Metal Complexes of Biologically Important Ligands, CLXXV [1]. Pentamethylcyclopentadienyl Halfsandwich Complexes of Rhodium(III) and Iridium(III) with Schiff Bases from 2-(Diphenylphosphino)benzaldehyde and α -Amino Acid Esters

Bernhard Schreiner, Barbara Wagner-Schuh, and Wolfgang Beck

Department Chemie und Pharmazie, Ludwig-Maximilians-Universität München, Butenandtstraße 5–13, 81377 München, Germany

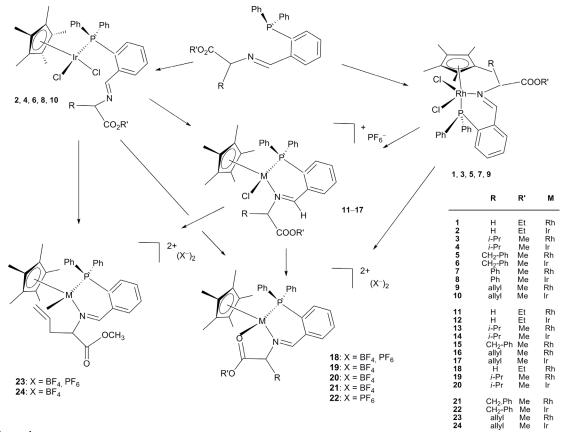
Reprint requests to Prof. W. Beck. E-mail: wbe@cup.uni-muenchen.de

Z. Naturforsch. 2010, 65b, 679-686; received February 2, 2010

Dedicated to Professor Rolf Huisgen on the occasion of his 90th birthday

The reactions of the chlorido-bridged complexes $[Cp^*M(Cl)(\mu-Cl)]_2$ (M = Rh, Ir) with Schiff bases (P-N-O) from 2-(diphenylphosphino)benzaldehyde and α -amino acid esters afford the complexes $Cp^*M(Cl)_2(P-N-O)$ in which the ligands function as monodentate P donors (M = Ir) or as bidentate P-N donors (M = Rh). These complexes can be converted into cationic complexes $[Cp^*M(Cl)(P-N-O)]^+$ with bidentate P-N ligands by treatment with NH₄PF₆. The cationic complexes $[Cp^*M(Cl)(P-N-O)]^+$ cl⁻ have been detected also in solutions of $Cp^*M(Cl)_2(P-N-O)$. The P-N-coordinated complex $[Cp^*Rh(Cl)(Ph_2P-C_6H_4-C(H)=N-C(H)(CH_2Ph)CO_2Me)]^+PF_6^-$ was characterized by X-ray diffraction. From $Cp^*M(Cl)_2(P-N-O)$ and AgBF₄ or AgPF₆ (molar ratio 1:2) the dicationic complexes $[Cp^*M(P-N-O)]^{2+}$ are formed in which the ester group is also coordinated to the metal atom. The Schiff base from 2-(diphenylphosphino)benzaldehyde and allylglycine ester acts as a tridentate ligand, however with coordination of the C=C allyl group instead of the ester function.

Key words: Pentamethylcyclopentadienyl, Rhodium, Iridium, Schiff Bases, 2-(Diphenylphosphino)benzaldehyde, α-Amino Acid Esters


Introduction

Schiff bases from 2-(diphenylphosphino)benzaldehydes [2–4] and amines are valuable ligands [5]. Their complexes derived from optically active amines have been used for asymmetric reactions and catalyses [5]. Recently, we have reported on a series of palladium(II) and platinum(II) complexes with Schiff bases from (2-formylphenyl)diphenylphosphine and α -amino acid esters [1]. Brunner and coworkers [6] have used a P-N ligand obtained from 2-(diphenylphosphino)benzaldehyde and *tert*-butyl*tert*-leucinate for asymmetric catalysis, and several Schiff bases from 2-(diphenylphosphino)benzaldehyde and dipeptide amides have been employed as ligands for asymmetric conjugate addition of allyl zinc reagents [7].

Results and Discussion

The racemic Schiff bases from 2-(diphenylphosphino)benzaldehyde and α -amino acid esters react as many other N and P donors [8] with the chloridobridged complexes $Cp^*(Cl)M(\mu-Cl)_2M(Cl)Cp^*$ (M = Rh, Ir) [9, 10] under cleavage of the Cl bridges to give the complexes 1-10 (Scheme 1). The complexes 3-10 form isomers in solution (see below). The neutral compounds 1-5, 9 and 10 are converted into the cationic complexes 11 - 17 by treatment with NH₄PF₆. Abstraction of all chlorido ligands in 1, 3-6, 10 and 16- using AgBF₄ - affords the dicationic complexes 18-24, whereby in 18-22 coordination of the ester group takes place whereas in the C-allylglycinecontaining complexes 23 and 24 the C=C double bond is coordinated to the metal atom (Scheme 1). The preference of the "soft" C=C bond over the "hard" ester group in coordination is in accordance with Maitlis [9] description of $[Cp^*ML_3]^{2+}$ complexes (L = acetone, MeCN, py, ...) as "soft centers with hard shells". The complexes 23 and 24 can be compared with $[Cp*Ir(NH_2C(H)(CH_2CH=CH_2)CO_2)]^+$ in which allylglycinate functions as a tridentate ligand [11]. Halfsandwich complexes – similar to 11-17 – have been

0932-0776 / 10 / 0600-0679 \$ 06.00 © 2010 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

Scheme 1.

obtained with bidentate Schiff bases from salicylaldehyde and α -amino acid esters [12]. The complexes 11-24 are Brunner-type compounds [13] with four different ligands and with an "asymmetric" metal atom. Therefore, with α -amino acid esters (except glycine) two diastereomers (as pairs of enantiomers $S_{\rm M}S_{\rm C}/R_{\rm M}R_{\rm C}$ and $S_{\rm M}R_{\rm C}/R_{\rm M}S_{\rm C})$ are formed which could be detected in the NMR spectra particularly by their ³¹P NMR signals. For 24 one diastereoisomer could be separated by repeated extraction of the product with dichloromethane. In the C-allylglycine derivatives 23 and 24 three stereogenic centers (metal atom, α -C, γ -C) are formed by coordination; of the four possible diastereoisomers only two could be detected by NMR spectroscopy, as was also found for the allylglycinate complex [Cp*Ir(NH₂C(H)(CH₂- $CH=CH_2)CO_2)]^+$ [11].

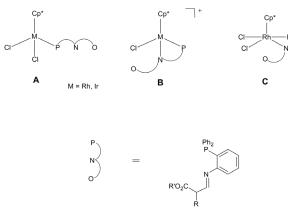

In the IR spectra of 18-22 the CO absorption of the coordinated ester group is typically shifted by $64-111 \text{ cm}^{-1}$ to lower frequencies [14] compared to that in 1-17 with free ester groups. The almost unchanged

Table 1. ³¹P NMR data of the iridium complexes 2, 4, 6, 8, 10, 12, 14, 17, 20, and 24 (δ in ppm rel. to H₃PO₄ as external standard, ¹H-decoupled).

		Α			
	δ	Ratio of	δ	Ratio of	Solvent
		isomers (%)		isomers (%)	
2	4.6s	100	-	-	CDCl ₃
4	4.4s; br	80	12.7s	5	CD_2Cl_2
			13.3s	15	
4	-	-	13.7s	64	CH ₃ OH
			13.2s	36	
6	4.0s	95	8.8s	2	CDCl ₃
			10.1s	3	
8	4.1s	94	11.1s	2	CDCl ₃
			11.4s	4	
10	4.4s; br	93	11.2s	2.5	CDCl ₃
			10.4s	4.5	
12			10.2s	100	CD_2Cl_2
14			13.6s	29	CDCl ₃
			12.8s	71	
17			11.2s	29	CDCl ₃
			10.2s	71	
20			14.5s	43	CD_2Cl_2
			12.2s	57	
24			3.3s	100	CD_2Cl_2

				В		С		А	
	δ	Ratio of isomers (%)	δ	Ratio of isomers (%)	δ	Ratio of isomers (%)	δ	Ratio of isomers (%)	Solvent
1	_		-		32.9d, J = 136.5	100	-		CDCl ₃
1	-		36.8d, J = 137.8	100					CH ₃ OH
3	71.7d, <i>J</i> = 174.1	11	39.5d, <i>J</i> = 138.5 43.0d, <i>J</i> = 143.9		30.7d, <i>J</i> = 145.9 31.3d, <i>J</i> = 143.2	24 54	29.5d, J = 145.9	9 1	CDCl ₃
3	-		39.5d, <i>J</i> = 139.8 43.3d, <i>J</i> = 143.9		-		-		HOCH ₃
5	-		33.0d, J = 134.4	100	_		_		CDCl ₃ /[D ₆]acetone
7	71.9d, <i>J</i> = 174.1	17	34.3d, <i>J</i> = 136.5 35.1d, <i>J</i> = 137.8		30.7d, <i>J</i> = 145.9 31.2d, <i>J</i> = 147.9	27 18	29.2d, J = 145.9	9 3	CDCl ₃
9 11	71.7d, <i>J</i> = 174.1	19	34.2d, <i>J</i> = 136.4 36.0d, <i>J</i> = 137.8		31.2d, br	47	29.6d, J = 145.8	3 3	$CDCl_3$ CD_2Cl_2
13			42.8d, <i>J</i> = 143.9 39.3d, <i>J</i> = 138.5						CD_2Cl_2
15			32.1d, J = 135.9	100					CD_2Cl_2
16			34.1d, <i>J</i> = 136.5 37.9d, <i>J</i> = 138.5						CD_2Cl_2
18			34.5d, J = 133.0	100					CD_2Cl_2
19			34.7d, <i>J</i> = 136.7 32.1d, <i>J</i> = 144.0						CD_2Cl_2
21			35.4d, <i>J</i> = 137.3 33.2d, <i>J</i> = 142.0						CD_2Cl_2
23			37.3d, <i>J</i> = 115.6 35.9d, <i>J</i> = 116.3						CD_2Cl_2

Table 2. ³¹P NMR data of the rhodium complexes 1, 3, 5, 7, 9, 11, 13, 16, 18, 19, 21, and 23 (δ in ppm rel. to H₃PO₄ as external standard, ¹H-decoupled, $J = {}^{1}J({}^{103}\text{Rh}{-}^{31}\text{P})$ in Hz).

Scheme 2.

CO absorption and the shift of the band of the C=C bonds by 135 cm⁻¹ to lower frequencies show in accordance with the NMR spetra that in **23** and **24** the allyl group is preferred for coordination. The v(M-Cl) absorption in **1**–**17** appears at 260–300 cm⁻¹, and **11**–**24** exhibit the absorption of the BF₄⁻ (1050 cm⁻¹) or the PF₆⁻ anion (840 cm⁻¹).

Particularly the ³¹P NMR spectra (Tables 1–2) proved to be very useful for the identification of the type of complexes and their isomers. The iridium complexes **2**, **4**, **6**, **8**, and **10** exhibit an intense ³¹P NMR signal (Table 1) at $\delta = 4$ (in CDCl₃ solution) which we assign to complex type **A** (Scheme 2). By comparison with the ionic PF₆ complexes **12** and **14** the second signal pattern of **4**, **6**, **8**, and **10** at $\delta = 10-13$ can be attributed to the ionic type **B** which for R \neq H appears as a mixture of two diastereoisomers. In accordance with this assignment for **4** only the ionic form **B** was detected in methanol solution (Table 2).

All the ³¹P signals of the rhodium complexes (Table 2) appear as doublets due to the ¹⁰³Rh-³¹P coupling. Our assignment of the ³¹P NMR signals of the rhodium complexes is shown in Table 2. Three types of complexes $\mathbf{A}-\mathbf{C}$ can be recognized (Scheme 2). For **3**, **7**, and **9** four isomers could be observed in solution. The ³¹P NMR signal of **3**, **7**, and **9** at $\delta = 30$ (Table 2) is comparable with that of Cp*Rh(Cl)₂(Ph₂PCl₂CH₂NEt₂) [15]. Another example for this type **A**, which cannot form diastereoiso-

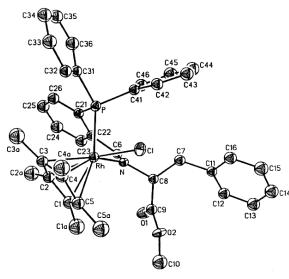


Fig. 1. Molecular structure of **15** in the crystal. Selected bond lengths (pm) and angles (deg): Rh–Cl 239.4(4), Rh–N 213.1(8), Rh–P 231.9(3), N–C6 127(1), N–C6 127(1), C6–C22 148(1), N–C8 149(1), Rh–C1 219(1), Rh–C2 216(1), Rh–C3 220(1), Rh–C4 217(1), Rh–C5 219(1); Cl–Rh–N 93.1(2), Cl–Rh–P 94.0(1), N–Rh–P 79.6(2), Rh–N–C6 126.1(7), C6–N–C8 116.8(8), C7–C8–C9 109.8(9).

mers, is Cp*Rh(Cl)₂CNR [16]. The signal at $\delta = 72$ for **3**, **7**, and **9** could not be assigned. The single ³¹P NMR signal for **24** can be explained by a large difference of the solubility of the two diastereoisomers leaving only one of these in solution. The ionic species (type **B**) of **1**, **3**, **5**, **7**, **9**, **11**, **13**, **15**, **16**, **18**, **19**, **21**, **23** show ³¹P NMR signals at $\delta = 35-40$ (Table 2). An exception is complex **1**, the glycine derivative, which occurs both in CDCl₃ and CH₃OH solution as a single isomer for which we assume the neutral 20 electron pentacoordinated structure **C**.

The complexes of type **B** with P-N chelating ligands again appear as two diastereoisomers with the exception of the phenylalanine derivative **15** for which only one doublet signal could be detected suggesting the formation of a single isomer in solution. This finding may be explained by Brunners " β -phenyl effect" [17], *i. e.* the interaction of the cyclopentadienyl ring with the phenyl group. In the ¹H NMR spectrum of the glycine derivatives **1**, **2**, **11**, and **12** the signals of the α -CH₂ group are characteristic for coordination of the P-N Schiff bases. Whereas for **1** a CH₂ singlet is observed, AB spin systems are found for the diastereotopic α -CH₂ protons in the P-N chelate ligand in **2**, **11**, and **12**. For the complexes **13**, **14**, **16**, **17**, **19**, **20**, **21**, and **23** two sets of ¹H NMR signals were detected, due to the two diastereoisomers. Also in the ¹³C NMR spectra of **19** and **20** two sets of signals were observed.

The solid-state structure of **15** was determined by X-ray diffraction. Crystals of **15** were obtained by layering a concentrated CH₂Cl₂ solution of **15** with *n*-hexane. The "three-legged piano stool" structure of **15** is shown in Fig. 1 with selected bond lengths and bond angles. Rh–Cl, Rh– C(Cp*) and Rh–N distances comparable to **15** were found, *e. g.* for [Cp*Rh(Cl)(phen)]⁺ [18] or [Cp*Rh(Cl)(Ph₂PCH₂CH₂NEt₂)₂]⁺ [15]. Complex **15** crystallizes as pairs of enantiomers ($R_{Rh}S_{\alpha-C}$)-($S_{Rh}R_{\alpha-C}$).

Experimental Section

The complexes $[Cp*M(Cl)(\mu-Cl)]_2$ (M = Rh, Ir) [10] and 2-(diphenylphosphino)benzaldehyde [3] were prepared as described. Unless otherwise noted the NMR spectra were recorded with a Jeol GSX-270 spectrometer.

Neutral complexes 1-10

Example complex **2**: $[Cp*IrCl_2]_2$ (159 mg, 0.2 mmol) and 2-(diphenylphosphino)benzaldehyde (160 mg, 0.43 mmol) in benzene (10 mL) were heated under reflux for 75 min. The mixture was allowed to cool to r. t. and layered with *n*-hexane (3 mL). After 12 h the precipitate was isolated, washed twice with diethyl ether (10 mL each) and dried *in vacuo* at 60 °C. Complexes **1**, **3**–**10** were prepared by analogous procedures.

I: Orange. Yield 42 %. M. p. 179–181 °C. – IR (Nujol, cm⁻¹): v = 1750s (CO), 1618s (C=N), 280m, 252m (Rh-Cl). – ¹H NMR (CDCl₃): $\delta = 9.21$ (s, 1H, N=CH), 5.08 (dd, 2H, α-CH), 3.90 (m, 2H, Et), 1.10 (t, 3H, J = 7.1 Hz, Et), 146 (d, 15H, J(H-P) = 3.7 Hz, Cp*). – ¹³C NMR (CDCl₃): $\delta = 178.0$ (d, J(C-P) = 7.3 Hz, C=N), 166.6 (CO), 101.9 (dd, J(C-P) = 3.1 Hz, J(C-Rh) = 9.4 Hz, C₅), 61.5, 13.8 (Et), 9.2 (s, Cp*Me). – C₃₃H₃₇Cl₂NO₂PRh (684.5): calcd. C 57.91, H 5.45, N 2.05; found C 57.15, H 5.63, N 2.05.

2: Orange. Yield 88 %. M. p. 179–182 °C. – IR (Nujol, cm⁻¹): v = 1748s (CO), 1630m (C=N), 288m, 269m (Ir-Cl). – ¹H NMR (CDCl₃): $\delta = 9.03$ (s, 1H, N=CH), 4.23 (s, 2H, α-CH), 4.13 (q, 2H, Et), 1.24 (t, 3H, J = 7.1 Hz, Et), 1.37 (d, 15H, J(H-P) = 2.0 Hz, Cp*). – ¹³C NMR (CD₂Cl₂): $\delta = 165.6$ (d, J(C-P) = 7.1 Hz, C=N), 170.4 (CO), 92.9 (d, J(C-P) = 3.7 Hz, C₅), 60.7 (α-C), 60.6, 14.1 (Et), 8.2 (s, Me, Cp*). – C₃₃H₃₇Cl₂NO₂IrP · ¹/₂ C₆H₆ (812.8): calcd. C 53.20, H 4.96, N 1.72; found C 53.14, H 5.08, N 1.93.

3: Red. Yield 71 %. M. p. 174-176 °C. – IR (Nujol, cm⁻¹): v = 1733s (CO), 1619m (C=N), 278m, 262m (Rh-Cl). – C₃₅H₄₁Cl₂NO₂PRh (712.5): calcd. C 59.00, H 5.80, N 1.97; found C 59.17, H 6.11, N 1.97.

4: Orange. Yield 69%. M. p. 147–149 °C. – IR (Nujol, cm⁻¹): v = 1737s (CO), 1626m (C=N), 286m, 260m (Ir-Cl). – ¹H NMR (CD₂Cl₂): $\delta = 8.89$ (s, 1H, N=CH), 3.79 (d, 1H, J(H-H) = 10.9 Hz, α-C), 2.10 (m, 1H, β-CH), 0.65 (s, br, 6H, γ-CH), 3.62 (s, br, 3H, OMe), 1.33 (d, 15H, J(H-P) = 2.1 Hz, Cp^{*}). – ¹³C NMR (CD₂Cl₂): $\delta = 164.2$ (d, J(C-P) = 8.9 Hz, C=N), 93.5 (d, J(C-P) = 3.2 Hz, C₅), 78.1 (α-C), 32.2 (β-C), 18.5, 19.7 (γ-C), 51.8 (OMe), 8.5 (s, MeCp^{*}). – C₃₅H₄₁Cl₂NO₂IrP (801.8): calcd. C 52.43, H 5.15, N 1.75; found C 51.98, H 5.18, N 1.90.

5: Orange. Yield 75 %. M. p. 158 – 161 °C. – IR (Nujol, cm⁻¹): $\nu = 1743s$ (CO), 1625m (C=N), 279m, 259m (Rh-Cl). – C₃₉H₄₁Cl₂NO₂PRh (760.6): calcd. C 61.59, H 5.43, N 1.84; found C 60.89, H 5.31, N 1.96.

6: Orange. Yield 71 %. M. p. 219 °C. – IR (Nujol, cm⁻¹): v = 1743s (CO), 1622m (C=N), 290m, 268m (Ir-Cl). – ¹H NMR (CDCl₃): $\delta = 9.19$ (s, 1H, N=CH), 4.30 (d, br, 1H, α-CH), 3.00 (d, br, 1H, β-CH), 3.57 (s, br, 3H, OMe), 2.1 (s, br, 1H, β-CH), 1.36 (s, br, 15H, Cp*). – ¹³C NMR (CD₂Cl₂): $\delta = 164.7$ (d, J(C-P) = 7.2 Hz, C=N), 171.0 (CO), 93.5 (d, J(C-P) = 3.2 Hz, C₅), 73.7 (α-C), 52.0 (OMe), 40.7 (β-C), 8.5 (s, MeCp*). – C₃₉H₄₁Cl₂NO₂IrP (849.8): calcd. C 55.11, H 4.86, N 1.65; found C 54.82, H 4.81, N 1.49.

7: Red. Yield 78 %. M. p. 179–181 °C. – IR (Nujol, cm⁻¹): v = 1751s, 1733sh (CO), 1626m (C=N), 278m, 266m (Rh-Cl). – C₃₈H₃₉Cl₂NO₂PRh · 1/2 CH₂Cl₂ (789.0): calcd. C 58.61, H 5.11, N 1.78; found C 57.96, H 5.41, N 1.75.

8: Orange. Yield 90 %. M. p.188 °C. – IR (Nujol, cm⁻¹): v = 1749m (CO), 1624m (C=N), 288m, 264m (Ir-Cl). – ¹H NMR (CDCl₃): δ = 9.11 (s, 1H, N=CH), 5.19 (s, 1H, α-CH), 3.65 (s, br, 3H, OMe), 1.36 (s, br, 15H, Cp*). – C₃₈H₃₉Cl₂NO₂IrP (835.8): calcd. C 54.61, H 4.70, N 1.68; found C 54.19, H 5.14, N 1.63.

9: Orange. Yield 83 %. M. p. 140–145 °C. – IR (Nujol, cm⁻¹): v = 1741s (CO), 1625m (C=N), 1641m (C=C), 290sh, 260sh (Rh-Cl). – $C_{35}H_{39}Cl_2NO_2Rh \cdot C_6H_6$ (788.6): calcd. C 62.45, H 5.75, N 1.78; found C 62.88, H 5.63, N 2.02.

10: Orange. Yield 68 %. M. p. 173 – 178 °C. – IR (Nujol, cm⁻¹): v = 1742s (CO), 1624m (C=N), 1641w (C=C), 291m, 263m (Ir-P). – ¹H NMR (CD₂Cl₂): $\delta = 9.04$ (m, br, 1H, N=CH), 6.82 – 8.38 (17H, arom.), 5.13 (br, 1H, HC=CH₂), 4.95 (br, 1H, HC=CHH *trans*), 4.87 (br, 1H, HC=CHH *cis*), 4.16 (br, 1H, α-CH), 3.66 (br, 3H, OMe), 2.41, 2.13 (br, 1H, β-CH), 1.37 (d, 15H, J(H-P) = 2.2 Hz, Cp*). – ¹³C NMR (CD₂Cl₂): $\delta = 164.3$ (d, J(C-P) = 7.9 Hz, C=N), 172.5 (CO), 93.0 (d, J(C-P) = 3.2 Hz, C₅), 117.6 (δ-C), 71.0 (α-C), 51.8 (OMe), 37.9 (d, J(C-P) = 2.6 Hz, β-C), 8.3 (s, MeCp*). – C₃₅H₃₉Cl₂NO₂IrP · 1/2 C₆H₆ (838.9): calcd. C 54.41, H 5.05, N 1.67; found C 53.91, H 5.05, N 1.72.

Monocationic complexes 11-17

Example 12: To the orange solution of complex 2 (40 mg, 0.05 mmol) in methanol (3 mL) a cold, aqueous solution, saturated with NH₄PF₆, was added dropwise until the solution over the precipitate turned colorless. The precipitate was washed four times with water (8 mL each). After drying over P₂O₅ the product was washed with diethyl ether (5 mL) and recrystallized from CH₂Cl₂ / O(C₂H₅)₂. Analogous procedures were used for the preparation of complexes **11** and **13–17**.

11: Orange. Yield 95 %. M. p. 190–191 °C. – IR (Nujol, cm⁻¹): v = 1742s, 1748s (CO), 1622m (C=N), 835vs (PF₆), 275sh, 286w (Rh-Cl). – ¹H NMR (CD₂Cl₂): $\delta =$ 8.39 (ψt, 1H, N=CH), 4.81 (dd, 2H, α-CH), 4.11 (q, 2H, Et), 1.39 (d, 15H, J(H-P) = 3.9 Hz, Cp*), 1.23 (t, 3H, J(H-H) = 7.0 Hz, Et). – ¹³C NMR (CD₂Cl₂): $\delta = 176.6$ (d, J(C-P) = 6.8 Hz, C=N), 167.4 (CO), 102.9 (dd, J(C-P) = 2.6 Hz, C₅), 66.3 (α-C), 62.9, 14.2 (Et), 9.3 (d, J(C-P) = 1.1 Hz, MeCp*). – C₃₃H₃₇ClF₆NO₂P₂Rh (794.0): calcd. C 49.92, H 4.70, N 1.76; found C 49.68, H 4.75, N 1.99.

12: Yellow. Yield 97 %. M. p. 238–241 °C. – IR (Nujol, cm⁻¹): v = 1742s, 1749s (CO), 1617m (C=N), 836vs (PF₆), 280w, 290w (Ir-Cl). – ¹H NMR (CDCl₃): $\delta = 8.23$ (d, 1H, N=CH), 5.03 (dd, 2H, α-CH), 4.26 (m, 2H, Et), 1.42 (d, 15H, J(H-P) = 2.7 Hz, Cp*), 1.31 (t, 3H, J(H-H) = 7.0 Hz, Et). – ¹³C NMR (CDCl₃): $\delta = 174.7$ (d, J(C-P) = 6.8 Hz, C=N), 167.4 (CO), 97.1 (d, J(C-P) = 2.6 Hz, C₅), 71.5 (α-C), 63.2, 14.3 (Et), 9.22 (d, J(C-P) = 1.0 Hz, MeCp*). – C₃₃H₃₇ClF₆NO₂IrP₂ (883.3): calcd. C 44.87, H 4.22, N 1.59; found C 44.62, H 4.33, N 2.02.

13: Orange. Yield 92 %. M. p. 198-200 °C. - IR (Nujol, cm⁻¹): v = 1743m, 1750m (CO), 1619m (C=N), 834vs (PF₆), 267w, 282w (Rh-Cl). – ¹H NMR (CD₂Cl₂): δ = 8.70 $(\psi t, 1H, N=CH), 4.37 (d, 1H, J(H-H) = 8.1 Hz, \alpha$ -CH), 3.77 (s, 3H, OCH₃), 1.92 (m, 1H, β -CH), 1.41 (d, 15H, J(H-P) = 3.9 Hz, Cp*), 0.77 (d, 3H, J = 6.6 (H-H) = Hz, γ -CH₃), 1.03 (d, 3H, J(H-H) = 6.8 Hz, γ -CH₃). Minor isomer: 8.55 (m, 1H, N=CH), 4.45 (d, 1H, J(H-H) = 8.0 Hz, α -CH), 3.80 (s, 3H, OMe), 1.64 (m, 1H, β -CH), 1.45 (d, 15H, J(H-P) = 4.0 Hz, Cp*), 1.14 (d, 3H, γ-CH₃), 0.93 (d, 3H, γ-CH₃). -¹³C NMR (CD₂Cl₂): δ = 173.5 (d, *J*(C-P) = 7.3 Hz, C=N), 171.2 (CO), 103.3 (d, J(C-P) = 2.6 Hz, C₅), 81.7 (α -C), 54.6 (OMe), 33.9 (β -C), 19.5, 17.7 (γ -C), 9.6 (d, J(C-P) = 1.6 Hz, MeCp*). Minor isomer: 103.4 (d, J(C-P) = 2.6 Hz, C₅), 84.0 (α -C), 33.0 (β -C), 19.8, 17.9 (γ -C), 10.0 (d, J = 1.6 Hz, C₅). - C₃₅H₄₁ClF₆NO₂P₂Rh (822.0): calcd. C 51.14, H 5.03, N 1.70; found C 50.92, H 5.05, N 1.85.

14: Yellow. Yield 96 %. M. p. 205 – 208 °C. – IR (Nujol, cm⁻¹): v = 1746s (CO), 1613m (C=N), 842vs (PF₆), 290w, 302w (Ir-Cl). – ¹H NMR (CD₂Cl₂): $\delta = 8.55$ (d, 1H, N=CH), 4.75 (d, 1H, J(H-H) = 8.7 Hz, α-CH), 3.79 (s, 3H, OMe), 2.45 (m, 1H, β-C), 1.45 (d, 15H, J(H-P) = 2.6 Hz, Cp*),

1.11 (d, 3H, *J*(H-H) = 6.7 Hz, γ-CH₃), 1.00 (d, 3H, *J*(H-H) = 6.6 Hz, γ-CH₃). Minor isomer: 4.50 (d, *J*(H-H) = 8.7 Hz, α-CH), 3.82 (s, 3H, OMe), 1.02 (d, 3H, *J*(H-H) = 6.7 Hz, γ-CH₃), 0.95 (d, 3H, γ-CH₃). $-^{13}$ C NMR (CD₂Cl₂): δ = 170.8 (d, *J*(C-P) = 6.6 Hz, C=N), 170.7 (CO), 97.4 (d, *J*(C-P) = 1.9 Hz, C₅), 86.1 (α-C), 53.3 (OMe), 34.2 (β-C), 18.7, 18.1 (γ-C), 9.1 (MeCp*). Minor isomer: 171.1 (d, *J*(C-P) = 4.7 Hz, C=N), 169.7 (CO), 98.0 (d, *J*(C-P) = 1.9 Hz, C5), 87.1 (α-C), 53.3 (OMe), 32.8 (β-C), 18.7, 18.2 (γ-C), 9.3 (MeCp*). $- C_{33}H_{41}CIF_{6}NO_{2}IrP_{2}$ (911.3): calcd. C 46.13, H 4.53, N 1.54; found C 45.44, H 4.58, N 1.38.

15: Orange. Yield 89 %. M. p. 230–231 °C. – IR (Nujol, cm⁻¹): v = 1737s (CO), 1610m (C=N), 840vs (PF₆), 257w (Rh-Cl). – ¹H NMR (CD₂Cl₂): $\delta = 8.91$ (ψt, 1H, N=CH), 5.27 (dd, 1H, α-CH), 3.58 (s, 3H, OMe), 2.22 (dd, 2H, β-CH), 1.33 (d, 15H, J(H-P) = 3.9 Hz, Cp*). – ¹³C NMR (CD₂Cl₂): $\delta = 174.9$ (d, J(C-P) = 7.4 Hz, C=N), 171.5 (CO), 102.4 (dd, J(C-P) = 2.1 Hz, J(C-Rh) = 6.3 Hz, C₅), 74.2 (α-C), 53.0 (OMe), 40.9 (β-C), 9.2 (MeCp*). – C₃₉H₄₁ClF₆NO₂P₂Rh (870.0): calcd. C 53.84, H 4.75, N 1.61; found C 53.46, H 4.85, N 1.70.

16: Red. Yield 92 %. M. p. 194–196 °C. – IR (Nujol, cm⁻¹): v = 1738s (CO), 1607m (C=N), 1634w (C=C), 830vs (PF₆), 280w (Rh-Cl). – ¹H NMR (CD₂Cl₂): $\delta = 8.7$ (ψt, 1H, N=CH), 7.36–7.83 (14H, arom.), 5.12 (ψt, 1H, α-CH), 3.79s (OMe), 2.03 (m, 2H, β-CH), 5.46 (br, 1H, HC=CH₂), 5.03 (d, 1H, J(H-H) = 10.0 Hz, HC=CHH *trans*), 4.85 (d, 1H, J(H-H) = 17.0 Hz, HC=CHH *cis*), 1.36 (d, 15H, J(H-P) = 3.8 Hz, MeCp*). – ¹³C NMR (CD₂Cl₂): $\delta = 174.6$ (d, J(C-P) = 7.4 Hz, C=N), 171.3 (CO), 120.7 (δ -C), 102.5 (dd, J(C-P) = 2.1 Hz, J(C-Rh) = 6.7 Hz, C₅), 73.5 (α-C), 53.5 (OMe), 38.9 (β-C), 9.2 (d, J(C-P) = 1.0 Hz, MeCp*). – C₃₅H₃₉CIF₆NO₂P₂Rh (820.0): calcd. C 51.27, H 4.79, N 1.71; found C 50.90, H 4.84, N 1.83.

17: Yellow. Yield 91 %. M. p. 178–182 °C. – IR (Nujol, cm⁻¹): v = 1749s (CO), 1612m (C=N), 1641w (C=C), 841vs (PF₆), 289w (Ir-Cl). – ¹H NMR (CD₂Cl₂): $\delta = 8.47$ (m, 1H, N=CH), 7.35–7.71 (14H, arom.), 5.22–4.94 (α-CH), 2.60 (m, 2H, β-CH), 3.82 (s, 3H, OMe), 5.67 (m, 1H, $HC=CH_2$), 5.22–4.94 (HC=CH*H cis/trans*), 1.41 (d, 15H, J(H-P) = 2.6 Hz, MeCp*). – ¹³C NMR (CD₂Cl₂): $\delta = 171.5$ (d, J(C-P) = 6.3 Hz, C=N), 170.1 (CO), 121.5 (δ -C), 96.8 (d, J(C-Rh) = 2.6 Hz, C₅), 78.1 (α -C), 53.5 (OMe), 38.0 (β -C), 8.8 (MeCp*). – C₃₅H₃₉ClF₆NO₂IrP₂ (909.3): calcd. C 46.23, H 4.32, N 1.54; found C 45.93, H 4.35, N 1.68.

Dicationic complexes 18-22

General procedure for 19-22: In a dry Schlenk tube 3, 4 or 5 (1 mmol) and AgBF₄ (2.2 mmol) were stirred in dichloromethane (10 mL) for 2 h. The solution which contained the product was separated with a pipette, and the solvent was removed *in vacuo*. The residue was dried at 60 °C for 2 h and stirred with diethyl ether (10 mL) for 12 h. The ether was separated from the solid which was washed twice with diethyl ether (10 mL each) and finally dried at 60 °C for 6 h *in vacuo*. Complex **18** was prepared from **11** by use of 1.1 mmol of AgBF₄. For the preparation of **22**, 2.2 mmol of AgPF₆ was used.

18: Yellow. Yield 87 %. M. p. 192–196 °C. – IR (Nujol, cm⁻¹): ν = 1635s (CO), 1612m (C=N), 1050vs (BF₄). – ¹H NMR (CD₂Cl₂): δ = 9.00 (s, br, 1H, N=CH), 6.92– 8.25 (arom.), 3.95–4.58 (m, br, α-CH), 4.51 (q, 2H, Et), 1.35 (t, 3H, Et), 1.52 (d, 15H, *J*(H-P) = 3.5 Hz, Cp*). – C₃₃H₃₇BF₁₀NO₂P₂Rh · 1/2 CH₂Cl₂ (876.9): calcd. C 45.32, H 4.31, N 1.58; found C 45.31, H 4.38, N 1.98.

19: Orange. Yield 92 %. M. p. 155 – 158 °C. – IR (Nujol, cm⁻¹): v = 1633s (CO), 1616m (C=N), 1046vs (BF₄). – ¹H NMR (CD₂Cl₂): $\delta = 9.05$ (s, 1H, N=CH), 6.79–8.33 (arom.), 5.04 (s, br, 1H, α-CH), 4.03 (s, 3H, OMe), 2.84 (m, 1H, β-CH), 1.50 (d, *J*(H-H) = 2.1 Hz, Cp*), 1.15 (ψq, 3H, γ-CH₃), -0.23 (d, 3H, γ-CH₃). Minor isomer: 8.74 (s, 1H, N=CH), 3.71 (d, 1H, *J*(H-H) = 10.3 Hz, α-CH), 4.23 (s, 3H, OMe), 2.20 (m, 1H, β-CH), 1.46 (d, 15H, *J*(H-P) = 2.1 Hz, Cp*), 1.15 (ψq, 6H, γ-CH₃). – ¹³C NMR (CD₂Cl₂): $\delta = 170.5$ (d, *J*(C-P) = 6.3 Hz, C=N), 182.0 (CO), 103.6 (m, C₅), 78.5 (α-C), 58.0 (OMe), 26.7 (β-C), 13.2, 18.7 (γ-C). Minor isomer: 176.2 (d, *J*(C-P) = 7.4 Hz, C=N), 103.6 (m, Cp*), 80.9 (α-C), 57.8 (OMe), 31.1 (β-C), 19.9, 19.3 (γ-C), 9.9 (MeCp*). – C₃₅H₄₁B₂F₈NO₂PRh · 2 CH₂Cl₂ (985.1): calcd. C 45.11, H 4.60, N 1.42; found C 45.46, H 5.13, N 1.54.

20: Orange. Yield 93 %. M. p. 173-176 °C. - IR (Nujol, cm^{-1}): v = 1629s (CO), 1709m (CO, hydrolyzed product), 1610s (C=N), 1057vs (BF₄). – ¹H NMR (CD₂Cl₂): δ = 9.05 (d, 1H, J(H-P) = 4.0 Hz, N=CH), 6.90-8.33 (arom.), 4.73 (ψt, 1H, α-CH), 4.32 (s, 3H, OMe), 2.92m (1H, β-CH), 1.51 (d, 15H, J(H-P) = 2.5 Hz, Cp*), 1.20 (d, 3H, γ -CH₃), -0.19 (d, 3H, J(H-H) = 6.8 Hz, γ -CH₃). Minor isomer: 8.67 (\u03cft, 1H, C=NH), 4.13 (s, 3H, OMe), 3.86 (d, 1H, J(H-H) = 10 Hz, α -CH), 2.13 (m, 1H, β -CH), 1.48 (d, 15H, J(H-P) = 2.4 Hz, Cp*), 1.11 (d, 3H, γ -CH₃), 1.29 (d, 3H, J(H-H) = 6.6 Hz, γ -CH₃). – ¹³C NMR (CD₂Cl₂): δ = 169.9 (d, J(C-P) = 6.8 Hz, C=N), 186.9 (CO), 96.7 (d, J(C-P) = 6.8 Hz, C=N), 186.9 (CO), 186.9 (CO), 186.9 P) = 2.1 Hz, C₅), 79.5 (α -C), 59.5 (OMe), 27.0 (β -C), 19.0, 13.2 (γ -C), 9.6 (MeCp*). Minor isomer: 175.3 (d, J(C-P) = 6.3 Hz, C=N), 187.7 (CO), 96.3 (d, J(C-P) = 2.1 Hz, C₅), 81.1 (α -C), 59.4 (OMe), 30.9 (β -C), 20.2, 18.7 (γ -C), 9.1 $(MeCp^*)$. - $C_{35}H_{41}B_2F_8NO_2IrP \cdot 2 CH_2Cl_2$ (1074.4): calcd. C 41.36, H 4.22, N 1.30; found C 40.95, H 4.49, N 1.38.

21: Orange. Yield 90 %. M. p. 146–149 °C. – IR (Nujol, cm⁻¹): v = 1641s (CO), 1623sh (C=N), 1054vs (BF₄). – ¹H NMR (CD₂Cl₂): $\delta = 9.19$ (s, br, N=CH), 6.87–8.38 (arom.), 3.80 (s, br, OMe), 2.16 (s, br, β -CH), 1.54 (s, br, MeCp*). Minor isomer: 9.08 (s, br, N=CH), 4.01 (s, br, OMe), 3.15 (s, br, β -CH), 1.54 (s, br, MeCp*). – ¹³C NMR (CD₂Cl₂): $\delta = 177.5$ (d, J(C-P) = 7.0 Hz, C=N), 183.5 (CO), 104.2 (m, C₅), 58.1 (OMe), 44.5 (β -C), 10.1 (MeCp*). – C₃₉H₄₁B₂F₈NO₂PRh · 2 CH₂Cl₂ (1033.1): calcd. C 47.67, H 4.39, N 1.36; found C 48.13, H 4.69, N 1.54.

22: Orange. Yield 93 %. M. p. 178 - 181 °C. – IR (Nujol, cm⁻¹): $\nu = 1673s$ (CO), 1631w (C=N), 1057vs (BF₄). – C₃₉H₄₁F₁₂NO₂IrP₃·CH₂Cl₂ (1153.8): calcd. C 41.46, H 3.76, N 1.21; found C 41.61, H 4.41, N 1.28.

Dicationic complexes 23 and 24

24: Complex 10 (67 mg, 0.084 mmol) and AgBF₄ (37 mg, 0.19 mmol) were stirred in dichloromethane (5 mL) for 1 h. The solid was centrifuged off, and from the solution (which contained the product) the solvent was removed *in vacuo*. The colorless residue was dried for 2 h at 60 °C, and then stirred with diethyl ether (6 mL) for 12 h. The isolated solid was washed with diethyl ether (8 mL) and dried at 60 °C *in vacuo*. Complex 23 was obtained by an analogous procedure from 16.

23: Yellow. Yield 95 %. M. p. 143-145 °C. - IR (Nujol, cm⁻¹): v = 1743s (CO), 1625m (C=N), 1505 (C=C), 1059vs (BF₄), 840vs (PF₆). – ¹H NMR (CD₂Cl₂): δ = 9.01 (s, br, 1H, N=CH), 6.97-8.39 (14H, arom.), 6.05 (m, 1H, β -CH), 4.17 (ψ t, 1H, α -CH), 3.76 (s, 3H, OMe), 2.49 (m, 1H, β -CH), 0.33 (m, 1H, HC=CH₂), 5.10 (d, 1H, J(H-H) = 13.3 Hz, HC=CHH trans), 4.58 (m, 1H, HC=CHH cis), 1.51 (d 15H, J(H-P) = 3.7 Hz, Cp*). Minor isomer: 9.25 (s, br, 1H, N=CH), 6.26 (m, 1H, β-CH), 3.95 (s, 3H, OMe), 0.13 (m, 1H, $HC=CH_2$), 1.43 (d, 15H, J(H-P) = 3.9 Hz, Cp*). – ¹³C NMR (CD₂Cl₂): δ = 175.7 (d, *J*(C-P) = 6.3 Hz, C=N), 167.1 (CO), 110.4 (dd, J(C-P) = 1.6 Hz, J(C-Rh) = 5.2 Hz, C₅), 107.1 (d, J(C-P) = 5.6 Hz, γ -C), 83.3 (α -C), 77.3 (dd, J(C-P) = 2.1 Hz, J(C-Rh) = 6.8 Hz, δ -C), 53.5 (OMe), 9.5 (d, J(C-P) = 1.5 Hz, MeCp*). Minor isomer: 179.8 (d, J(C-P) = 6.8 Hz, C=N), 167.7 (CO), 110.5 (dd, C₅), 88.0 (α -C), 65.9 (dd, J(C-Rh) = 4 Hz, J(C-P) = 2 Hz, δ -C), 54.6 (OMe), 34.5 (β -C), 9.7 (d, J(C-P) = 1.1 Hz, MeCp*). - C₃₅H₃₉BF₁₀NO₂P₂Rh (871.4): calcd. C 48.25, H 4.51, N 1.61; found C 48.22, H 4.89, N 1.61.

- Part 174: B. Schreiner, Ch. Robl, B. Wagner-Schuh, W. Beck, Z. Naturforsch. 2010, 65b, 503.
- [2] A. E. Senar, W. Valient, J. Wirth, J. Org. Chem. 1960, 25, 2001.
- [3] G. P. Schiemenz, H. Kaack, *Liebigs Ann. Chem.* 1973, 1480.
- [4] H. Brunner, A. F. M. M. Rahmann, Chem. Ber. 1984, 117, 110.
- [5] See refs. [6] [13] as cited in ref. [1].
- [6] H. Brunner, I. Deml, W. Dirnberger, B. Nuber, W. Reißer, *Eur. J. Inorg. Chem.* 1998, 43.
- [7] A. H. Hoveyda, A. W. Hird, M. A. Kacprzynski, Chem.

24: Colorless. Yield 90 %. M. p. 131–135 °C. – IR (Nujol, cm⁻¹): v = 1747s (CO), 1622m (C=N), 1500 (C=C), 1058vs (BF₄). – ¹H NMR (CD₂Cl₂): $\delta = 8.48$ (s, br, 1H, N=CH), 6.99–8.54 (14H, arom.), 4.30 (ψ t, 1H, α -CH), 3.77 (s, 3H, OMe), 2.68 (m, 1H, β -CH), 5.40 (m, 1H, β -CH), 0.26 (m, 1H, *H*C=CH₂), 4.87 (d, 1H, *J*(H-H) = 13.7 Hz, HC=CH*H trans*), 4.38 (d, 1H, *J*(H-H) = 7.6 Hz, HC=CH*H cis*), 1.54 (d, 15H, *J*(H-P) = 2.5 Hz, MeCp*). – ¹³C NMR (CD₂Cl₂): $\delta = 176.5$ (d, *J*(C-P) = 6 Hz, C=N), 168.0 (CO), 105.8 (C₅), 88.7 (γ -C), 85.5 (α -C), 54.6 (OMe), 38.9 (β -C), 9.0 (MeCp*). – C₃₅H₃₉B₂F₈NO₂IrP·CH₂Cl₂ (987.4): calcd. C 43.79, H 4.19, N 1.42; found C 42.82, H 4.41, N 1.57.

X-Ray structure determination of 15

Crystals of **15** were obtained from CH₂Cl₂/*n*-hexane. C₃₉H₄₁ClF₆NO₂P₂Rh (870.0). Crystal size $0.1 \times 0.2 \times 0.7 \text{ mm}^3$. Syntex R3 diffractometer, MoK_α radiation, $\lambda = 0.71073 \text{ Å}$, T = 20 °C. Monoclinic, $P2_1/c$, a = 904.5(7), b = 1951(2), c = 2206(2) pm, $\beta = 101.71(6)^\circ$, $V = 3.811(6) \text{ nm}^3$, Z = 4, $\rho_{\text{calcd.}} = 1.52 \text{ g cm}^{-3}$, $\mu(\text{MoK}_{\alpha}) = 0.7 \text{ mm}^{-1}$. 2θ range $= 2-50^\circ$, index range $\pm h$, -k, $\pm l$, 13220 collected reflections, 6695 unique reflections, 3539 reflections "observed" with $I \ge \sigma(I)$, absorption correction: $T_{\text{rel.}}$ (min. / max.) = 0.065 / 0.096. Solution by Direct Methods, refinement by full-matrix least-squares methods. 268 refined parameters, R = 0.0861, Rw = 0.0773, extrema of last Fourier synthesis = $+0.80 / -0.90 \text{ e} \cdot 10^{-6} \text{ pm}^{-3}$.

CCDC 766179 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgement

Support by Deutsche Forschungsgemeinschaft, Fonds der Chemischen Industrie, Ludwig-Maximilians-Universität München, and Wacker-Chemie AG, München, is gratefully acknowledged.

Commun. **2004**, 1779; M. K. Brown, S. J. Degrado, A. H. Hoveyda, *Angew. Chem.* **2005**, *117*, 5440; *Angew. Chem. Int. Ed.* **2005**, *44*, 5306; D. M. Mampreian, A. H. Hoveyda, *Org. Lett.* **2004**, *6*, 2829; see also: A. Alexakis, J. E. Bäckvall, N. Krause, O. Pamies, M. Dieguez, *Chem. Rev.* **2008**, *108*, 2796.

 [8] Comprehensive Organometallic Chemistry (Eds.: G. Wilkinson, F.G.A. Stone, E.W. Abel), Vol. 5, Pergamon, Oxford 1982, pp. 367 and 603; Comprehensive Organometallic Chemistry II (Eds.: E.W. Abel, F.G.A. Stone, G. Wilkinson), Vol. 8, Elsevier, Oxford 1995, pp. 175 and 385; Comprehensive *Organometallic Chemistry* III (Eds.: D. M. Mingos, R. H. Crabtree), Vol. 7, Elsevier, Amsterdam **2007**, pp. 145 and 362.

- [9] P.M. Maitlis, Acc. Chem. Res. 1978, 11, 301.
- [10] J. W. Kang, K. Moseley, P. M. Maitlis, J. Am. Chem. Soc. 1969, 91, 5970; C. White, A. Yates, P. M. Maitlis, D. M. Heinekey, Inorg. Synth. 1992, 29, 228.
- [11] I. Zahn, W. Beck, Chem. Ber. 1991, 124, 1065.
- [12] H. Brunner, Th. Zwack, M. Zabel, W. Beck, A. Böhm, *Organometallics* **2003**, 22, 1741; A. Böhm, H. Brunner, W. Beck, Z. Anorg. Allg. Chem. **2008**, 634, 274.
- [13] H. Brunner, Adv. Organomet. Chem. 1980, 18, 151;
 H. Brunner, Angew. Chem. 1999, 111, 1249; Angew.

Chem. Int. Ed. 1999, 38, 1194; H. Brunner, Eur. J. Inorg. Chem. 2001, 905.

- [14] B. Schreiner, W. Beck, Z. Anorg. Allg. Chem. 2010, 636, 499.
- [15] P. Stoppioni, M. Di Vaira, J. Chem. Soc., Dalton Trans. 1982, 1147.
- [16] F. Faraone, V. Marsala, G. Tresoldi, J. Organomet. Chem. 1978, 152, 337.
- [17] H. Brunner, Angew. Chem. 1983, 95, 921; Angew. Chem., Int. Ed. Engl. 1983, 22, 897 and refs. therein.
- [18] M. -Th. Youinou, R. Zissel, J. Organomet. Chem. 1989, 363, 197.