and “R” bits of this entry are both
clear.

2. When the RETURN at 800 is executed, this
exit address is checked against the APT
along path 1. Since no match is found on
this first invocation, the return address on
the program stack is fetched along path 6.
The return address is used to find a match

reserved spill area

6
i :
RAS
2 A R entry return
c
S 7
2 °
=3 3 . . 3
a
§ o | o . .
—> D
8
' 2
APT 2
Py (0] entry exit 8
. . .
g g : :
=5 U3
o 2 —>
c o
o 3
=
RRAS

Figure 1: Organization of a Reliable Return Address Stack.

on the RAS, searching from the top down.
On a match, the associated function entry
address of the matched entry (700), and the
function exit address (800), will create a new
record in the APT (sent along path 8). At
the same time, this return address is sent
along path 7 to the processor to redirect ex-
ecution. Then the R bit of the matched en-
try is checked. If the R bit is set, all of
the entries above it (but not including the
matched entry) are popped from the RAS. If
the R bit is clear, this matched entry is also
popped. The check of the R bit is needed
when we want to reuse this entry if it is as-
sociated with a direct recursion. For each of
the popped entries, if its A bit is clear, the
entry address is sent to the APT along path
8 to clear the O bits of all the APT records
with the same entry address. The check of
the A and O bits is necessary to maintain

the semantics of the O bit of the APT.

3. When the CALL at 140 is executed, similar

operations are performed as in step 1. In
this case, we will have a match in the APT.
On this match, the O bit of the matched
record is checked:

If the O bit is set, a new entry with an
entry address of 700, and a return ad-
dress of 150 and is generated with the
A bit set. Before we can create this
entry on the RAS, we need to compare
it to the top entry of the RAS. If they
match (i.e., if both the function entry
and return addresses from this to-be-
pushed entry match the corresponding
fields in the top entry of the RAS), no
new entry will be created on the RAS.
But the R bit of the top entry will be
set. If we do not match on both ad-

MAIN:
instr. addr. instructions
100 CALL @PRINT
110
140 CALL @PRINT
150

PRINT:
instr. addr. instructions
700
710

800 RETURN

Figure 2: A sample program.

dresses, then a new entry is created on

the RAS.

If the O is clear, a new entry is created,
with an entry address of 700, a return
address of 150 and the A bit cleared, on
the RAS. Meanwhile, the O bit in the
APT is set to indicate that now there is
a function with an entry address of 700
that is outstanding on the call path.

. When the RETURN at 800 is executed, this
exit address is checked against the APT. We
will find a match and its associated entry
address is 700. This function entry address
is used to search entries on the RAS, start-
ing from the top of the stack, and working
down. On a match, the A bit is further in-
vestigated:

If the A bit is clear, the return address
associated with the matched entry on
the RAS is used to redirect execution,
and the R bit of this entry is checked
further:

If the R bit is clear, the matched
entry, and all those above it, are
popped.

If the R bit is set , the entries
above this entry, but not in-
cluding the matched entry, are
popped.

If A is set, then some entry (or entries)
deeper in the stack has the same func-

tion entry address. The return address
is fetched from the program stack along
path 6. The entry address 700 and the
return address 150 are used to find a
match in the RAS. If we find a match
on both the function entry address and
the function return address, then we
know the return address has not been
overwritten since the same copy also
exists on the pRAS and it is used to
redirect execution. The matched en-
try’s R bit is checked further:

If the R bit is clear, the matched
entry, and all those above it, are
popped.

If the R bit is set, the entries above
it, but not the matched entry, are
popped.

For each entry popped from the RAS, if its
A bit is clear, its entry address is sent to the
APT and the O bits of all the APT records
that have the same function entry address
are cleared.

4 Evaluation

Since the RRAS requires us to pop entries from
the hardware stack only upon commitment of the
function return, we should keep function calls
from pushing an entry onto the pRAS if there
are any function returns that are on a speculative

-
o

% increase in execution time

o P N W A~ U1 O N © ©

KR Q& CaR S N >
‘Q/D \’5\ < N N Q\\Q'

) Q‘Z’ N)

Figure 3: Performance impact of stalling func-
tion calls whenever there is an outstanding re-
turn on the RRAS.

path. In case there are function calls issued that
are on a speculative function return path, and
this path is squashed, the entry pushed by the
subsequent function calls would be prematurely
popped. Our preliminary evaluation focuses on
the performance impact of this situation.

Figure 3 shows the impact of managing a
RRAS while running nine integer SPEC2000
benchmarks. We use the Simplescalar [1] sim-
outorder framework using the default configura-
tion. In our sim-rras machine, we stall issuing a
function call whenever there is a function return
outstanding. Given this conservative model, the
data we show in Figure 3 is a pessimistic estimate
of the performance imposed by this requirement.
As we can see, the penalty associated with this
restriction is small for SPEC2000int.

5 Conclusion

This paper describes the design of a reliable re-
turn address stack that can both detect and
recover from stack smashing attacks. In con-
trast to other proposed mechanisms that extend

the return address stack to defend against stack
smashing attacks [5, 7, 10], the contributions of
our RRAS mechanism include:

e The RRAS does not require function
calls/returns to use explicit call and return
operations, and further, does not depend on
the availability of architecturally visible call
and return instructions.

e The RRAS handles irregularly nested calls
and returns properly and thus does not re-
quire recompilation or binary modification.

e The RRAS does not have to maintain per-
fect synchronization between the uRAS and
the program stack. Thus no special repair
mechanism is needed in the RRAS.

e The RRAS also provides a solution to the
issue of microarchitectural stack spills/refills
due to recursive calls. This will decrease
the frequency stack spills and thus mitigate
one of the largest reasons for performance
loss when using a return address stack for
defending against stack smashes [5, 7, 10].

Future work will study the impact of stack spills
and will also run a set of virus benchmarks that
attempt to compromise the system. This future
work should help to quantify both reliability and
performance associated with the RRAS.

This work was supported by National Science
Foundation Award Number 0310891 under the
Computer Systems Architecture Program, and
by the Institute of Complex Scientific Software
at Northeastern University.

References

[1] D. Burger and T. Austin. The simplescalar
tool set version 2.0. Technical Report 1432,
University of Wisconsin—-Madison, 5 1997.

[2] CERT CC. Cert
http: //www. cert.org/adversories/.

advisory.

[3]

[6]

[7]

S. Hily and A. Seznec. Branch prediction
and simultaneous multithreading. In Par-
allel Architectures and Compilation Tech-
niques, 1996.

D. R. Kaeli and P. G. Emma. Branch
history table prediction of moving target
branches due to subroutine returns. In 18th

International Symposium on Computer Ar-
chitecture, pages 34-41, 1991.

J. McGregor, D. Karig, Z. Shi, and R. B.
Lee. A processor architecture defense
against buffer overflow attacks. In IFEFE
International Conference on Information
Technology: Research and Education, 2003.

Adelph One. Smashing the stack for fun and
profit. Phrack, 7(49), 1996.

Y.-J. Park and G. Lee. Repairing return
address stack for buffer overflow protection.
In 1st Conference on Computing Frontiers,
2004.

K. Skadron, P. S. Ahuja, M. Martonosi,
and D. W. Clark. Improving prediction
for procedure returns with return-address-
stack repair mechanisms. In 31st Inter-
national Symposium on Microarrchitecture,
pages 259-271, 1998.

D. Wagner, J. S. Foster, E. A. Brewer, and
A. Aiken. A first step towards automated
detection of buffer overrun vulnerabilities.
In Network and Distributed System Security
Symposium), pages 3-17, 2000.

J. Xu, Z. Kalbarczyk, S. Patel, and R. K.
Iyer. Architecture support for defending
against buffer overflow attacks. In 2nd
Workshop on FEwvaluating and Architecting
Systems for Dependability, 2002.

