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Abstract

Recently, a very fast damping of beam envelope
oscillation amplitudes has been observed in simulations of
high intensity beams transportation through periodic
FODO cells, in mismatched conditions [1,2]. In those
references, a guess on the possible mechanism that causes
the damping effect has also been proposed. It seemed that
the damping could be ascribed to a Landau damping
mechanism.

In this presentation, further simulations, which seem
confirm that the fast damping is due to the Landau
damping effect, will be shown and discussed with more
details.

1 INTRODUCTION
High-intensity charged-particle beams can develop ex-
tended low-density halos [3]. The existence of halos can
have serious consequences in particle accelerators. If halo
particles are lost in the accelerator, they may induce
radioactivity. For the next generation of high intensity
proton linac projects, it is necessary to obtain a more
quantitative understanding of the physics of the halo.
Multiparticle simulation studies of high intensity beams
transported in linear focusing channels have provided
some useful physical insights into the dynamics of high-
current beams. For a non equilibrium beam injected with
the correctly matched rms size, the initial distribution
relaxes with accompanying emittance growth over a time
of only about one quarter plasma period to a quasi
equilibrium state with an approximately uniform central
core in real space and with an edge that falls off over a
distance approximately equal to the Debye length [4].
Furthermore, numerical simulations of rms-mismatched
beams have shown that the beam envelope oscillations,
due to mismatching, induce, on the beam, a halo, that
could cause radiation activation on the surrounding [5].
Recently, multiparticle code simulations have shown that
beam envelope oscillations, caused by mismatching with
the periodic transport channel, can damp very fast [2]. In
that reference, by making very rough assumptions on the
envelope oscillation frequency, the hypothesis that this
effect can be ascribed to a Landau mechanism of
stabilization has been also presented.
In this work, more accurate assumptions on the envelope
oscillations and a more detailed discussion on
the damping mechanism will be presented.

2 SIMULATIONS
In ref. [2], we made the very rough assumption that a

high space charged beam, if mismatched with the periodic
transport channel, oscillates at plasma frequency as
reported in a ref. therein. This means that both odd and
even mismatched beams should oscillate with the same
frequency and then, since the odd mode of the case shown
in [2] damps quickly also the even mode, for the same
case, should damp in the same way. However, as shown in
fig.1, we have verified that this is not true. This
discrepancy will be accounted for in the following of the
paper.

Fig.1: x and y rms-envelope oscillations for even
(magenta-line) and odd mismatched beam (blak-line),
with initial KV distribution, along the FODO channel.

In ref. [6], a more accurate theory for the envelope
oscillations of mismatched beam show that it can be

described by the equations :
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where S, indicates the focusing periodic cell length,
z1=x(s)-y(s) and z2=x(s)+y(s) are the odd and even mode
of the rms envelopes x(s) an y(s) and s the longitudinal
position along the periodic cell.
Notice that any arbitrary envelope oscillation mode can

be expressed as a combination of these two fundamental
modes (odd and even). The spatial frequencies k1 and k2

can be expressed as phase advances: Φ1=k1S and Φ2=k2S.
The phase advances obtained by this theory have been
found in very good agreement with those given by the
simulation results of the multiparticle code PARMT.
The main input file parameters, used in the PARMT
simulations of ref. [2], used also for fig.1,are here recalled
for sake of clarity. In that simulations, we used FODO cell
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periods of length L=80 cm; transverse rms emittances,

εx=εy= 0.25 x 10 -6 m·r; single particle phase advance
σo=60.7° and tune depression σ/σ0=0.55 corresponding to
a beam current of 95 mA with an energy of 10 MeV and
a10% of mismatching on the beam size. As argued in that
ref. , in these conditions, Landau damping can occur. In
fact, there is a harmonic excitation given by the breathing
mode oscillation of the beam envelope and a large set of
oscillators, the beam particles oscillating with a large
betatron frequency spectrum. Furthermore the coherent
frequency must lay inside the betatron frequency
spectrum. It can be noticed that the coherent oscillation
energy is transferred to the incoherent oscillations of the
beam particles. During the damping of the breathing
oscillation there is a slight increase of the total emittance
variation.
At the end, we can say that the energy involved in this
process is dissipated from a coherent motion to the very
high number of degrees of freedom of the system.
In the case of fig. 1, the odd rms envelope oscillation
frequency is ωo =76 MHz (from the theory of ref. [6] 78
MHz) while for the even mode ωe =90 MHz. Then
because the Landau damping could occur the frequency of
the odd mode should lay inside the betatron frequency
spectrum[2]. In fig. 2, it is shown a rough evaluation of
the beam betatron frequency spectrum. It is an
overlapping of the frequencies of some beam particles
taken inside the beam at different positions along the
beam radius. From the fig.2, it can be seen that half
frequency of the odd oscillation mode is inside the
betatron frequency spectrum while the other one, the even
mode, is outside. This means that, following the
arguments of ref [2], only for the odd mode the Landau
damping can occur as shown in fig. 1. In the same fig. it
can be noticed that the fast damping start after about 130
periodic cells. This is because, on the initial K-V particle
distribution, before the Debye length tail is formed by the
charge redistribution [4], all the beam particles undergo
the same space charge tune shift and then oscillate with
the same betatron frequency. In fact, in this case, the
space charge force is linear. When the space charge forces
are not enough to induce the Debye length tail on the
beam spot the beam betatron spectrum is practically a
kind of delta of Dirac. In the same ref. [2] it is shown that
for σ/σ0=0.83, no Landau damping occured, as expected,
because the Landau damping conditions are no more
matched. But, if we consider for the same σ/σ0=0.83, an
initial beam distribution of Gaussian type, the fast
damping will occur again because the Landau damping
conditions (large betaron frequency spectrum and
coherent frequency located inside the spectrum) are again
matched as shown in fig.3a).
Notice, in this last case, both the oscillation modes have

Fig. 2:Overlapping of FFT of some particle beam
trajectories with initial x positions taken from 0.07 to 0.18
cm. The beam radius, after the Debye length tail is
formed, is about 0.2.

frequencies laying inside the betatron spectrum and then
both the modes quickly damp as shown in fig.3b).

To confirm that the fast damping observed in the
simulations is due to a Landau mechanism of stabilization
as argued in ref. [11], further simulations are considered
for a different space charge parameter, that is a different
σ/σ0 , and also with different initial beam distributions.

In fig. 4 are shown the simulation results for σ/σ0=0.29
(corresponding to a beam current, I=200 mA), with an
initial beam particle distribution of KV type. In this case
both the rms envelope oscillation modes are outside of the
betatron spectrum as indicated in 4a) (ωo/2=32 MHz and
ωe/2=42 MHz). Then , as expected from the above
considerations on the damping mechanism, no damping
can be observed on both the rms envelope oscillation
modes shown in fig.4b).

In fig.5, instead, are shown the simulations for the same
previous case, but with an initial beam distribution

a)



b)
Fig.3: a) The same of fig.2 for the case σ/σ0=0.83 with
initial Gaussian beam particle distribution. b) Beam rms
envelope oscillations for the odd (black-line) and the even
(magenta-line) mode for σ/σ0=0.83.

of Gaussian type. This time, the betatron spectrum is
larger and then the odd mode frequency is inside to it, as

a)

b)
Fig.4: The same of fig.3, but for σ/σ0=0.29, with initial K-
V beam particle distribution.

it can be seen from the fig.5a). Then, as argued before,
only the odd mode will undergo a fast damping as
confirmed by the results shown in fig.5b).

CONCLUSION
Although, in this paper, a rough evaluation of the beam
particle betatron spectrum has been considered, the
determination of the main damping condition (that is
oscillation mode frequency in or out the betatron
spectrum) has been still assessed correctly. In fact, in our
spectrum evaluation, we have considered particles at

different position from the beam center. Being, the space
charge tune shift undergone by the particles, position
dependent (if the space charge is not linear), in our
calculation, we have considered, roughly, all the betatron
frequency present in the beam.

a)

b)
Fig.5: The same of fig.4, but with an initial Gaussian
particle distribution.

Anyway a more precise evaluation of the betatron
spectrum considering all the beam particles is underway.

In conclusion all the simulation results seem confirm
that the damping effect shown in some cases are
consequence of the Landau mechanism of stabilization
through which a coherent oscillation (the envelope mode)
transfer its energy to the many degree of freedom of an
ensemble of oscillating systems (the beam particles
oscillating at the betatron frequencies).
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