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ABSTRACT 
Optimal design of composite laminates with uncertain in-

plane loadings and material properties is considered. The 
stacking sequence is designed to have maximum buckling load 
based on anti-optimization approach. To consider the above-
mentioned uncertain properties, the convex modeling, interval 
analysis and Monte Carlo simulation techniques are used in 
calculating objective function. For the stacking sequence 
optimization, it is used the modified genetic algorithm which 
handles the discrete ply angles and the constraints easily. 

Numerical results are given for rectangular laminates of 
various aspect ratios. The optimal solutions from the 
deterministic and the stochastic cases are obtained and it is 
demonstrated the importance of considering uncertainty. The 
buckling load carried by a deterministic design is much less 
than the one carried by a design uncertainty considered when 
both are subjected to uncertain loads. Also, it is examined the 
effects of the method for considering uncertainty on the 
optimization process in the light of computational efficiency 
and reliability of solutions obtained. 

 
INTRODUCTION 

Composite materials are widely used for structura
components because of their superior stiffness-to-weight and 
strength-to-weight ratios. Also, configurations of a laminate 
such as stacking sequence and ply thickness can be tailored to 
meet various design requirements. Thus extensive research 
efforts have been devoted to the design optimization of 
composite laminates in connection with various objectives and 
constraints. Park [1] considered the optimal design of laminated 
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plates under in-plane loading. Kim et al. [2] studied the optimal 
stacking sequence design of symmetrically laminated plates 
under in-plane loading to maximize load-bearing, using Tsai-
Wu failure criterion as an objective function. Tauchert and 
Adibhalta [3] investigated the arrangement of laminated plates 
with respect to maximizing bending stiffness. A multilevel 
optimization scheme [4-6], in which ply angle and thickness 
were designed separately at each level of optimization, has been 
used to meet the various design requirements such as stiffness, 
natural frequency, buckling load, and weight. The branch and 
bound algorithm was used to handle the discrete ply angles in 
stacking sequence design of composite laminate [7, 8]. 

In practical applications, external loadings and material 
properties are always subject to a certain amount of scatter. 
Such situations occur due to a lack of a priori knowledge about 
the exact operational conditions and the imperfections in 
manufacturing processes. For the structural reliability and 
safety, unavoidable uncertainties should not be ignored at the 
design and analysis stage.  

In this paper, it is developed an optimization scheme that 
can consider the uncertainty in external loading and material 
properties. The algorithm is applied to a problem of buckling 
load maximization. Considering the uncertainty in optimization 
process needs an effective tool for calculating the objective 
function. Two different methods, which are the convex 
modeling and Monte Carlo simulation (MCS), are used fro this 
purpose. 

In convex modeling, only the information for the bounds of 
uncertain properties is needed. The convex sets covering the 
uncertain properties are constructed and the objective function 
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is linearized with respect to these properties. The extreme 
values exist on the boundary of the convex set because the 
objective function is a linear function of this set. Thus the 
extremum can easily be found with computational efficiency. In 
interval analysis, the uncertain parameters are modeled by 
interval numbers and the linearized objective function is 
calculated by interval arithmetic. The scheme is slightly simpler 
than that of convex analysis, and gives more accurate results 
comparing the width of extremum values. 

In Monte Carlo simulation, the probabilistic characteristics 
of uncertain properties are assumed and the random deviates are 
generated. Some well-known functions such as normal, beta and 
uniform distributions are used to model the uncertainty. The 
objective function is calculated using the generated random sets 
and the extremum is found among those values. 

For the stacking sequence optimization, it is used the 
modified genetic algorithm (GA) which can easily handle 
discrete ply angle and produce alternative optima in repeated 
runs. The application of genetic algorithm is initially reported 
by Hajela [9] for composite structures. Riche and Haftka [10] 
proposed genetic algorithm to optimize the stacking sequence 
of composite laminate for buckling load maximization. For the 
same problem, Liu at al. [11] has provided permutation genetic 
algorithm. A recessive gene repair strategy was introduced by 
Todoroki and Haftka [12] for implementing the given 
constraints. 

In the present study, optimal designs of composite
laminates are given to maximize the buckling load when 
uncertainty in biaxial loading and material properties exist. 
Numerical results are given for various aspect rations of 
laminated plates. First, optimal solutions from deterministic and 
probabilistic cases are obtained and the difference is 
investigated. Then, convex modeling and Monte Carlo 
simulation approach are compared by analyzing th
computation time and the reliability of solution with respect to 
the degree of uncertainty.  

 

PROBLEM DESCRIPTION 
A rectangular composite laminate of length a, width b, and 

thickness h is subjected to in-plane compressive loads xN  and 

yN in the x and y directions, respectively (Fig 1). The laminate 

is symmetric, balanced about the mid-plane and made of layers 
each of thickness t. The values of external loads xN  and 

yN are not fixed ones and have a bounded uncertainty. 

The laminate buckles into m and n half-waves in the x and 
y directions when the amplitude parameter reaches a value bλ . 

In case of simply supported plate, bλ  is given by classical 

lamination theory as  
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where jiD  are the flexural stiffness. The smallest value of bλ , 

function of  (m, n), is the critical buckling load bcλ . 

The optimization problem is to maximize the critical 
buckling load by changing the ply orientations. The ply 
orientation angles are limited to 0°, ±45° and 90°, thus discrete 
optimization methodology is required. In order to consider the 
uncertainties, the modeling of uncertain design parameters and 
the efficient tool for calculation of objective function are 
needed. The convex modeling, interval analysis and 
probabilistic approach are adopted in optimization process to 
calculate the objective function. 
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Fig 1: A laminate under uncertain compressive loads. 
 

MODELING OF UNCERTAINTY 

Convex modeling 
In order to consider the uncertainty via probabilistic 

approach, the function of probability distributions should be 
informed. However, the probability function of scattering 
distribution requires sufficient data measuring and sometimes 
this information may not be available. If the uncertainties under 
consideration are bounded with respect to the nominal reference 
values, convex set with scattering bound of design parameters 
can be easily constructed. 

Convex modeling can be utilized in the constraint 
equations or objective function of the optimization problem to 
consider uncertain parameters [13-15]. In our case, convex 
modeling is applied to the critical buckling load calculation and 
the procedure for analysis is outlined as follows. 

As a first step, Eq. (1) is linearized with respect to the 
uncertain parameters. It is assumed that xN , yN , LE , TE , 

LTG  and LTν  vary arbitrary around their nominal values with 

the condition that these variations are small and bounded. 
Equation (1) can be written as a function of these parameters. 
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This can be expanded up to linear terms as follows, 
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The vectors }{ f , }{δ  are defined as follows, 
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Then the perturbed buckling load can be symbolically 

given as, 
 

}{}{)()( 00 δλδλ T
ibiib fXX +=+    (6) 

 
If it is assumed that 

iδ  construct convex set, then from the 

linearity of Eq. (6), extreme values are on the boundary of 
convex set. The constructed convex set of ellipsoid shape is 
derived as follows, 
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In order to obtain ie , following lagrangian should be 

minimized. 
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where 
i∆  is the maximum deviation of parameter 

iX . Through 

the variational process, ie  are obtained as 

 

ii ne ∆=      (9) 

 
where, n is the number of parameters which has uncertainty. 

The problem of finding extremum buckling load with the 
uncertain parameters having the deviation 

iδ  is constructed as 

the following form. 
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The problem can be expressed by the following Lagrangian, 
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where }{ε  is a diagonal matrix whose diagonal elements ar

21 iii e=ε . After obtaining Lagrange multiplier, }{δ  for extremum 

buckling loads are obtained as 
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Extremum buckling loads considering bounded scattered 

design parameters can be finally obtained as 
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Interval Analysis 
In interval analysis, the uncertain parameters are modeled 

by an interval number as 
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Thus, the buckling problem with uncertain parameters can be 
stated as 
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where m is the number of uncertain parameters. The central 
values and the radius of interval variables can be defined as  
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Thus, the extremal value problem (16) subject to the 

constraint XXX ≤≤  can be transformed into the following 

form. 
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Using the interval arithmetic, the lower and upper bounds of 
buckling load can be obtained. 
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Finally, we have the buckling load with uncertain 

parameters from interval analysis. 
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The lower bounds of buckling loads obtained by Eq. (22) 

are always lager than those from convex analysis of Eq. (14). It 
can be proved using Chaucy-Schwartz inequality [16]. Also, the 
inequality can be easily deduced by comparison of the uncertain 
parameter sets constructed from each method. The ellipsoidal 
set of convex modeling envelops the box set of interval 
analysis. Because the ellipsoid is obtained to have a minimum 
volume while the corners of the box are on the surface of it. For 
illustration, Fig 2 depicts two uncertain parameter sets in 3-
Dimensional space. 

 

Fig 2: Comparison of uncertain parameter sets. 

 

Probabilistic function 
To evaluate the critical buckling load using Monte Carlo 

simulation, the probabilistic characteristics of uncertain 
parameters should be defined. Namely, the probabilistic 
distribution functions and the corresponding probabilistic data 
are assumed to model the random variables. 

In this study, well-known functions such as normal, beta 
and uniform distributions are used to model the uncertain 
parameters. The density of normal distribution of ),( 2

XXN σµ  is 

given by 
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The beta distribution ( 10 << x ) is given by 
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Where ),( 21 ααB  is the beta function, defined by 
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 Then the random deviates are generated according to a 

pre-determined distribution function. After generating the 
values of all the uncertain parameters, buckling load is 
evaluated deterministically for each set of random variables. 
Thus the min-max values of buckling load can be determined 
from the results of numerical enumeration. 

For example, the densities of three distribution functions 
are shown in  

Fig 3. The probabilistic model for 10 ≤≤ xN  is represented 

by uniform, beta distribution with 221 == αα , and 

))05.0(,5.0( 2N . The solid lines are from analytic equations 

and the dotted lines are densities calculated from generated 
random number of 8,000 sampling points. The generated 
random deviates show a good agreement with analytic results. 
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0.0

2.0

4.0

6.0

8.0

10.0

0.0 0.2 0.4 0.6 0.8 1.0 
In-palne load, Nx

P
ro

ba
bi

lis
tic

 d
en

si
ty

 
(c) normal distribution 

 
Fig 3: Probability density functions. 

 
 

OPTIMIZATION PROCEDURE 

Anti-optimization problem 
The optimization problem can be expressed as 
 

Maximize [ ]( )6121 ;// XXnb ΛΛ θθθλ   (26) 

Subject to { }οοο 90,45,0 ±∈iθ  and U
ii

L
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where L

iX  and U
iX  are the lower and upper bounds of uncertain 

parameter 
iX , respectively. 

This problem becomes a kind of anti-optimization [15, 16]. 
Namely, the solution process involves the minimization of the 
objective function with respect to uncertain parameters if the 
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design objective is to maximize it and this leads to a min-max 
problem. Thus the minimum buckling load is determined with 
uncertain quantities for any given stacking sequences. This is 
the worst case of in-plane loading on the laminate with 
uncertain material properties. The minimum buckling load is 
maximized by selecting the stacking sequence optimally. This 
procedure can be written as 

 

k

Max
θ

 
iX

Min ( )ikb X;θλ      (27) 

 
The solution of Eq. (27) produces the best stackin 

sequence to maximize the buckling load under the worst 
possible case with uncertain design parameters. 

Genetic algorithm 
The design objective of the present study is to obtain 

layups of laminate that has maximum buckling load under 
uncertain design parameters. The ply angles are selected as 
design variables and limited to a fixed set of angles such as 0°, 
±45° and 90°. Thus layup design becomes a combinatoria
optimization problem, and accordingly needs discrete 
optimization techniques. 

The genetic algorithm is well suited for the layup
optimization. It has previously been used for various 
optimization problems of composite laminates. Also, because of 
their random nature, they easily produce alternative optima in 
repeated runs. This property is particularly important in layup 
optimization, because widely different layups can have very 
similar performance. 

Three constraints are applied to the present optimization 
problem. The first one is the symmetric layup constraint, but 
this is satisfied automatically by the coding rule that only half of 
the laminate is represented in a chromosome. The second 
constraint is a requirement of balanced laminate construction, 
which is intended to eliminate undesirable extensional-flexural 
coupling. The third constraint is a limit of four contiguous plies 
with the same fiber orientation, which reduces the problem of 
matrix cracking. It is not easy to enforce these constraints in 
genetic algorithm. In the present study, a recessive-gene-like 
repair strategy [12] is applied to implement the constraints. 

Operation of genetic algorithm 
The flowchart for the process of genetic algorithm is 

represented in Fig 4. The initial population of laminate is 
generated at random. In case of using Monte Carlo simulation, 
the random numbers for in-plane loads and material properties 
are generated to calculate fitness function. For each laminate, 
the minimum buckling load is found by convex analysis or 
Monte Carlo simulation. 

The best laminate of each generation is always copied into 
the next generation, which is called an elitist strategy. Selection 
is executed by a linear search through a roulette wheel slots 
weighted in proportion to fitness value of each laminate. After 
selection, single-point crossover is conducted with a probability 
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value of 
cP . When crossover is not conducted, the first parent is 

copied into the next generation. Mutation is applied to the 
chromosome with a probability of 

mP , except for the best 

chromosome of the previous generation. 
To represent the ply angles as genes, trinary numbers are 

used with each gene having a value of 0, 1, or 2. Basically, the 
number 0 corresponds to a 0° ply and the number 2 corresponds 
to a 90° ply. The first (outmost), third, fifth, etc. occurrences of 
the number 1 correspond to a 45° ply while even-number 
occurrences correspond to a -45° ply. 

Two constraints are implemented via a recessive-gene-like 
repair strategy. The key concept of the strategy is to repair the 
laminate without changing the chromosome. The repair system 
is briefly explained subsequently. 

 

 

New population

Determine bounds of uncertain variables
or

Random number generation

Initial population

Generation cycle

Decoding and Repair

Fitness evaluation using
MCS or convex analysis

Selection + Crossover

Mutation

Stop

Start

 
Fig 4: Flowchart of the genetic algorithm. 

 

NUMERICAL EXAMPLES 

Comparison of buckling loads 
To demonstrate the effect of uncertainty, buckling loads are 

obtained by various methods described earlier. It is considered a 
symmetric cross-ply laminate with 16 layers subject to uniaxial 
compression. For the material properties, the average nominal 
values are given in Table 1 and the maximum deviation is 
assumed as ±10%. For normal distribution, the standard 
deviation is determined from multiplying mean value by given 
deviation. Fig 5 shows the buckling loads as varying aspect 
ratio a/b. According to expectation, smaller buckling load are 
obtained when the uncertainty considered. And convex 
modeling gives the most conservative results compared with 
interval analysis and probabilistic approach. 
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Fig 5: Comparison of buckling loads. 

Optimization results 
A rectangular laminates with various aspect ratios are 

considered for optimization. The parameters used for the
genetic algorithm are shown in Table 2. The population number 
is 20 and the upper limit of generation is 100. Throughout the 
calculations, composite laminate have thickness H = 0.1 m, b = 
1 m, and 16 plies. 

 

EL 
ET 
GLT 
νLT 

181 GPa 
10.3 GPa 
7.17 Gpa 
0.28 

Table 1: Nominal values of uncertain properties 
 

Parameters Value 
Chromosome length 
Upper limit of generation 
Population size 
Probability of mutation 
Probability of crossover 

8 
100 
20 

0.0 - 0.2 
0.8 – 1.0 

Table 2: Parameters of genetic algorithm 
 
In order to check the convergence of the algorithm, the 

optimal solutions are found as varying generation numbers. Fig 
6 shows the iteration history of genetic search in which 
deterministic, convex, interval, and MCS methods are used for 
buckling load calculation. The maximum deviation is assumed 
to show ±10% from mean value for each uncertain value. In al 
cases, iterations more than 20 are sufficient for the 
convergence. In all numerical results, buckling loads are the 
value normalized by Eq. (28). 
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To investigate the effect of considering the uncertainty on 
the optimal results, the optimal stacking sequences are obtained 
for various aspect ratios. In Table 3 ~ Table 5, the results from 
deterministic case, convex modeling, interval analysis and MCS 
are shown. In Table 6, uniform distribution with following 
bounds is used for in-plane loads. 

 
)(1,0 kNNN yx ≤≤     (29) 

 
It is observed that deterministic search and convex search 

yield same results for aspect ratio a/b = 0.8 ~ 1.4. But as the 
ratio become small or large, the optimal stacking sequences of 
deterministic case and uncertain cases are quite different. The 
results indicate that the effect of uncertainty on optimization 
process is more distinct for small and large aspect ratios. In case 
of uniform distribution in which the degree of uncertainty much 
higher, the optimal solution is different from that of 
deterministic case even for square plate. These results show that 
the optimal results can be totally different from deterministic 
results when uncertainties exist in design parameters. 
Comparing the optimal buckling loads from each case, the value 
from deterministic case is much higher than those from cases 
uncertainty considered. If the laminate is designed with no 
uncertainty considered, it would carry a lower buckling load 
than the one expected to sustain. 
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Fig 6: Iteration history of genetic search. 

 
a/b Optimal stacking sequence maxλ  
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

[0/45/0/0/-45/0/0/90]s 
[0/0/45/-45/0/45/0/-45]s 
[0/0/45/0/-45/0/45/-45]s 

[45/-45/45/-45/45/-45/45/-45]s 
[45/-45/45/-45/45/-45/45/-45]s 
[45/-45/45/-45/45/-45/45/-45]s 
[45/-45/45/-45/45/-45/45/-45]s 

[90/90/45/90/-45/90/90/0]s 
[90/90/45/90/-45/90/90/0]s 

[90/90/45/90/-45/45/-45/90]s 

0.0217 
0.0217 
0.0219 
0.0247 
0.0307 
0.0369 
0.0435 
0.0559 
0.0711 
0.0875 

Table 3: Results from deterministic design 
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a/b Optimal stacking sequence maxλ  
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

[0/45/0/0/0/0/-45/0]s 
[0/0/45/-45/0/45/0/-45]s 
[0/0/45/0/-45/0/0/90]s 

[45/-45/45/-45/45/-45/45/-45]s 
[45/-45/45/-45/45/-45/45/-45]s 
[45/-45/45/-45/45/-45/45/-45]s 
[45/-45/45/-45/45/-45/45/-45]s 

[90/90/90/45/-45/45/-45/0]s 
[90/90/45/90/-45/90/45/-45]s 
[90/90/45/90/-45/45/-45/90]s 

0.0114 
0.0115 
0.0118 
0.0129 
0.0161 
0.0194 
0.0228 
0.0303 
0.0378 
0.0468 

Table 4: Results from convex analysis 
 

a/b Optimal stacking sequence maxλ  
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

[0/45/0/0/-45/0/0/90]s 
[0/0/45/-45/0/45/-45/0]s 
[0/0/45/0/-45/0/45/-45]s 

[45/-45/45/-45/45/-45/45/-45]s 
[45/-45/45/-45/45/-45/45/-45]s 
[45/-45/45/-45/45/-45/45/-45]s 
[45/-45/45/-45/45/-45/45/-45]s 
[90/45/90/90/90/90/-45/90]s 
[90/45/90/90/90/-45/90/90]s 
[90/90/45/-45/90/90/45/-45]s 

0.0171 
0.0172 
0.0173 
0.0197 
0.0245 
0.0294 
0.0346 
0.0442 
0.0563 
0.0693 

Table 5: Results from interval analysis 
 
 

a/b Optimal stacking sequence maxλ  
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

[0/0/45/0/-45/45/-45/0]s 
[0/45/0/0/-45/0/45/-45]s 
[0/0/45/0/-45/0/0/90]s 

[45/-45/45/0/0/-45/45/-45]s 
[45/-45/90/45/-45/90/45/-45]s 
[45/-45/45/90/90/-45/90/0]s 
[45/-45/45/90/-45/90/90/0]s 
[90/45/90/90/90/90/-45/90]s 
[90/90/45/90/-45/90/45/-45]s 
[90/90/45/-45/90/90/90/0]s 

0.0094 
0.0094 
0.0095 
0.0103 
0.0121 
0.0153 
0.0187 
0.0242 
0.0307 
0.0380 

Table 6: Results from MCS 
 
Next the optimal values are compared as varying degree of 

uncertainty. In the calculations, the uncertainty of material 
properties is fixed as ±10% deviation because the bounds 
material property are relatively small. For normal distribution, 
the standard deviation is determined from multiplying mean 
value by given deviation. In Fig 7, the optimal buckling loads 
are plotted for increasing uncertainties. The results from beta 
and uniform distribution show almost same values but the 
results from normal distribution deviate from others as 
uncertainty increases. Theoretically, the bounds of normal 
distribution is from -∞ to ∞, thus more extreme condition ca
be considered in the calculation. In case of convex analysis, 
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somewhat unrealistic buckling loads are obtained for high 
degree of uncertainty. Because the linearization of objective 
function can only be meaningful for proper degree of 
uncertainty. So, despite of its computational efficiency and ease 
of modeling, care should be taken when choosing convex 
analysis for modeling the uncertainty. Interval analysis gives 
approximately the middle values compared with the results by 
deterministic and convex modeling approaches. The optimal 
buckling loads vary linearly as deviation increases, and 
generally they are more conservative than those from 
probabilistic approach. Considering a computational cost for 
Monte Carlo simulation and an overestimation by convex 
modeling, interval analysis seems to be efficient way for 
optimization where numbers of objective calculations are 
required. 

 

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 5 10 15 20 25 30
Deviation(%)

O
pt

im
al

 b
uc

kl
in

g 
lo

ad
s

Deterministic
Beta
Normal
Uniform
Convex Modeling
Interval Analysis

 
Fig 7: Optimal buckling loads for various degree of 

uncertainty. 

CONCLUSION 
Optimal designs of laminated plate were determined with 

uncertain in-plane loads and material properties. To consider 
the uncertainty, convex modeling, interval analysis and Monte 
Carlo simulation were adopted in optimization process. The 
genetic algorithm works well in stacking sequence 
optimizations for maximizing the buckling loads. Numerical 
results indicated that considering the uncertainty is highly 
required for reliable and safe design. 

The methodology presented in this paper can be used as a 
powerful tool for robust layup design of laminates when 
uncertainty exists. Also, it can be extended to the problem in 
which various kind of uncertainty are present. This study is in 
the progress. 

 

REFERENCES 
[1] Park, W. J., 1982, “An Optimal Design of Simple 
Symmetric Laminates under the First Ply Failure 
Criterion,” Journal of Composite Materials, 16, pp. 341-
355. 
 

7 Copyright © 2006 by ASME 

se: http://www.asme.org/about-asme/terms-of-use



 

 

n

Dow
 

[2] Kim, C. W., Hwang W., Park, H. C., and Han, K. S., 
1997, “Stacking Sequence Optimization of Laminate
Plates,” Composite Structures, 39, pp. 283-288. 
 
[3] Tauchert, T. R., and Adibhalta, S., 1984, “Design of 
Laminated Plates for Maximum Stiffness,” Journal o 
Composite Materials, 18, pp. 58-69. 
 
[4] Kam, T. Y., and Lai, M. D., 1992, “Multilevel Optimal 
Design of Laminated Composite Plate Structures,
Composite Structures, 31, pp. 197-202. 
 
[5] Franco Correia, V. M., Mota Soares, C. M., and Mota 
Soares, C.A., 1997, “Higher Order Models on the
Eigenfrequency Analysis and Optimal Design of Laminated 
Composite Structures,” Composite Structures, 39, pp. 237-
253. 
 
[6] Mota Soares, C. M., Mota Soares, C. A., and Franco 
Correia, V. M., 1997, “Optimization of Multilaminated 
Structures Using Higher-order Deformation Models,”
Computer Methods in Applied Mechanics and Engineering, 
149, pp. 133-152. 
 
[7] Todoroki, A., Sasada, N., and Miki, M., 1996, “Object-
oriented Approach to Optimize Composite Laminated Plate 
Stiffness with Discrete Ply Angles,” Journal of Composite 
Materials, 30, pp. 1020-1041. 
 
[8] Kim, T. U., and Sin, H. C., 2001, “Optimal Design of 
Composite Laminated Plates with the Discreteness in Ply 
Angles and Uncertainty in Material Properties
Considered,” Computers and Structures, 79, pp. 2501-
2509. 
 
[9] Hajela, P., 1990, “Genetic Search – An Approach to the 
Nonconvex Optimization Problem,” AIAA Journal, 26, pp. 
1205-1210. 
 
[10] Riche, R., and Haftka, R. T., 1993, “Optimization of 
Laminate Stacking Sequence for Buckling Load
Maximization by Genetic Algorithm,” AIAA Journal, 31, 
pp. 951-956. 
 
[11] Liu, B., Haftka, R. T., and Akgun, M. A., 2000, 
“Permutation Genetic Algorithm for Stacking Sequence 
Design of Composite Laminates,” Computer Methods i 
Applied Mechanics and Engineering, 186, pp. 357-372. 
 
[12] Todoroki, A., and Haftka, R. T., 1998, “Stacking 
Sequence Optimization by a Genetic Algorithm with a New 
Recessive Gene Like Repair Strategy,” Composite Part B, 
 

29, pp. 277-285. 
 

nloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of U
d 

f

” 

 

 

[13] Ben-Haim, Y., and Elishakoff, I., 1990, Convex 
Models of Uncertainty in Applied Mechanics, Elsevier, 
Amsterdam. 
 
[14] Elishakoff, I., and Colombi, P., 1993, “Combination of 
Probabilistic and Convex Models of Uncertainty When 
Scarce Knowledge Is Present on Acoustic Excitation 
Parameters,” Computer Methods in Applied Mechanics and 
Engineering, 104, pp. 187-209. 
 
[15] Elishakoff, I., Haftka, R. T., and Fang, J., 1994, 
“Structural Design Under Bounded Uncertainty – 
Optimization with Anti-optimization,” Computers and 
Structures, 53, pp. 1401-1405. 
 
[16] Qiu, Z., 2005, “Convex Models and Interval Analysis 
Method to Predict the Effect of Uncertain-but-bounded 
Parameters on the Buckling of Composite Structures,” 
Computer Methods in Applied Mechanics and Engineering, 
194, pp. 2175-2189. 
 
[17] Lombardi, M., and Haftka, R. T., 1998, “Anti-
optimization Technique for Structural Design Under Load 
Uncertainties,” Computer Methods in Applied Mechanics 
and Engineering, 157, pp. 19-31. 
8 Copyright © 2006 by ASME 

se: http://www.asme.org/about-asme/terms-of-use


