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ABSTRACT

Optimal design of composite laminates with unceriak
plane loadings and material properties is consilerghe
stacking sequence is designed to have maximum ibgcklad
based on anti-optimization approach. To consider ghove-
mentioned uncertain properties, the convex modglimgrval
analysis and Monte Carlo simulation techniques wsed in
calculating objective function. For the stackingquence
optimization, it is used the modified genetic alfon which
handles the discrete ply angles and the constrairsiy.

Numerical results are given for rectangular langnabf
various aspect ratios. The optimal solutions frofme t
deterministic and the stochastic cases are obtadmedit is
demonstrated the importance of considering uncgytail he
buckling load carried by a deterministic designnisch less
than the one carried by a design uncertainty censdl when
both are subjected to uncertain loads. Also, #xamined the
effects of the method for considering uncertainty the
optimization process in the light of computatiomdiiciency
and reliability of solutions obtained.

INTRODUCTION

Composite materials are widely used for
components because of their superior stiffnessdigtt and
strength-to-weight ratios. Also, configurations af laminate
such as stacking sequence and ply thickness caailbeed to
meet various design requirements. Thus extensigeareh
efforts have been devoted to the design optiminatod
composite laminates in connection with various oties and
constraints. Park [1] considered the optimal desigiaminated

structural

plates under in-plane loading. Kim et al. [2] sadithe optimal
stacking sequence design of symmetrically lamingttates
under in-plane loading to maximize load-bearingngisTsai-

Wu failure criterion as an objective function. Thag and
Adibhalta [3] investigated the arrangement of laat@a plates
with respect to maximizing bending stiffness. A tibeNel

optimization scheme [4-6], in which ply angle arckness
were designed separately at each level of optimizahas been
used to meet the various design requirements ssictiffness,
natural frequency, buckling load, and weight. Thankth and
bound algorithm was used to handle the discreteapbjes in
stacking sequence design of composite laminat®]{7,

In practical applications, external loadings andtemal
properties are always subject to a certain amodirgcatter.
Such situations occur due to a lack of a prioriidedlge about
the exact operational conditions and the imperd@sti in
manufacturing processes. For the structural réiigband
safety, unavoidable uncertainties should not berggh at the
design and analysis stage.

In this paper, it is developed an optimization scbethat
can consider the uncertainty in external loadind araterial
properties. The algorithm is applied to a probleihbackling
load maximization. Considering the uncertainty ptimmization
process needs an effective tool for calculating dbgective
function. Two different methods, which are the v
modeling and Monte Carlo simulation (MCS), are uedhis
purpose.

In convex modeling, only the information for theunds of
uncertain properties is needed. The convex setericmy the
uncertain properties are constructed and the dbge@dinction
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is linearized with respect to these properties. Extreme
values exist on the boundary of the convex set usrdhe
objective function is a linear function of this .sdthus the
extremum can easily be found with computationdtiefficy. In
interval analysis, the uncertain parameters are ehedd by
interval numbers and the linearized objective fiorctis
calculated by interval arithmetic. The schemeighdly simpler
than that of convex analysis, and gives more ateursults
comparing the width of extremum values.

In Monte Carlo simulation, the probabilistic chagtstics
of uncertain properties are assumed and the ranidemates are
generated. Some well-known functions such as notpes and
uniform distributions are used to model the undsetya The
objective function is calculated using the genetasmdom sets
and the extremum is found among those values.

For the stacking sequence optimization, it is useel
modified genetic algorithm (GA) which can easilyntke
discrete ply angle and produce alternative optimaepeated
runs. The application of genetic algorithm is diff reported
by Hajela [9] for composite structures. Riche araftkh [10]
proposed genetic algorithm to optimize the stacldaguence
of composite laminate for buckling load maximizatid-or the
same problem, Liu at al. [11] has provided perniotagenetic
algorithm. A recessive gene repair strategy wa®dhiced by
Todoroki and Haftka [12] for implementing the given
constraints.

In the present study, optimal designs of composite
laminates are given to maximize the buckling loatiew
uncertainty in biaxial loading and material propestexist.
Numerical results are given for various aspectorati of
laminated plates. First, optimal solutions fromedetinistic and
probabilistic cases are obtained and the differerise
investigated. Then, convex modeling and Monte Carlo
simulation approach are compared by analyzing the
computation time and the reliability of solutiontkvirespect to
the degree of uncertainty.

PROBLEM DESCRIPTION
A rectangular composite laminate of lengthwidth b, and
thicknessh is subjected to in-plane compressive loddlsand

N, in thex andy directions, respectively (Fig 1). The laminate

is symmetric, balanced about the mid-plane and noddiyers
each of thickness. The values of external loadd, and
N, are not fixed ones and have a bounded uncertainty.
The laminate buckles intm andn half-waves in thex and
y directions when the amplitude parameter reachesiLe A, .
In case of simply supported platd, is given by classical

lamination theory as

port |Dyy(m/ a)*+2(Dy,+ 2Dgs)m/ a)? (n/b) +D,(n /)|
(m/a) N +(n/b)

1)
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where Dij are the flexural stiffness. The smallest valuelpf
function of (n, n), is the critical buckling load

The optimization problem is to maximize the critica
buckling load by changing the ply orientations. Thé
orientation angles are limited t§,&45° and 90, thus discrete
optimization methodology is required. In order unsider the
uncertainties, the modeling of uncertain desigrapeters and
the efficient tool for calculation of objective fciion are
needed. The convex modeling, interval analysis
probabilistic approach are adopted in optimizatwocess to
calculate the objective function.

and

DA A A A A Al
Ny

a

Fig 1: A laminate under uncertain compressive loads.

MODELING OF UNCERTAINTY

Convex modeling

In order to consider the uncertainty via probatidis
approach, the function of probability distributiosbould be
informed. However, the probability function of desing
distribution requires sufficient data measuring auanetimes
this information may not be available. If the unaatties under
consideration are bounded with respect to the nalmaference
values, convex set with scattering bound of degigrameters
can be easily constructed.

Convex modeling can be utilized in the constraint
equations or objective function of the optimizatiproblem to
consider uncertain parameters [13-15]. In our ca&smvex
modeling is applied to the critical buckling loaalaulation and
the procedure for analysis is outlined as follows.

As a first step, Eq. (1) is linearized with respéztthe
uncertain parameters. It is assumed thgt, N,. E_, E.

G,; andy , vary arbitrary around their nominal values with

the condition that these variations are small andnbed.
Equation (1) can be written as a function of thesemeters.

/]b:Ab(Xl’XZ’XS'XNXS'XG) (2)
This can be expanded up to linear terms as follows,
A(XO+8)= A(x°)+za" (X7) 5 (3)

The vector{ f}, {J} are defined as follows,
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a/lb(x ) A (XD) AN (XD) A (XD) 9A(XD) a4 (XD) | (4)
X, T oaX, T aXy T oaX, | aXg | 0Xg

{5}T =[8,,0,,9;,9,,05,5]

{(n
(®)

Then the perturbed buckling load can be symbolicall
given as,

Ap(XP +8) = A, (X?) +{ 1} {3} (6)

If it is assumed thag, construct convex set, then from the

linearity of Eq. (6), extreme values are on the ruawy of
convex set. The constructed convex set of ellipstidpe is
derived as follows,

6 2
Z(e):{d:zdizsl} @
i=1 €
In order to obtaine , following lagrangian should be
minimized.
2 2 2 2 2 2
L:Cele2e3e4e5e6+)l(A;+A22+A§+A‘;+A2+Ag—1]

& & & & & &

where A, is the maximum deviation of parametgr. Through
the variational procesg, are obtained as

e =/nh, )

where,n is the number of parameters which has uncertainty.
The problem of finding extremum buckling load witie
uncertain parameters having the deviatgns constructed as

the following form.

Aol —extg}gn(]um(/](x ) +{f}{e}) (10)

C(e) :{5:242 :1} (11)
The problem can be expressed by the following Liagjem,

L) ={f} {3} +A{} {eH{ 3} -D) (12)

where{¢} is a diagonal matrix whose diagonal elements are
&,=1/¢? - After obtaining Lagrange multiplie(s} for extremum

buckling loads are obtained as

13)

Extremum buckling loads considering bounded scadter
design parameters can be finally obtained as

jbmax} Y (Xo)i {f}T{f}_l{f}

b,min
( )T
Interval Analysis
In interval analysis, the uncertain parametersnaoeleled
by an interval number as

=[x, Xi]

Thus, the buckling problem with uncertain paranetean be
stated as

(14)

= (x)z 3

(15)

2] ctramm = ETETUA(X?) +{ 1} ) (16)
=[x XX X< X <X, X = (X)) s .
X = (X)), X = (Xi)mOR™

where m is the number of uncertain parameters. The central
values and the radius of interval variables caddfmed as

(18)

Thus, the extremal value problem (16) subject te th
constraint X < X < X can be transformed into the following
form.

2o g = XTI (X) +{ 1} () (19)

={ooR™ -a< o< a) (20)

Using the interval arithmetic, the lower and uppeunds of
buckling load can be obtained.

R N B SN @)

Finally, we have the buckling load with uncertain

parameters from interval analysis.
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Ao = -|f] (22)

The lower bounds of buckling loads obtained by &)
are always lager than those from convex analysisof(14). It
can be proved using Chaucy-Schwartz inequality.[A&o, the
inequality can be easily deduced by comparisoh@fincertain
parameter sets constructed from each method. Tipsaadial
set of convex modeling envelops the box set ofriate
analysis. Because the ellipsoid is obtained to fmweinimum
volume while the corners of the box are on theasgfof it. For
illustration, Fig 2 depicts two uncertain parameter sets in 3-
Dimensional space.

Fig 2: Comparison of uncertain parameter sets.

Probabilistic function

To evaluate the critical buckling load using Motarlo
simulation, the probabilistic characteristics of certain
parameters should be defined. Namely, the prolsébili
distribution functions and the corresponding prolistir data
are assumed to model the random variables.

In this study, well-known functions such as norniata
and uniform distributions are used to model the eutain
parameters. The density of normal distributionNtfi, ,0%) is

given by

2
f(x)= 1 ex —E[X_'UXJ (23)
\/2710-)2( 2 Oy
The beta distributionq< x <1) is given by
XAt (L-x)et
—— jf O<x<1
f0={ Blaa) (24)
0
Where B(a,,a,) is thebeta function, defined by
B(a,.a,)= j:t”fl A-t)" "t (25)

Then the random deviates are generated accordirg t
pre-determined distribution function. After genargt the
values of all the uncertain parameters, bucklingdlois
evaluated deterministically for each set of randeamiables.
Thus the min-max values of buckling load can besmhgined
from the results of numerical enumeration.

For example, the densities of three distributioncfions
are shown in

Fig 3. The probabilistic model fop<N <1 is represented

by uniform, and

N (05, (005)?%) . The solid lines are from analytic equations

and the dotted lines are densities calculated fgmmerated
random number of 8,000 sampling points. The geedrat
random deviates show a good agreement with anabggidts.

beta distribution withag,=a,=2 ,

I
[N}

1.6
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Fig 3: Probability density functions.
OPTIMIZATION PROCEDURE
Anti-optimization problem
The optimization problem can be expressed as
Maximize Ab([61/92 IN Hn]; XA\ xe) (26)

Subject tog, 0{0°,+ 45° 90°} and X <X <X !

where X and x are the lower and upper bounds of uncertain
parameterx, , respectively.

This problem becomes a kind of anti-optimizatioB,[16].
Namely, the solution process involves the minimaratof the
objective function with respect to uncertain partare if the
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design objective is to maximize it and this leaglstmin-max
problem. Thus the minimum buckling load is detemdirwith
uncertain quantities for any given stacking segeend his is
the worst case of in-plane loading on the laminaii¢h
uncertain material properties. The minimum bucklingd is
maximized by selecting the stacking sequence opijiniBhis
procedure can be written as

Max Min A,(6,: %) @7)

The solution of Eq. (27) produces the best stacking
sequence to maximize the buckling load under thestwo
possible case with uncertain design parameters.

Genetic algorithm

The design objective of the present study is toaiobt
layups of laminate that has maximum buckling loatar
uncertain design parameters. The ply angles amctsel as
design variables and limited to a fixed set of aagluch as°Q
+45° and 90. Thus layup design becomes a combinatorial
optimization problem, and accordingly needs discret
optimization techniques.

The genetic algorithm is well suited for the layup
optimization. It has previously been used for wasio
optimization problems of composite laminates. Alsecause of
their random nature, they easily produce alterpatiptima in
repeated runs. This property is particularly impottin layup
optimization, because widely different layups caavén very
similar performance.

Three constraints are applied to the present opditioin
problem. The first one is the symmetric layup caaist, but
this is satisfied automatically by the coding riliat only half of
the laminate is represented in a chromosome. Tlende
constraint is a requirement of balanced laminatesiaction,
which is intended to eliminate undesirable extemsidlexural
coupling. The third constraint is a limit of fouortiguous plies
with the same fiber orientation, which reduces pheblem of
matrix cracking. It is not easy to enforce thesast@ints in
genetic algorithm. In the present study, a recesgene-like
repair strategy [12] is applied to implement thestoaints.

Operation of genetic algorithm

The flowchart for the process of genetic algorithign
represented in Fig 4. The initial population of inate is
generated at random. In case of using Monte Camalation,
the random numbers for in-plane loads and materigberties
are generated to calculate fitness function. Fahdaminate,
the minimum buckling load is found by convex anelysr
Monte Carlo simulation.

The best laminate of each generation is alwaysecbipito
the next generation, which is called an elitisatgtgy. Selection
is executed by a linear search through a rouletieelvslots
weighted in proportion to fithess value of eachifate. After
selection, single-point crossover is conducted waiirobability

value of P,. When crossover is not conducted, the first pasent

copied into the next generation. Mutation is applie the
chromosome with a probability of , except for the best

chromosome of the previous generation.

To represent the ply angles as genes, trinary nisrére
used with each gene having a value of 0, 1, oraaidally, the
number O corresponds to aflly and the number 2 corresponds
to a 90 ply. The first (outmost), third, fifth, etc. oceances of
the number 1 correspond to a°4ply while even-number
occurrences correspond to a >4fy.

Two constraints are implemented via a recessive-¢jika
repair strategy. The key concept of the strategy isepair the
laminate without changing the chromosome. The repaitem
is briefly explained subsequently.

Determine bounds of uncertain variables
or
Random number generation

¥

| Initial population |

)

Generation cycle

Decoding and Repair |

]

Fitness evaluation using
MCS or convex analysis

¥

Selection + Crossover

Mutation

New population

Fig 4: Flowchart of the genetic algorithm.

NUMERICAL EXAMPLES

Comparison of buckling loads

To demonstrate the effect of uncertainty, buckloeds are
obtained by various methods described earlies. ¢bnsidered a
symmetric cross-ply laminate with 16 layers subjectiniaxial
compression. For the material properties, the aerominal
values are given in Table 1 and the maximum denats
assumed ast10%. For normal distribution, the standard
deviation is determined from multiplying mean value given
deviation. Fig 5 shows the buckling loads as vayyaspect
ratio a/b. According to expectation, smaller buckling loa@ a
obtained when the uncertainty considered. And conve
modeling gives the most conservative results coegawvith
interval analysis and probabilistic approach.
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Fig 5: Comparison of buckling loads.

Optimization results

A rectangular laminates with various aspect ratioe
considered for optimizationThe parameters used for the
genetic algorithm are shown in Table 2. The popatatumber
is 20 and the upper limit of generation is 100.dtighout the
calculations, composite laminate have thickriéss 0.1 m,b =
1 m, and 16 plies.

E. 181 GPa
Er 10.3 GPa
GLT 7.17 Gpa
U 0.28

Table 1: Nominal values of uncertain properties

Parameters Value
Chromosome length 8
Upper limit of generation 100
Population size 20
Probability of mutation 0.0 -0.2
Probability of crossover 0.8-1.0

Table 2: Parameters of genetic algorithm

In order to check the convergence of the algorithime,
optimal solutions are found as varying generatiomipers. Fig
6 shows the iteration history of genetic searchwihich
deterministic, convex, interval, and MCS methods ased for
buckling load calculation. The maximum deviatiorassumed
to show+10% from mean value for each uncertain value. lin al
cases, iterations more than 20 are sufficient fbe t
convergence. In all numerical results, bucklingdware the
value normalized by Eq. (28).

A,@°

E, h’

A= (28)

To investigate the effect of considering the uraiaty on
the optimal results, the optimal stacking sequeacesbtained
for various aspect ratios. In Table 3 ~ Table &, ribsults from
deterministic case, convex modeling, interval asialgnd MCS
are shown. In Table 6, uniform distribution withlléaving
bounds is used for in-plane loads.

0< NN, <1(kN) (29)

It is observed that deterministic search and corseatch
yield same results for aspect ratih = 0.8 ~ 1.4. But as the
ratio become small or large, the optimal stackiaguences of
deterministic case and uncertain cases are quftreatit. The
results indicate that the effect of uncertainty aptimization
process is more distinct for small and large aspais. In case
of uniform distribution in which the degree of unieénty much
higher, the optimal solution is different from thadf
deterministic case even for square plate. Thesstseshow that
the optimal results can be totally different fromterministic
results when uncertainties exist in design paramete
Comparing the optimal buckling loads from each ctsevalue
from deterministic case is much higher than thosenfcases
uncertainty considered. If the laminate is desigméth no
uncertainty considered, it would carry a lower Hingk load
than the one expected to sustain.

0.035

= 0.030 } .- o © -0 Q-0 -0 -~

= y

S .

g) 0.025 | | ‘ & .

= - ©- Deterministic

5} —&— Convex anlaysi

5 0.020 —— MCS (Uniform)

- ©- Interval Analysi
0.015 |
0.010
0 10 20 30 40 50
Generation ne
Fig 6: Iteration history of genetic search.
a/b Optimal stacking sequence N max
0.2 [0/45/0/0/-45/0/0/9Q] 0.0217
0.4 [0/0/45/-45/0/45/0/-45] 0.0217
0.6 [0/0/45/0/-45/0/45/-45] 0.0219
0.8 [45/-45/45/-45/45/-45/45/-45] | 0.0247
1.0 [45/-45/45/-45/45/-45/45/-45] | 0.0307
1.2 [45/-45/45/-45/45/-45/45/-45] | 0.0369
1.4 [45/-45/45/-45/45/-45/45/-45] | 0.0435
1.6 [90/90/45/90/-45/90/90/Q] 0.0559
1.8 [90/90/45/90/-45/90/90/Q] 0.0711
2.0 [90/90/45/90/-45/45/-45/99Q] | 0.0875
Table 3: Results from deterministic design
6 Copyright © 2006 by ASME
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a/b Optimal stacking sequence | Amax

0.2 [0/45/0/0/0/0/-45/04 0.0114
0.4 [0/0/45/-45/0/45/0/-45] 0.0115
0.6 [0/0/45/0/-45/0/0/9Q] 0.0118
0.8 [45/-45/45/-45/45/-45/45/-45%] | 0.0129
1.0 [45/-45/45/-45/45/-45/45/-45] | 0.0161
1.2 [45/-45/45/-45/45/-45/45/-45] | 0.0194
14 [45/-45/45/-45/45/-45/45/-45] | 0.0228
1.6 [90/90/90/45/-45/45/-45/Q] 0.0303
1.8 [90/90/45/90/-45/90/45/-45] | 0.0378
2.0 [90/90/45/90/-45/45/-45/99] | 0.0468

Table 4: Results from convex analysis

a/b Optimal stacking sequence Amax

0.2 [0/45/0/0/-45/0/0/9Q] 0.0171
0.4 [0/0/45/-45/0/45/-45/Q] 0.0172
0.6 [0/0/45/0/-45/0/45/-45] 0.0173
0.8 [45/-45/45/-45/45/-45/45/-45%] | 0.0197
1.0 [45/-45/45/-45/45/-45/45/-45] | 0.0245
1.2 [45/-45/45/-45/45/-45/45/-45] | 0.0294
14 [45/-45/45/-45/45/-45/45/-45] | 0.0346
1.6 [90/45/90/90/90/90/-45/9Q] 0.0442
1.8 [90/45/90/90/90/-45/90/9Q] 0.0563
2.0 [90/90/45/-45/90/90/45/-45] | 0.0693

Table 5: Results from interval analysis

a/b Optimal stacking sequence Amax

0.2 [0/0/45/0/-45/45/-45/Q] 0.0094
0.4 [0/45/0/0/-45/0/45/-45] 0.0094
0.6 [0/0/45/0/-45/0/0/9Q] 0.0095
0.8 [45/-45/45/0/0/-45/45/-45] 0.0103
1.0 [45/-45/90/45/-45/90/45/-45] | 0.0121
1.2 [45/-45/45/90/90/-45/90/Q] 0.0153
14 [45/-45/45/90/-45/90/90/Q] 0.0187
1.6 [90/45/90/90/90/90/-45/9Q] 0.0242
1.8 [90/90/45/90/-45/90/45/-45] | 0.0307
2.0 [90/90/45/-45/90/90/90/Q] 0.0380

Table 6: Results from MCS

Next the optimal values are compared as varyingegegf
uncertainty. In the calculations, the uncertainfy noaterial
properties is fixed ag10% deviation because the bounds of
material property are relatively small. For norrdatribution,
the standard deviation is determined from multipdyimean
value by given deviation. In Fig 7, the optimal kliy loads
are plotted for increasing uncertainties. The tesfibm beta
and uniform distribution show almost same values the
results from normal distribution deviate from otheas
uncertainty increases. Theoretically, the boundsnofmal
distribution is from e to o, thus more extreme condition can
be considered in the calculation. In case of conaealysis,

somewhat unrealistic buckling loads are obtained High
degree of uncertainty. Because the linearizatiorolgective
function can only be meaningful for proper degreé o
uncertainty. So, despite of its computational éfficy and ease
of modeling, care should be taken when choosingvexon
analysis for modeling the uncertainty. Interval lgsia gives
approximately the middle values compared with tsults by
deterministic and convex modeling approaches. Tpimal
buckling loads vary linearly as deviation increasesd
generally they are more conservative than thosem fro
probabilistic approach. Considering a computatiot@dt for
Monte Carlo simulation and an overestimation by veon
modeling, interval analysis seems to be efficieraywior
optimization where numbers of objective calculagioare
required.

0.035

0.030 [

0.025

0.020

0.015

— Deterministic
—o- Beta

—— Normal

—&— Uniform

--+-- Convex Modeling
—=— Interval Analysis

0.010

Optimal buckling loads

0.005

0.000 [

-0.005

0 5 10 15 20 25 30
Deviation(%)

Fig 7: Optimal buckling loads for various degree of
uncertainty.

CONCLUSION

Optimal designs of laminated plate were determiwéd
uncertain in-plane loads and material properties.cénsider
the uncertainty, convex modeling, interval analysisl Monte
Carlo simulation were adopted in optimization pgseThe
genetic algorithm works well in stacking sequence
optimizations for maximizing the buckling loads. mNerical
results indicated that considering the uncertaiigtyhighly
required for reliable and safe design.

The methodology presented in this paper can be ased
powerful tool for robust layup design of laminatesen
uncertainty exists. Also, it can be extended to pheblem in
which various kind of uncertainty are present. Tdtisdy is in
the progress.
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