
A Systematic Approach
to the Test of Combined HW/SW Systems

Alexander Krupp, Wolfgang Müller
Paderborn University / C-LAB, Paderborn, Germany

Abstract—Today we can identify a big gap between require-
ment specification and the generation of test environments. This
article extends the Classification Tree Method for Embedded
Systems (CTM/ES) to fill this gap by new concepts for the precise
specification of stimuli for operational ranges of continuous con-
trol systems. It introduces novel means for continuous acceptance
criteria definition and for functional coverage definition.

I. INTRODUCTION

Current system verification approaches exhibit a major
gap between requirements and formal property definition.
However, today widely accepted means for natural language
formalization and formal property definition do not exist as a
target for automated test execution with support of verification
planning. The Classification Tree Method for Embedded Sys-
tems (CTM/ES) [6] has been introduced for the test definition
of automotive systems to fill this gap. However, it does not
sufficiently cover all aspects for automatic testbench genera-
tion.

This article presents an approach for the definition of a func-
tional verification plan for combined HW/SW systems based
CTM/ES. Our approach closes the methodical gap between
requirements specifications and test definition by the intro-
duction of an enhanced CTM/ES, which supports functional
stimulus patterns as well as acceptance and test quality criteria
which relate to requirements and enable requirements coverage
definitions. As such, our approach facilitates horizontal and
vertical reuse by the unified notation of the enhanced CTM/ES.
We present a concept for testbench execution automation to
reduce cost- and time intensive manual human intervention in
the verification process. The new notation is combined with
representations and methods for the definition of a verification
plan for constraint randomized tests derived from current
approaches for automatic testbench generation in the domain
of electronic system level design.

The remainder of this article is organized as follows. Our
approach is presented in Section III. after the discussion of
related work and a short introduction of basic principles of
the test of combined HW/SW systems. Thereafter, we briefly
sketch the implementation and close with a conclusion.

II. RELATED WORK

The increasing demand for verification at earlier design
steps led to the creation and introduction of methods and
languages for functional verification. The industrial adoption
of the methodology is supported through verification environ-
ments, which are implemented with standard Hardware Verifi-
cation Languages like SystemVerilog, PSL, and e. Meanwhile,

libraries and methodological guidelines have become available
to supplement tooling and standardization efforts, such as the
Verification Methodology Manual for SystemVerilog and the
Open Verification Methodology.

On the other hand, existing methods for verification and
testing of continuous control systems lack in expressivity and
do not cover all areas of functional verification. E.g. test pro-
cesses in the automotive industry are affected by tool-intensive
and technologically heterogeneous test infrastructures [8]. In
automotive systems development a product has to pass tests at
several levels of abstraction such as Model-in-the-Loop (MIL),
Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL)
tests and different tools are applied for this purpose like MTest
and AutomationDesk [7].

Several exchange formats were introduced for the test of
automotive systems. TestML [8] has been developed as an
exchange format for functional, regression, and back-to-back
tests and stimuli definitions can be captured by means of
existing such as CTM/ES. The Classification Tree Method
for Embedded Systems (CTM/ES) [6] is defined by use of
set theory and the notion of mathematical functions. The
latter are used to define interpolations between the distinct
supporting points acquired by the Classification Tree Method.
Additionally, there are efforts to standardize the Automatic
Test Mark-up Language ATML [9] as an XML-based language.

Coverage for verification of combined HW/SW models, as
modeled and simulated by MATLAB/Simulink, for instance,
is limited to structural coverage of the model and/or the
generated code [1]. An overview of coverage for continuous
and mixed discrete-continuous systems is provided in [3].
Coverage criteria, which include data flow coverage, for in-
stance, by means of equivalence classes are presented in [2].
A statistical coverage metric has recently been proposed for
verification of continuous and mixed systems in [12]. The
coverage of state regions with some timing information is
described in [10].

III. TESTING COMBINED HARDWARE AND SOFTWARE
SYSTEMS

Verification of discrete systems applies functional verifi-
cation based on object-oriented languages, while the mixed-
signal domain mainly uses trivial stimuli and requires con-
siderable manual effort for elaboration of results [4]. A me-
thodical gap from requirements exists for several reasons: a
methodical support for derivation of test descriptions requires
a suitable target. As most requirements allow an infinite
number of possible stimuli, a directed stimulus definition,

 

 
 
 
 
978-3-9810801-6-2/DATE10 © 2010 EDAA 
 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357543559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


i.e., a signal trace, cannot capture such a requirement, as it
represents a single instance of stimulus only. However, the
CTM/ES provides a first step for the definition of functional
stimulus patterns, which can capture operational ranges of
systems. The definition of requirements based acceptance
criteria for automatic acceptance evaluation is usually only
possible by definition of acceptance predicates. Existing pred-
icate languages do not cover the definition of characteristic
acceptance criteria for continuous systems. Existing proposals
for test quality criteria are usually based on structural coverage
criteria, which do not easily relate to requirements. Moreover,
the reuse of test descriptions is only possible with high effort.
Existing methods for functional verification and testing of
HW/SW systems lack in expressivity and do not cover all areas
of functional verification. Moreover, there is no accepted and
standardized test definition language for combined HW/SW
systems. Additionally, the original Classification Tree Method
for Embedded Systems (CTM/ES) has pointed out first direc-
tions for the generic functional definition of tests for HW/SW
systems [5]. The graphical notation of the CTM/ES is used for
the definition of stimuli, which are interpreted and interpolated
to a continuous waveform, before being discretized and feeds
the model-under-test. Automatic acceptance evaluation is per-
formed by correlation to a reference model, or by predicate
evaluation [8]. Test quality is assessed by structural coverage.
The stimuli and the acceptance model are derived manually
from the requirements. The link of structural coverage to
requirements is rather weak, as the type of coverage for the
whole model can only be chosen from a limited set of coverage
models [13].

IV. A UNIFIED METHOD AND NOTATION

The main goal of our approach to systematic testing of
HW/SW systems is to narrow the methodical gap between
requirements and testbenches. Figure 1 gives an overview of
our concepts for systematic testing of HW/SW systems. The
verification plan is based on the requirements. For increased
flexibility and precision of stimulus specifications, constraints
are applied for declarative stimulus definition including accep-
tance criteria and functional coverage based on the graphical
notation of CTM/ES..

Fig. 1. New Unified Notation and Verification Plan for Systematic Testing

A. Stimulus Patterns

Stimulus definition with constraints allows requirement
based stimulus pattern definitions, which can be more ac-
curately targeted for improved test quality: The declarative
nature of constraint-based stimulus patterns enables automatic
generation of a wide range of stimuli. Additionally, as more
implementation details become available, the declarative stim-
ulus patterns can be adapted in a straightforward manner.

1 TS

v_a v_b

i1composition

classification

class interval

synchronization points

constraint

combination table

1.1 t0
1.2 t1
1.3 t2
1.4 t3
1.5 t4

i2

i0
i1

i3

t
v a(t4)−v a(t3)

t4−t3

Fig. 2. Classification Tree with embedded Constraints

In CTM/ES, the classification tree is derived directly from
the technical interface of the system under test, i.e., each input
of the model-under-test is represented as a classification in
the tree. Each input domain is partitioned into intervals or
single values represented as classes below the accompany-
ing classification. Figure 2 shows part of a verification plan
classification tree derived from a module M1 with an input
interface i1 with two inputs v a, and v b. The first composition
node of the classification tree represents the interface i1. The
next lower classification nodes represent an input interface.
Here, the classifications define the signals v a and v b. The
corresponding interface definition in SystemVerilog is:
interface i1; // from composition
real v_a; // from classification
real v_b; // from classification ...

The leaf nodes in the CTM/ES classification tree are denoted
as classes, and they consist of non-overlapping value intervals
which represent characteristic value ranges for the respective
interface (cf. fig. 2). For the definition of test sequences in
SystemVerilog, a data type for synchronization point definition
is used, which captures the value v, the time t, and the
interpolation type ipol for one signal:

class Int_sp;
rand int v;
rand time t;
interpolationtype ipol; ...

where time is a native SystemVerilog type for representation
of time, and interpolationtype is an enumeration type, which
corresponds to the different interpolation types supported by
the CTM/ES. Both value v, and time t are declared random-
izable variables. A corresponding class has to be defined for
floating point values derived from generated integer values.

Constraints are not restricted to the value domain, rather
than they may also be applied across synchronization points



affecting the timing conditions. This is important especially
for the definition of dynamic constraints for stimulus patterns.
They enable, e.g., definitions that control instantiated step
heights as well as control of minimum and maximum steepness
of ramp functions. The additional constraint is annotated to the
test sequence of a classification tree as shown in figure 2 for
the sequence TS. It shows a step interpolation after its second
synchronization point and a ramp interpolation after its fourth
synchronization point. The following constraint restricts the
step height to a certain interval i.
v_a[2].v - v_a[1] inside {i};

The steepness of a function in general is constrained by
min(j) ≤ ∆v

∆t ≤ max(j) with an interval j. The following
term constrains the steepness of the ramp function of figure 2
to such an interval j.
(v_a[4].v-v_a[3].v)/(v_a[4].t-v_a[3].t)inside{j};

B. Acceptance Criteria

The new notation for acceptance criteria complements the
stimulus pattern definition and it enables automatic acceptance
criteria generation together with stimuli generation for fully
automatic testbench execution. The notation provides for def-
inition of tolerance bands by means of synchronisation points
for the model-under-test response. These tolerance bands are
dynamically instantiated in conjunction with the stimulus.
The definition of a functional relation between stimulus-
and acceptance synchronization points provides the reference
model to the model-under-test. Instantiation data generated by
constraint solving is applied to the acceptance evaluation set
of synchronization points, which are interpolated to derive the
tolerance borders for the model-under-test, before they are
evaluated with the measured response of the model-under-
test. The proposed solution describes an enhanced CTM/ES
notation, which offers a) A definition of acceptance criteria
synchronization points synchronized to stimulus pattern syn-
chronization points, and b) a definition of functional CTM/ES
classes to establish a functional relationship to the stimulus.

1 TS_AC

v_a

i1

testbench

i2:evaluator

w_a_u functional classes

interspersed
synchronization points

1.1 t0
1.2 t1
1.3 t11
1.4 t2
1.5 t21
1.6 t3
1.7 t4

i2

i0
f2i1

f0

f1
i3

Fig. 3. Upper bound as acceptance criterium for w a

In figure 3 an exemplary acceptance supremum w a u for a
response signal w a is shown in a classification tree together

with its related stimulus v a from abstract test sequence TS of
figure 2. The classification tree represents a testbench defini-
tion with stimulus defined below the interface i1 definition,
and with acceptance definition defined below the interface
i2:evaluator definition. The evaluator keyword marks this part
of the tree as an acceptance criteria definition. The classifica-
tion tree shows a classification node for the stimulus signal
v a. The classes shown for v a are identical to the classes
in the abstract test sequence definition in figure 2. Acceptance
criteria below the i2:evaluator definition are formulated for a
supremum w a u by means of three functional classes f0,1,2.
A functional class defines a function, which provides the value
of its classification at a particular synchronization point. The
function depends on the set of instantiated synchronization
points and on the current synchronization point: f(SP , csp),
where SP is an ordered set of synchronization points, and
csp is the current synchronization point. To maintain causality,
only synchronization points of lower index (earlier) than csp
should be considered for calculation.

C. Test Quality Criteria
Test quality criteria define verification goals. These crite-

ria encompass structural coverage metrics, usually. Structural
coverage metrics, however, do not enable the derivation of
requirements coverage. Recently, additional test quality criteria
have been introduced by means of functional coverage. More-
over, there are no approaches to functional coverage definition
for HW/SW systems, which seamlessly fit into a verification
process. A new approach to functional coverage definition for
HW/SW systems is defined, which relates to requirements and
enables requirements coverage derivation.

Interval Coverpoint

and

Cross−Coverpoint

Definition

Combination Table

for

Cross−Coverage Definition

Cross−Coverpoint

and

Sequence Coverpoint

Definition

Interface

Covergroup

Coverpoint

Interval
cp2

j0
i1

i3
j2

i0
j1

i2

cp1

cg1 cg2

testbench

j3

if1 : coverage

Fig. 4. Upper bound as acceptance criterium for w a

An enhanced abstract classification tree for functional cov-
erage is shown in figure 4. This classification tree presents the
new areas of functional coverage definition within a classifica-
tion tree. The root node corresponds to the testbench, and the
next lower CTM combination nodes represent interfaces for
coverage measurement, e.g., interface if1. For each interface
a number of covergroups can be defined as another set of
CTM combination nodes (cg1,2). Such covergroups encompass
a set of coverpoints (cp1,2) as CTM classifications, each



of which corresponds to a signal of the interface if1. To
the left of the combination table, a cross coverpoint can
be declared for a set of lines in the combination table and
appropriate logical markers placed in the combination table
for the selection of relevant interval combinations. Sequence
coverpoints define sequential, timed combinations of value
intervals for a particular signal. They are defined in a similar
manner as stimulus sequences, with time tags to the left of
the combination table and the sequence defined by markers in
the combination table. Cross coverpoints may also be defined
across sequence coverpoints, such that concurrent sequences
of several signals are covered. A notation similar to the
previous cross coverpoints is used to define cross sequence
coverage and to select from individual sequences defined
in other coverpoints. The coverage calculation behavior can
be modified by option annotations to bins, coverpoints, and
covergroups.

Fig. 5. Architecture and Tools

V. TESTBENCH IMPLEMENTATION

Figure 5 depicts our implementation of the previously
outlined method. Informal requirements are captured and
organized by a requirements management tool, e.g., DOORS.
Requirements are captured by textual or by visual means,
before they are formalized and captured as features, stimulus
patterns, acceptance criteria, and functional coverage criteria
as well as control definitions. Patterns and criteria are captured
by means of classification trees. A tool for classification
tree definition is a Classification Tree Editor[15]. The test
control is defined in the native language of the underlying
execution environment. Here, we use SystemVerilog and MAT-
LAB/Simulink syntax. From these definitions the testbench
can be created automatically for the execution environment,
which consists of MATLAB/Simulink [14] and Modelsim
[11]. The combined HW/SW system model is defined and
executed in MATLAB/Simulink. Most other components, such
as Stimulus Generation, Acceptance Evaluation, Test Quality
Evaluation are generated in SystemVerilog and executed in
Modelsim. For this purpose a set of tools is applied, which
generate SystemVerilog code in combination with Modelsim
interfaces from classification trees. The results database is a

feature of Modelsim. Parts of the control description is de-
scribed and executed in MATLAB/Simulink and in Modelsim
with the Link-for-Modelsim.

VI. EVALUATION AND CONCLUSION

We have performed an experiment with 4 classification
tree test sequences on a suspension-tilt module with a 3
dimensional movement freedom, which demonstrated the effi-
ciency of our approach. The example achieved a structural
coverage of 83% in Simulink. Inspection of the structural
coverage report and of the model revealed that the only
missing coverage was on a set of integrators with result limits,
deeply embedded within the model, and difficult to control.
Functional coverage, however, revealed that testing of 2 of the
3 axes of module movement was incomplete with respect to the
requirements. The definition of a unified CTM/ES notation for
stimulus, acceptance criteria, and test quality criteria enabled
exchange and reuse of information between, e.g., the stimulus
and functional coverage aspects of the notation. Functional
coverage definition could be assisted by existing stimuli as a
pattern for coverage model definition and for identification of
requirements.

ACKNOWLEDGMENTS

This work was partly supported by the DFG Sonder-
forschungsbereich 614 and by the BMBF through the ITEA2
project TIMMO (01IS07002).

REFERENCES

[1] W. Aldrich, “Using Model Coverage Analysis to Improve the Controls
Development Process,” in AIAA Modeling and Simulation Conference,
Monterey, California, Nov. 2002.

[2] V. Alyokhin, B. Elbel, M. Rothfelder, and A. Pretschner, “Coverage
metrics for continuous function charts,” in Proceedings 15th IEEE Intl.
Symp. on Software Reliability Engineering. St. Malo, France: IEEE,
Nov. 2004.

[3] A. Baresel, M. Conrad, S. Sadeghipour, and J. Wegener, “The inter-
play between model coverage and code coverage,” in Proceedings of
EuroCAST, 2003.

[4] H. B. Carter and S. G. Hemmady, Metric Driven Design Verification.
Springer, 2007.

[5] M. Conrad, Modell-basierter Test eingebetteter Software im Automobil
(Model-based Testing of Embedded Automotive Software), ser. PhD
Thesis. Wiesbaden: Deutscher Universitäts-Verlag, 2004.

[6] M. Conrad, “A Systematic Approach to Testing Automotive Control
Software,” in Proc. 30. Int. Congress on Transportation Electronics
(Convergence ’04), Detroit, MI, USA, Oct. 2004.

[7] dSPACE, Homepage. www.dspace.de
[8] J. Grossmann, M. Conrad, I. Fey, A. Krupp, K. Lamberg, and C. Wewet-

zer, “TestML – A Test Exchange Language for Model-based Testing of
Embedded Software,” in Automotive Software Workshop ’06, San Diego,
Mar. 2006.

[9] IEEE SCC20 ATML Group, “IEEE ATML specification drafts and
IEEE ATML status reports,” 2008. grouper.ieee.org/groups/scc20/tii/

[10] A. A. Julius, G. E. Fainekos, M. Anand, I. Lee, and G. J. Pappas, “Robust
test generation and coverage for hybrid systems,” in Hybrid Systems:
Computation and Control, ser. LNCS 4416, 2007.

[11] Mentor Graphics, Homepage. www.model.com/
[12] T. Nahhal and T. Dang, “Test coverage for continuous and hybrid

systems,” in CAV 2007, ser. LNCS 4590, W. Damm and H. Hermanns,
Eds. Berlin: Springer, 2007.

[13] J. Schäuffele and T. Zurawka, Automotive Software Engineering, 3rd ed.
Wiesbaden: Vieweg, Mar. 2006.

[14] The Mathworks, Homepage. www.mathworks.com
[15] J. Wegener and R. Pitschinetz, “Classification-Tree Editor CTE/XL ,”

2008. www.systematic-testing.com


	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index




