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Motivated by the problem of understanding 
the limitations of neural networks for repre- 
senting Boolean functions, we consider size- 
depth trade-offs for threshold circuits that 
compute the parity function. We give an al- 
most optimal lower bound on the number of 
edges of any depth-2 threshold circuit that 
computes the parity function with polynomi- 
ally bounded weights. The main technique 
we use in this proof, which is based upon the 
theory of rational approximation, appears to 
be a potentially useful technique for the anal- 
ysis of such networks. We conjecture that 

1 Introduction 
A basic para.digm of the connectionist ap- 
proach to learning is that  of training a neu- 
ral network (consisting of weighted threshold 
gates) by incrementally adjusting the weights 
in response to concept examples presented to 
the network [15,8]. Theoretical and empirical 
evidence suggest that the rate of convergence 
of such training procedures depends on both 
the number of edges and the depth of the un- 
derlying network [2,8,6]. Thus in selecting an 
architecture that is appropriate for learning 
a particular class .F of functions, we have the 
following criteria: 

1. The architecture should be able to com- 
pute each function in .F for a proper 
choice of weights. 

2. The architecture should have a minimal 
number of edges. 

there are no linear size bounded depth thresh- 
old circuits for computing parity. 

3. The depth of this architecture should be 
mini mal. 

Unfortunately, there are virtually no an- 
alytical tools available for evaluating arclii- 
tectures based on these criteria. Indeed with 
few notable exceptions [ 10,9,4,13,7,14,5,16,2], 
very little is known about the limitations 
of threshold circuits for representing specific 
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seems worthwhile to consider the trade-offs 
between the number of edges and the depth 
of threshold circuits. A natural place to begin 
such an investigation is with the parity func- 
tion which has served as a prototypical ex- 
ample for a variety of investigations in com- 
plexity theory and neural network learning. 
It is well-known that the parity function on 
n variables can be computed by a depth-2 
threshold circuit with a quadratic number of 
edges. It is not hard to construct such a cir- 
cuit with a linear number of edges in depth 
O(1og log n)  and in fact there is a construc- 
tion that provides a transition between these 
extremes (see section 2). 

Our starting point was an attempt to show 
that the trade-off exhibited by this construc- 
tion is best possible. The result we present in 
this paper is an almost optimal lower bound 
52(n2/ log2 n)  on the number of edges for com- 
puting parity function with depth-2 thresh- 
old circuits whose weights are bounded by 
a polynomial in n. (Recently, we have ex- 
tended the techniques to obtain a n(nl.'-') 
lower bound for depth-3 threshold circuits; 
details will be given in the full paper.) While 
this result falls short of our goal, its proof in- 
volves an interesting application of rational 
approximation theory to complexity theory. 
The technique holds promise towards a com- 
plete answer to this trade-off question and 
also seems to be a natural and a potentially 
useful approach to the analysis of threshold 
circuits in general. Such an approach might 
also be relevant to the solution of the ques- 
tion whether TCO (the class of functions com- 
putable by bounded depth and polynomial 
size threshold circuits) is equal to NC' (the 
class of functions computable by fan-in 2 log- 
depth Boolean circuits). 

2 Threshold Circuits for 
Parity: Upper Bounds 

A threshold gate with n incoming cdges is a n  
n-tuple G E R". The function h : (0 , l ) "  -0 -+ 

( 0 , l )  computed by such a gate on input b E 
(0,l)" is given by sgn(Cy=l w,bi) where sgn : 
R - (0) -+ ( 0 , l )  is defined as 

1 i f a > O  { 0 otherwise sgn(a) = 

We assume, without loss of generality, that 
all 4 our gates have the property that for no 

w,b, = 0. 
A threshold circuit T on n inputs 

( b l ,  bz,  . . . , b,)  is a directed acyclic graph with 
a designated node (output) and exactly n + 1 
source nodes, one for each variable and one 
for the constant 1. Also, each edge is la- 
belled by an inleger. The semantics of such 
a circuit is given by interpreting each of the 
non-source nodes as a threshold gate on its 
incoming edges and by assigning, in the ob- 
vious way, a function of the type ( 0 , l ) "  -+ 

( 0 , l )  to each non-source node as thc func- 
tion computed by that node. 'l'he function 
f~ : (0 , l ) "  -+ ( 0 , l )  computcd by TI' is the 
function assigned to its designatcd output 
node. 

The node complexity of T is dcfined as the 
number of non-source nodes of T .  The edge 
complexity of T is defined as the number of 
edges in T .  

We define the level of each nodc in thc fol- 
lowing way: The level of each source notlc 
is 0. The level of any other node i is 1 more 
than the maximum level of its immediate pre- 
decessors. The depth of T is the level of tlic 
output node. 

The node (edge) complexity Ivj(n) ( E j ( n ) )  
of a Boolean function f on n inputs is tlw 
node (edge) complexity of the minimal node 
(edge) threshold circuit that computes f. 

b E (0,1}y 
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For convenience, we assume that all our 
circuits are layered in that nodes at level i for 
i 2 1 receive inputs only from level i- 1. Such 
a restriction would increase the node and the 
edge complexities by at most a factor of d,  
the depth of the circuit. 

A Boolean vector b is even if b; E 
0 mod 2 and is oddotherwise. The odd parity 
function p ,  on a sequence b' = ( b l ,  b2,. . . , b,) 
of Boolean variables is defined to be the char- 
acteristic function of the set of odd vectors. 
The even parity function pe is defined by 
p e ( Q  = 1 - p , (g ) .  Both even and odd par- 
ity functions are referred to simply as parity 
functions. 

We now consider the problem of construct- 
ing threshold circuits for parity with minimal 
number of edges. The best construction that 
has been achieved for depth-2 threshold cir- 
cuits uses n2/2+O(n) edges [lo]: At  the first 
level, we have LsJ gates with the i-th gate G; 
(which also denotes the output of the gate i )  
computing the function sgn(Ej",, 2bj -4i+ 1) 
for 1 5 i 5 liJ. In addition, we have 
n + 1 'trivial' gates at the first-level that 
will transmit the inputs b l ,  bz ,  . . . , b,  and the 
constant 1 to the gate at the second-level. 
The output gate at the second level computes 
sgn(Cjzi 4G; - 2 bi + 1). Note that the 
argument of the sign function is positive if 
the input ?; is odd and negative if the input 6 
is even. 

For higher depth, the above can be used 
as the basis in a recursive construction. To 
construct a circuit of even depth d ,  we parti- 
tion the inputs into f i  sets of size fi. We 
recursively construct depth d - 2 circuits to 
compute the parity of each of the sets and 
combine the outputs using a depth-2 circuit. 
For d = o(loglogn), the number of edges at 

which dominates the sum of all the edges at 
other levels. This is a special case of a con- 

-4 

the lowest level of recursion is O(n'+'/zd'2 1 

struction by Beame a.nd others ([3]) which, 
for any symmetric function, yields a simihr 
size-depth trade-off. In the case of the par- 
ity function, by a more carcful construction, 
we get: 

Theorem 1 Ford 2 2 and d = O(log log n) ,  
there exists a depth d threshold circuit 
that computes a parity function having 
O(n'+'le(sd)) edges and U ( n )  nodes where 
q5 = (1 + f i ) / 2 .  (All  the weights in these 
circuits are O(1ogn) bits long. ) 

In particular, we get an O(1og log n )  depth 
threshold circuit for computing the parity 
function with node and edge complexities 
O ( 4 .  

3 Threshold Circuits for 
Parity: Lower Bounds 

Our inability to improve the construction of 
the previous section suggests the following 
conjecture: 

Conjecture  1 There exists a constant c > 1 
such that any depth d circuit that computes 
parity requires. Sl(n'+'lcd) edges. 

This conjecture, if true, would imply that 
any depth d = o(log1ogn) circuit that com- 
putes parity has a superlinear number of 
edges. In the remainder of this paper, we 
prove a nearly quadidic lower bound on tlic 
edge complexity of depth-:! circuits for parity. 

3.1 Properties of Depth-2 
Parity Circuits 

We first establish a relationship between the 
node and the edge complexities of dcptli-2 
threshold circuits that compute parity. Let p 
be any parity function on n inputs. 
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Lemma 1 For depth-2 threshold circuits, 
(2Np(n)  + n N p ( n  - 1) - n - 2)/2 5 Ep(n)  5 
(n  + 2)Np(n)  - n - 2. 

Proof: The upper bound follows easily 
from elementary grap h-t heoret ic considera- 
tions. For the lower bound, we show that the 
outdegree of each input variable b; is at least 
N p ( n  - 1)/2. Let T be a depth-2 threshold 
circuit that computes a parity function on n 
inputs. Let outT(i)  be the outdegree of the 
source labelled by b;. The idea is that given 
a depth-2 threshold circuit for computing a 
parity function on n inputs, we can construct 
a threshold circuit T' that  computes a parity 
function on n - 1 inputs whose node complex- 
ity is bounded from above by 2 0 u t ~ ( i )  + 1. 

T' is constructed from T as follows. Con- 
sider the output node TJ of T .  Let TI be 
the circuit obtained from T by merging the 
source node labelled b; with the source la- 
belled 1, i.e., assigning the value 1 to the 
input b;. Let TL be the circuit obtained by 
deleting the source node labelled bi together 
with its incident edges. We then obtain To 
from TA by negating the weights of all the in- 
coming edges of the output node of 7';. Now, 
T' is obtained by coalescing the output nodes 
of To and TI. Since To and TI compute the 
same parity function on n - 1 inputs, it is 
not difficult to see that T' computes a par- 
ity function on n - 1. Notice that all the 
1-level nodes of T that  do not receive an in- 
coming edge from b; in T appear as identical 
pairs in T' except the weights on their out- 
going edges have different signs. Therefore, 
the contribution of each pair to the output 
node of T' is always 0. Hence we can remove 
all such nodes from T'. This shows that the 
node complexity of T' is bounded from above 
by 2 o u t ~ ( i )  + 1. From this, we get the lower 
bound ( N p ( n  - 1) - 1)/2 on the outdegree of 
each non-constant source node which in turn 
gives the lower bound on E p ( n ) .  

A Geometric View: Each gate in a thresli- 
old circuit can be interpreted as an afline Iiy- 
perplane. With this interpretation, it is not 
hard to prove: 

Lemma 2 In a depth-2 circuit for parily, 
the set of hyperplanes associated with the 
nodes at level 1 must intersect every edge OJ 
the n-dimensional unit hypercube. 

This observation suggcsts the following 
problem. 

Problem 1 What is the minimal number oJ 
hyperplanes required l o  intersect all the edges 
of the unit hypercube? 

This problem appears in [12,1] and it was 
conjectured that this number is n. But, an 
unpublished counterexample by Paterson is 
mentioned in [12]. By lemma 1, any f (n)  
lower bound on the number of hyperplanes 
would imply an n(n f ( n ) )  lower bound on thc 
edge complexity for computing parity with a 
depth-2 circuit. 

In the construction of the previous sectiori, 
observe that the circuits axe restriclcd in tlic 
sense that tlic wcights (cxccpl thc oncs that 
correspond to constant input 1) of all lcvcl 
1 gates arc nonnegativc. Therefore thc as-  
sociated hyperplanes have nonnegative cocf- 
ficients. It is not hard to sec that at least n 
such hyperplanes are needed to cut all of the 
edges of the hypercube (no two of the n edges 
( O ~ l n - ~ , O ~ + l l n - ~ - l )  can be cut by the satrie 
nonnegative hyperplanc) and thus w e  havc: 

Theorem 2 A n y  restricted depth-2 thresh- 
old circuit lhat computes parily has edge com- 
plexity of n2/2  + n(n).  

In the case that thc weights are not rc- 
stricted, the best lower bound known on 
the number of hyperplanes nccded to cut all 
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edges of the hypercube is Q( ,/E) which gives 
an R(n3I2) bound on the edge complexity 
of parity with depth-2 circuits. We believe 
that this can be significantly improved but 
have been unable to do so by this technique. 
Instead, the nearly quadratic promised in 
the introduction is based on an analytic ap- 
proach, which uses approximation by rational 
functions together with a degree argument. 

3.2 Multilinear Polynomials 
and Parity 

Let f ( 5 1 , 5 2 ,  - zn) be a 
real multilinear polynomial in 5 1 , 5 2 , .  . . , 5n. 
f(q, 5 2 , .  . . ,x,) has the following general 
form: 

where [n] = {1,2,. . . , n}. The degree of f is 
defined by 

deg(f) = max(IS1 : as # 0). 
sc [.I 

We say that a Boolean function g : 
(0,l)" --t (0 , l )  is computable by a multi- 
linear real polynomial f ( 5 1 , 5 2 , .  . . , xn) if, for 
all 6 E 10, 1jn, g(Q = sgn(f(8)). 

Fact 1 Every Boolean function of the type 
(0, l}n --t (0,1} is computable b y  a multilin- 
ear real polynomial of-degree at most n. 

Lemma 3 If a multilinear real polynomial 
f (x1,52,. . . ,xn) computes a parity function, 
then deg(f) = n. 

Proof: We use induction on n to prove that 
the deg( f )  is at least n. Equality follows from 
fact 1. 

Clearly, the statement is true for n = 
1. For some n 1 2, assume that 

f ( x l , x 2 , .  . . , xn) computes the function p e  on 
n variables. (The other case can be handlcd 
similarly.) We can write f as 

such that f O ( z 2 , 2 3 , .  . . ,xn) computes p e  on 
n - 1 variables and 
f l ( 5 2 ,  5 3 ,  -, 5,) + f 0 ( 5 2 , 5 3 , .  . , zn) com- 
putes po on n - 1 variables. 

It follows that f I ( 5 2 ,  z 3 , .  . . , xn) computes 
p ,  on n -1 variables. Observe that the degree 
of fi is one less than that of j .  By induction 
hypothesis, we have that deg(f1) >_ n - 1. 
Hence, deg(f) 2 n. 

Remark: This lemma can be used to 
give a simpler proof of the result of Alon, 
Bergmann, Coppersmith and Odlyzko [l], 
concerning the number of Hamming spheres 
required to cover all tlie vertices of the 
n-dimensional hypercube. More preciscly, 
they considered the following problem due to 
Knuth. Let K ( n , d )  denote tlie minimal I ;  
for which tlicrc exist f l  vcctors v,, v2, . . . , ?)k 
of dimension n such that for any f l  vector 
w of dimension n, there is an i ,  1 5 i 5 I C ,  
such that Iv;.wl 5 d, where v.w denotes the 
inner product of two vectors. Ihuth's  con- 
struction shows that K ( n , d )  < [n/(d + 1)1 
for n G d (mod 2). Alon and others proved a 
matching lower bound using elementary lin- 
ear algebra. This lower bound can be ob- 
tained from lemma 3, by noting that a COVCI' 

of the hypercube by h IIamming spheres of 
radius at  most d can be used to obtain a poly- 
nomial of degree at  most h(d  + 1) that com- 
putes parity for all vertices of the hypercube. 
(We omit the details from this abstract). 
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3.3 Rational Approximation 
and Threshold Gates 

In this section, we consider the following 
problem: 1x1 is defined on the closed interval 
[ -1 ,1]  as the absolute value of z. We wish 
to  approximate 1x1 in the interval [ -1 ,1]  by a 
rational function &(x) in z of degree IC where 
the error of the approximation En,cz)(lzl) is 
measured by 

The degree of a rational function is the max- 
imum of the degrees of its numerator and de- 
nominator polynomials. 

We have the following fundamental results 
of Newman [Il l  regarding the approximation 
of 1x1. Let [ = e-'/&, and 

Fact 2 In  the interval [-1,1],  1x1 can be 
approximated by rk(z)  with E R k + l ( z ) ( / x l )  5 
3 e - d .  

This result is significant since no real poly- 
nomial of degree IC can approximate 1x1 with 
error o ( l / k ) .  Also, this result is the starting 
point of rational approximation theory. 

We use this result to  show that the func- 
tion computed by any threshold gate can be 
well approximated by a rational function of 
small degree. We say that a real multivari- 
ate function g(z1,52,. . . , x,,) approximates a 
Boolean function f(b1 , 62 . . . , b,) with error E 

Let G be a threshold gate on n inputs w' 
be its weight vector. Assume that f($) is 
the Boolean function computed by G, that 
is, f(c) = sgn(C:='=, wib;). Also, let U = 

if E = "gE{,,l}" If($) - S(Z)l. 

CyZl Iwil. We assume U # 0. We then have 
the following approximation lernma for a sin- 
gle threshold gate. 

Lemma 4 f ( c )  can be a p ~ ~ ~ o x i ~ r a a t e d  b y  (z 

real rational function I(?) of degree k t  1 with 
at most an error o ~ o ( u e - 6 ) .  

Proof: Consider the real multivariate func- 
tion 

n n 

i = l  i=l 

Observe that h coincides with f when it is 
restricted to  inputs from (0, l},,. If h can he 
approximated by a rational function with a n  
error E ,  then it would also be an approx- 
imation of f with an error E.  Now con- 
sider I(Cy=l w,zi)/uI whose value is in [0,1] 
for 5 E (0,1}". By Newman's theorem, wc 
can approximate this function by a real ra- 
tional function g'(?) of dcgrce IC + 1 with at  
most an error of 3 e - 6 .  NOW, we usc 9' l o  
get an a.pproxirnation g for h. 

It is clear that  g ( 2 )  is rational function of 
degree a t  most IC+ 1. Noticc that thc absolutc 
of wiz; is a t  least 1 for ? E (O, l }"  since 
all the w; are integers and C:.lw,z, # 0. 
Hence g approximates the Boolean function 
f with a t  most an error of O(e-4 /u) .  

We now use this lemma to show that a 
depth-2 threshold circuit can be computed 
by the sign of a real rational function whose 
degree is determined by the number of first 
level gates. Let 7' be a depth-2 threshold cir- 
cuit computing a Bookan function f(3). Let 
m is the number of non-constant inputs to 
the second level threshold gate in 7'. Also, 
for any threshold gate G' in T ,  let U G  clcriote 
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the sum of the absolute values of the weights 
of G. Let U,,,, dciiote the maximum valuc of 
UG over all the gates G‘ in T.  We thcn have 

Lemma 5 j(Q = s g n ( g ( 6 ) )  w/iere g ( 2 )  is a 
real rational fiinction in x1,x2,. . . , x n  of de- 
gree on(k + l )  as long as ~ i ~ ~ ~ e - ~  < 1/3. 

Proof: We approxiinate each non-constant 
input hi of the second level gate by a de- 
grce (IC + l )  multivariatc rational function 
/ i :  with at most an error of 3umaZe-fi. If 
w1,21)2,. . . , w, are the weights corresponding 
to the nz non-constant inputs to the second- 
lcvel gate of T ,  we define g’ (5)  as 

n 

g‘(2) = 2u,h:(2) + c. 
t = l  

where the constant c is contribution to the 
second-level gate of T from its constant in- 
puts. 

g’(2) is a real ratiorial function of degree 
at  most nz(k + 1 )  sincc it is a sum of m ra- 
tional functions of dcgrce k + 1. Also, g’(?) 
approximates g(Z) = Cyz1 w;/i,(5) + c with 
at  most an error of 3uilaxe-fi. Since g ( 2 )  is 
an intcgcr wliich is iiot cclrtal to 0, tlic Icmt1iil 

follows. 
Finally, wc liavc tho following tllcorcin. I d  

‘1‘ be any deptli-2 threshold circuit that com- 
putes parity function on oz inputs. Assume 
that all the weights in T arc boundcd by a 
polynomial in n. 

Theorem 3 The edge complexity of T is 
a( n2/ log2 72). 

Proof: We first prove an n(n/ log’ n )  lower 
bound on the node complexity of T .  We then 
use lemma 1 to obtain our theorern. 

Let on be number of first-level gates of 
T .  We select It = clog’ oz for a. suficiently 
1a.rge c and apply leiiima 5 to get a ratio- 
nal function g ( 5 )  = gl(Z)/gZ(Z) of degrec 
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