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ABSTRACT
We define a machine learning problem to forecast arterial
blood pressure. Our goal is to solve this problem with a large
scale learning classifier system. Because learning classifiers
systems are extremely computationally intensive and this
problem’s eventually large training set will be very costly
to execute, we address how to use less of the training set
while not negatively impacting learning accuracy. Our ap-
proach is to allow competition among solutions which have
not been evaluated on the entire training set. The best of
these solutions are then evaluated on more of the training
set while their offspring start off being evaluated on less of
the training set. To keep selection fair, we divide compet-
ing solutions according to how many training examples they
have been tested on.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Genetics-Based Machine
Learning, Learning Classifier Systems

General Terms
Algorithms, Performance

Keywords
Genetics-Based Machine Learning, Learning Classifier Sys-
tems, blood pressure prediction

1. INTRODUCTION
Large repositories of data offering the potential for in-

ferential analysis via Machine Learning (ML) are becom-
ing more ubiquitous. For example, in this contribution, we
are referencing a large-scale medical database called MIMIC
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II1 consisting of time series digital versions of physiological
signals, and detailed clinical and bedside information from
an Intensive Care Unit (ICU) setting. The first version of
the publicly available data comprises roughly 18 physiologi-
cal waveforms for around 10,000 patients and clinical infor-
mation for about 40,000 patients. Physiological data alone
is about 4TB. The broad goal of our current project is to
knowledge mine the arterial blood pressure (ABP) wave-
forms for insights related to pattern recognition in beat se-
quences, prediction of ABP and classification of ABP char-
acteristics. In this paper we present our first definition of
a blood pressure prediction problem and offer preliminary
performance results.

Because our knowledge mining system, EC-Star, (described
in more details in Section 3), is a variant of a learning classi-
fier system (LCS) [24] and because the ABP waveform data
will eventually comprise many segments from many patients,
we need to investigate approaches that will scale to a large
set of training data. We are concerned that executing even
one classifier ruleset against all the training data will be
extremely costly and this factor will be multiplied upward
when we use larger population sizes and complex represen-
tations which define large search spaces. In this contribution
we explore an approach to efficient use of training data that
cuts down on the amount of training cases used in prelimi-
nary evaluation of a candidate solution.

Our strategy allows competition among solutions which
have not been evaluated on all the training set. The best of
these solutions are then evaluated on more of the training
set while their offspring start off being evaluated on less of
the training set. To keep competition fair, we isolate com-
peting solutions according to how many training examples
they have been tested on. In studying our approach, we also
show, in a very preliminary manner, how a scalable LCS
system can be used to predict the arterial blood pressure of
patients in intensive care units.

We proceed as follows: Section 2 describes our definition
of a blood pressure prediction problem. Because our dataset
is public, this definition can act as a benchmark for our
research community. Section 3 briefly describes EC-Star.
Within it, Section 3.5 presents work related to EC-Star and
efficient training set use. Section 4 then provides more de-
tails and pseudocode of our approach. Section 5 evaluates

1http://mimic.physionet.org
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the strategy in the context of solving the arterial blood pres-
sure prediction problem. Section 6 concludes and describes
future work.

2. ABP PREDICTION
In this contribution our goal is to predict the arterial blood

pressure (ABP) of patients in an intensive care unit. Know-
ing whether a patient’s arterial blood pressure will remain
within normal function or lapse into a hypotensive (low) or
hypertensive (high) regime in a short forward time window
is valuable. In the ICU it allows staff adjustment, improved
patient oversight and informs timely treatment.

To enable prediction, a dataset for a large set of patients
is available in MIMIC II. There are approximately 10,000
patients whom have associated ABP waveforms in multiple
contiguous segments spanning minutes to hours to even days
which were recorded during their stay in the ICU. Before
scaling to the entire dataset and learning with many more
features, we have selected a subset of 42 patients who have
previously been selected as part of a competition to predict
“acute hypotensive events”2. The feature conditioned wave-
forms comprise the dataset of the experiments reported in
this publication.

2.1 ABP signal
Arterial blood pressure signal is a periodic signal whose

period strongly correlates with the frequency of a heart beat.
The beat has three micro structures. The first corresponds
to the rise of the pressure from a minimum value (diastole)
to a peak which is called a systole, the second corresponds
to the period from the peak to the end of the systole, subse-
quently the pressure rises by a small fraction before return-
ing to a diastole. Pressure values are in mmHg and values
at the points mentioned above are called systolic pressure,
Ps, and diastolic pressure, Pd, respectively. The time dif-
ference between two consecutive diastoles is the duration of
the beat Td. A mean arterial pressure (MAP) often used in
medicine as measure of normality in blood pressure is de-
fined as 2.Pd+Ps

3
. The values of Ps, Pd and Td are different

from patient to patient and also change over time for a sin-
gle patient. In addition, an important aspect of this data,
when compared to traditional periodic signals is the changes
in the beat duration.

2.2 Problem definition
We now define in detail a prediction problem for the ma-

chine learning community. As illustrated in Figure 1, we as-
sume a memory(lag), m relative to the current time point,
T0. The aim is to predict MAP for a forecast period, p,
for some forecast window, f in the future. In the experi-
ments of this paper, we try to predict the MAP for the time
[T0 + f, T0 + f + p]. Because a precise continuous value of
MAP has minimal use in an ICU setting, we discretize the
MAP into intervals. This follows clinician intuition to some-
what comfortably employ thresholds and categorize a precise
value as high, normal, and low. With this in mind, and af-
ter discussions with doctors, we transform the continuous
prediction problem into a 3-label classification problem by
setting the following MAP thresholds for different intervals

2http://www.physionet.org/challenge/2009/

Figure 1: Visual depiction of the ABP predicition
problem.

Variable Name Domain
V1 Systolic pressure Ps Time
V2 Beat duration Time
V3 Standard deviation of signal Time
V4 Mean of signal Time
V5 RMS of power spectrum Frequency

Table 1: List of features extracted per beat.

and assigning each interval a label:

Low(0) ≤55mmHg

55mmHg <Normal(1) ≤ 85mmHg

85mmHg <High(2)

The problem definition is parameterized by variables m,
f and p. In this paper we use a lag of m = 100 interpolated
beats, forecast (lead) time window f = 30 minutes and a
forecast period p = 10 minutes.

2.3 Assembling the Training Set
To compile our learning set, we start by marking the onset

of each beat from the raw waveform signal sampled at 125Hz
using a beat onset detection algorithm available from the
MIMIC II database [27]. For the samples that correspond
to a beat, we extract 2 features specific to blood pressure:
beat duration and systolic pressure. In the time domain we
extract the mean and standard deviation of the beat’s signal
as the 3rd and 4th features. For the 5th and final feature, we
consider the spectral frequency and extract the root mean
square (RMS) of the power spectrum. These features are
listed and given variable names in Table 1.

One minute may comprise 60 beats for a patient at one
time and 70 at another. Because of this difference in du-
ration, careful attention is required to establish uniformity
throughout the training set. We employ an algorithm by
Mori et al. [16] which interpolates the beats to obtain regu-
larly sampled values plus extracts and labels features.

To format the data for EC-Star, which requires data pack-
ages, we divide the signal for each patient into data pack-
ages with 1500 rows, i.e. 1500 training cases. Each row is
an interpolated sample and each sample has a number of
features. The columns represent the features. We have 692
data packages, or fitness/training cases, in the training set
and 298 data packages as out-of-sample testing set.

A brief descriptive analysis of the data shows that the
classes are not clearly separated when each variable for each
class is inspected given the lead time f = 30min. In ad-
dition, the occurrence of classes also shows that the data
is unbalanced, there are roughly 1e6 low, 8.5e6 normal and
3.7e6 high labels. Moreover, transitions show that patients
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Figure 2: The hub and spoke model of EC-Star.

only rarely go from normal to low and normal to high, and
vice versa.

3. EC-Star
EC-Star is a distributed EC system, see Fig. 3, that em-

ploys a modified decision list representation [19]. It uses a
large number of volunteer compute nodes as “Evolutionary
Engines”, described in detail in Sect. 3.2. The individual
solutions from the Evolutionary Engines are coordinated by
an Evolutionary Coordinator (see Sect. 3.1 ), and data is dis-
tributed to multiple Evolutionary Engines by a data server.

Most relevant to this contribution’s exploration into ef-
ficient use of training data is the fact that EC-Star is dis-
tributed. At full scale, it uses a large number (eventually
hundreds of thousands) of volunteer compute nodes. Each
Evolutionary Engine is a local LCS (with some variations vs
a typical LCS). Like all LCS at a high level, it executes evo-
lutionary algorithm (EA) which iterates over a population
of candidate classifier rulesets with selection and reproduc-
tion with variation. It only executes during the idle (a.k.a
“spare”) cycles of its volunteer node and it must accommo-
date its “host” in a number of ways. In this contribution
we address how to resolve the following challenges that are
imposed by volunteer compute node requirements in combi-
nation with a large training set:

• A Evolutionary Engine can’t keep all the training data
on the RAM or disk of its host.

• The data server can’t track which training cases it has
given to an Evolutionary Engine because there could
be hundreds of thousands of them eventually. There-
fore it must dispatch random training cases.

• Tracking training cases is (also) too costly in compu-
tation and memory of a Evolutionary Engine.

• It is infeasible to append a long list of training cases to
a candidate ruleset because of memory constraints at
the Evolutionary Engine and because rulesets get sent
around the network on limited capacity channels.

Finally, EC-Star’s functions even as Evolutionary Engines
volunteer and retire, since the Evolutionary Coordinator has
an archive of data (the migrants) from any Evolutionary

Engine that was active long enough. In addition, the data-
server only sends training cases in response to a request from
a Evolutionary Engine.

3.1 Evolutionary Coordinator
The Evolutionary Coordinator coordinates migration among

the Evolutionary Engines and maintains a layered archive –
a sorted set of individuals that are currently the best from
all Evolutionary Engines, see Alg. 1. The archive allows in-
dividuals to be sent out to each Evolutionary Engine in or-
der to improve fitness and possibly mix the existing genetic
material. When a migrant message is received the return-
ing individuals are competing for the space in the archive.
archive_migrants () is called and individuals compete for
a slot if the archive is already full. When an migrant _query

message is received migrants are randomly picked from the
Evolutionary Coordinator and sent to the requesting Evolu-
tionary Engine.

Algorithm 1 Evolutionary Coordinator

1: initialize()
2: loop

3: message = listen()

4: if message == migrants then

5: archive migrants(migrants)

6: else if message == migrant query then

7: migrants = get random migrants(archive)

8: send migrants(migrants)

3.2 Evolutionary Engine
Each Evolutionary Engine runs a completely independent

evolutionary algorithm, pseudocode is shown in Alg. 2. It
has a fixed pop_size and initially generates the population
randomly. In the evolutionary loop, it requests training
cases (training data) from the training case server in the
form of a data package . Each individual in the population
is evaluated, and after a fixed number of data packages–
evals_per_generation– selection and breeding take place
before replacement and the next generation, see Sec. 3, Alg. 3
and Alg. 4 for further details. Periodically local individuals
become graduates and are dispatched to the Evolutionary
Coordinator and migrants are received from the Evolution-
ary Coordinator.

Algorithm 2 Evolutionary Engine: Evolution

1: population = initialize()

2: loop

3: for all i ∈ evals_per_generation do

4: sample = get rnd data package()

5: for all ind ∈ population do

6: ind.num evals + +

7: for all event ∈ sample do

8: prediction = sample prediction(sample, ind)

9: saved predictions.append(prediction)

10: ind.fitness = calculate fitness(saved predictions)

11: ind.absolute fitness = ind.fitness

12: ind.relative fitness = ind.absolute fitness/ind.num evals

13: report to server(migrants)

14: breeding pool = select breeders(population)

15: graduates = select graduates(breeding pool)

16: report to server(graduates)

17: population = create next generation(breeding pool)

18: breeding pool = []
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3.3 Representation
The representation of individuals in EC-Star is similar

to a classifier in the so-called Pittsburgh-Style version of a
LCS [12]. As in a Pittsburgh-Style LCS, the rule set is as-
signed a fitness and the individual represents a full solution-
space – that is, each individual contains the rules needed to
classify a row of test data.

An individual (classifier) is a header with id, age and
fitness and a body with a set of rules. Each rule is a vari-
able length conjunctive set of conditions with an associated
action which is a class in a classification problem. Each con-
dition acts as a propositional variable, which is then applied
to the discretized real-valued training environment. Apart
from conjunction operators each condition can have, a com-
plement operator, negating the truth value and a lag which
refers to “past” values of an attribute, in the EC-Star rep-
resentation this is previous rows in the training case (data
package). The lag allows the rule to consider a variables
value in previous cases when testing a current case. See
below for an example of an individual.

!(V3[7] < -25.0) & !(V3[3] < -40.0) --> Label == 1
V3[5] < 20.0 & !(V2[4] < -14.0) --> Label == 2
V5[7] < 294000000.0 --> Label == 2
V1[21] < 42 --> Label == 0

3.4 Training Set Evaluation
Each individual in an Evolutionary Engine is evaluated

on a number of training cases every generation. Each train-
ing case is in a data package and consists of a number of
rows, called events. For each event, the variables in the
classifier’s rules’ conditions are bound to the features of the
event. For each rule in the individual, the rule’s conditions
are evaluated. If all are true, the rule is added to a active
set. Finally, a voting mechanism elects from the active set
a single rule’s action as a prediction for the training case.
When there are no active rules no prediction is made. We
track activity, the number of times each rule is active, and
use is as a basis for selection into the breeding pool, i.e. an
individual must have had some active rules. Predictions for
all events in a training case are verified against the true
class labels. A correct prediction increases the fitness and
incorrect decreases. Each individual records its fitness in
two ways: relative_fitness and absolute_fitness. See
Algorithm 2, lines 7-12 for pseudocode of this process.

3.5 Related Work
While previous work has studied training set use or LCS

design, none have combined sub sampling fitness with brack-
eting and early stopping with a large scale LCS executing
on volunteer compute nodes.

The bracketing strategy in EC-Star ensures that only in-
dividuals which have been evaluated on the same number
of training cases compete. It is important not to confuse
this with age layering as in ALPS, [8]. Age in ALPS de-
notes how many generations an individual descends from.
The early stopping in [5] is the same as our strategy in the
sense that both terminate fitness testing if a solution is not
good enough. Jin [10] has a survey about fitness approxi-
mation by subsampling. In [11] subsampling helps resolves
surrogate model inaccuracy.

A review of efficiency enhancement mechanisms for GBML
methods for large-scale data mining using GBML is available
in [3]. Examples comprise: windowing mechanisms, hybrid

methods, fitness surrogates, hardware utilization, ensemble
mechanisms and parallel models. EC-Star can be considered
a windowing scheme, where evals_per_generation age is
the window and the samples in the window are uniformly
randomly drawn from the training set.

Bacardit et al. [2] speeds up the modeling time and accu-
racy of an LCS by stratifying the training set into subsets.
Each strata maintains approximately the class distribution
of the whole training set and a round-robin policy selects
different strata for the GA iteration’s fitness computation.
Ishibuchi et al. [9] divides the training data and rotates it
with a fuzzy hybrid genetics-based machine learning system
which uses LCS.

Other ad-hoc parallel architectures are: GALE which has
a lattice-based cellular GA architecture, with different cells
in the lattice having different subsets of training examples
assigned to them [13] and the NAX system which assigns dif-
ferent subsets of the training data to different nodes, while
the GA cycle is run redundantly since the population is repli-
cated on all nodes only synchronizing the fitness evaluations
between the nodes [14]. Scheidler and Middendorf [20] solve
classification problems in computing systems that consist of
distributed, memory constrained components. Interacting
Pittsburgh-style LCSs are used to generate sets of classi-
fication rules that can be deployed on the components and
enables the components to solve complex classification prob-
lems in cooperation.

Recent work in improving LCS performance when using
rulesets includes [7] who post-process decision lists, [1] who
consider feature selection and [21] who use expert knowledge
to guide search more efficiently. Urbanowicz et al. [22] intro-
duces random artificial noise in a learning classifier system
environment and slightly improves its testing accuracy.

There are other LCS systems solving classification in med-
ical data, like EC-Star. Bojarczuk et al. [4] uses a con-
strained syntax GP system with a hybrid Pitt/Michigan
approach that discovers classification rules in medical data
sets. An ML framework for medical classification that is
scaled for grid computing is described in Ramos-Pollán et al. [18].

Scalability has been addressed in a number of different
ways. Some, like EC-Star, distribute the algorithm. For
example, Urbanowicz et al. [23] use a cluster and Franco
et al. [6] use a GPU. EC-Star’s use of volunteer compute
nodes appears to be unique and allows many more resources
(in the hundreds or thousands) to be enlisted. Fernández de
Vega et al. [25] go through customizable execution environ-
ments for evolutionary computation using BOINC+ virtu-
alization. Merelo et al. [15] discuss pool vs. island based
evolutionary algorithms. IslandSofEA uses separate clients
and a pool, this scales best of their tested methods. This is
similar setup to EC-Star.

4. STRATEGIC USE OF TRAINING DATA
We are concerned that executing even one classifier ruleset

against all the training data will be extremely costly. Our
strategy has a number of steps: Locally at each evolution-
ary engine, we first cull individuals that perform relatively
worse on the basis of a small fraction of the training set,
while allowing those that are relatively better to survive.
These survivors are next “seasoned” locally on more training
cases. During seasoning, they are used for breeding. At the
end of seasoning, if they pass a minimum fitness standard,
they become “graduates” of their evolutionary engine and
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Figure 3: Evolution at the evolutionary engine.

are passed to the “Evolutionary Coordinator”. It archives
the best graduates it receives and randomly sends them out
to evolutionary engines as migrants for further evaluation.

Migrants are returned periodically by evolutionary en-
gines but how long it will take for this return is unpre-
dictable. The Evolutionary Coordinator has to strategically
deal with this evaluation quantity mismatch while it ex-
erts selection pressure on migrants to keep their quantity
in check. To do this, its archive is a set of fixed size brackets
each spanning successively higher intervals of fitness evalu-
ations. A truly fit individual moves up the brackets as it is
evaluated on more training cases. Eventually it reaches the
topmost bracket and is harvested from the system as a high
performing solution.

4.1 Logic at the evolutionary engine
At the evolutionary engine we use evals_per_generation

as the number of training cases evaluated per generation.
min_evals_graduation is the minimum number of train-
ing cases a individual must have been evaluated on, be-
fore graduation. pop_size is population size and breed-

ing_pool_size is 0.2 ∗ pop_size.
The evolutionary engine admits selected population mem-

bers to the breeding_pool and creates the next generation
per lines 17 and 20 in Alg. 2. Alg. 3 provides pseudocode
of its breeding_pool selection logic and Alg. 4 explains how
the next generation is generated, also see Figure 3.

The general strategy is to evaluate all completely un-
evaluated local individuals on just a small fraction, λ1 =
evals_per_generation, of the training set. Comparisons
between locals incur low coverage but is completely sym-
metric. Among these new individuals, only a small superior
proportion will be propagated directly to the next genera-
tion and also be copied to the breeding pool. The rest are
discarded. We decide not to waste effort evaluating them
further. To gain admission to the breeding_pool, a new
individual’s relative_fitness must be better than that of
the weakest new individual already in the breeding pool and
it must be sufficiently different from others already in the
pool in terms of relative_fitness and activity, see fil-

ter_1 and qualify_to_enter() in Algorithm 3.
The superior individuals are then allowed to “season” for

Algorithm 3 Breeding

1: function select breeders(population)

2: for all ind ∈ population do

3: if ind.num evals < λ1
&&qualify to enter bracket(ind, brackets.lowest) then

4: brackets.lowest.insert(ind)

5: else if ind.num eval < λ2 then

6: brackets.seasoning.append(ind)

7: else if ind.num eval < λ3 then

8: brackets.potential graduation.append(ind)

9: else if qualify to enter bracket(ind, bracket.highest) then

10: brackets.highest.insert(ind)

11: for i ∈ DiversityQuota do

12: ind = select randomly one ind(population)

13: bracket = find bracket(ind.num evals)

14: if filter fitness(ind, bracket) then

15: bracket.append(ind)

16: function filter fitness(ind, bracket)

17: return dist(ind.relative fitness, bracket) > k1
18: function qualify to enter bracket(ind, bracket)

19: filter2 = TRUE

20: if bracket.quantity == bracket.size then

21: worst = min relative fitness(bracket)

22: filter2 = worst.relative fitness < ind.relative fitness

23: return filter fitness(ind, bracket)&&filter2

Algorithm 4 Next Generation

1: function create next generation(breeding_pool)

2: evolved new inds = breed(breeding_pool)

3: guests = get new guests from server()

4: culled breeding pool = breeding_pool.remove(graduates)

5: culled breeding pool = culled breeding pool.remove(migrants)

6: population.append(evolved new inds,migrants, culled breeding pool)

7: while population.quantity < population.size do

8: population.append(make random ind)

9: function select graduates(breeding_pool)

10: graduates1 = filter brackets.potential graduation(activity > C)

11: graduates2 = filter brackets.highest(activivty > C&&!ind.migrant

12: return graduates1 ∪ graduates2

a few more generations until they have λ2 fitness evalua-
tions. Seasoning implies that, without competition, every
generation they are both copied to the next generation and
the breeding pool. After λ2 fitness evaluations, again they
are copied to the breeding pool. However, all with number
of evaluations < λ3 who have been active enough graduate
to the Evolutionary Coordinator rather than get copied to
the next generation. After λ3 fitness evaluations, those who
have not graduated compete with migrants (who also exceed
λ3 fitness evaluations) to graduate.

Figure 3 shows the thresholds λ1, λ2, and λ3, on the
breeding pool. These thresholds form 4 evaluation brackets,
which we call lowest, seasoning, potential_graduation

and highest.
The population also contains migrants. Each generation

the migrants are evaluated with the same training cases as
individuals locally created on the evolutionary engine. They
are always reported to the Evolutionary Coordinator. They
compete for entry into the breeding pool’s highest bracket
with local individuals with more than λ3 fitness evaluations.
The next generation they are replaced with new migrants
from the Evolutionary Coordinator.

After every individual in the population has been tested
for admission to the breeding_pool, it is supplemented with
random individuals from the population for diversity. Ran-
dom individuals enter a bracket only if they are different
from existing individuals in the bracket. Then the breed-

ing_pool is used for reproduction. Parents are selected
from it randomly and offspring are created through copy-
ing, crossover and mutation.
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The next generation is partly composed of the breeding
pool which is culled of migrants and graduates. It also in-
cludes new migrants. Added to it are evolved offspring –
their breeding continues until, accounting only 10% of the
pool remains. This remaining fraction is filled out with ran-
dom individuals.

4.2 Logic at the Evolutionary Coordinator
Our strategy at the Evolutionary Coordinator employs

evaluation brackets to isolate competition in the Evolution-
ary Coordinator to occur between individuals of approxi-
mately the same coverage. Each bracket spans a succes-
sive range of fitness evaluations and typically the range is
much bigger than the evaluations necessary to graduate from
the evolutionary engine (min_evals_graduation). When a
new graduate goes to the Evolutionary Coordinator, it com-
petes for entry at the lowest bracket. Each time a migrant
is reported by a evolutionary engine, its number of fitness
evaluations has increased by evals_per_generation and, to
re-enter the Evolutionary Coordinator, it enters in the ap-
propriate evaluation bracket if relative_fitness is better
than the worst individuals.

At lower brackets, when the range of a bracket is small
relative to the size of the fitness suite, coverage is lower and
symmetry is poor, so competition in these brackets often re-
sults in what might be considered an error: one individual is
determined to be better than another based on what training
cases each have been evaluated on, but, on the entire fitness
suite it is actually inferior. At higher layers, where cover-
age may exceed the size of the fitness suite (to compensate
for the effects of randomized sampling of the fitness suite),
symmetry improves and competition is less error-prone.

5. EXPERIMENTS
Our first experimental question is how the evolutionary

engine parameter, evals_per_generation, which controls
the quantity of partial fitness evaluations, influences predic-
tive accuracy on the ABP test set. From this evaluation
we choose the best of the three parameter settings we tried
and use it to solve the ABP prediction problem described in
Section 2. We report the test set accuracy of EC-Star and
a neural network.

5.1 Effect of evals_per_generation Parameter
The evals_per_generation parameter is important be-

cause it determines how many training cases individuals are
evaluated against, at the evolutionary engine, before the first
culling step. If this quantity is too low, the system would be
vulnerable to making poor early choices because fitness es-
timates at this step are too unreliable. If the quantity is too
high, fitness evaluations are wasted on individuals that are
“already” fit enough to breed, migrate and provide a good
solution. We therefore focus on whether there is a range of
values for this parameter that allow the strategy to overcome
the conditions imposed by using volunteer compute nodes.

We vary evals_per_generation with settings equal to
2, 10, 100. Each run lasts for 2.5 hours using 10 clients for
each evals_per_generation setting and one evaluation of a
training case takes about 3 seconds. The limit in the archive
on the Evolutionary Coordinator was set to be very high,
roughly 7X the size of the training set, and each bracket
was a 50th of the set size.

2 10 100

0.65

0.7

0.75

0.8

0.85

%

Number of Evaluations

Figure 4: Test accuracy average for 12 runs for each
setup after 2.5h for the best of the top 10 individuals
in the Evolutionary Coordinator

We show test results in Figure 4. We might expect perfor-
mance to be more varied when a low evals_per_generation

is used since fewer training cases are evaluated for each gen-
eration because, when the number of training cases evalu-
ated at a generation is low, the comparisons becomes less
symmetric. We, in fact, observe variance among the runs
for settings 2 and 100 but not for 10. The reasons why 10
has very narrow variance is not apparent to us. In terms of
accuracy, a t-test with α = 0.05 shows that there is signifi-
cant difference in accuracy between evals_per_generation

settings 100-2 and 100-10. There is no significant difference
between evals_per_generation 10-2.

For the experiments in Section 5.2 we then selected a
evals_per_generation of 10 because it has the highest mean
test accuracy and lowest variance over the 12 runs.

We also tested setting evals_per_generation to the max-
imum number of data packages used for training (692) so
that each solution on the Evolutionary Engines is always
evaluated on all the training cases. However, only 2 runs
produced results within the assigned time and they had a
lower test accuracy of approximately 70%.

5.2 Blood pressure performance Results
Setting evals_per_generation, i.e. λ1 10, λ2 = 4∗λ1 and

λ3 = 5∗λ1, we next generate performance results. The Evo-
lutionary Coordinator bracket range is 20 and max number
of evaluations is 1000. The data is randomly split into test
and training, 70% of the data is used for training and the
rest is used for out-of-sample testing. This procedure is re-
peated 10 times in order to create 10 different training and
test data sets. From each of 6 separate runs of 1h with 13
Evolutionary Engines with a population size of 500 we take
the individual with the best relative fitness at the Evolu-
tionary Coordinator. The average median test accuracy on
all the splits is 77.95%±2.6%.

We perform an approximate comparison of our prediction
accuracy versus that of a neural network from the neural
network toolbox in MATLAB3. Before running the neural
network we were able to remove noise from the experimental
dataset. We used the same 5 features but did not add more
to allow lags to be referenced. In comparison, EC-Star used
500 features when considering the lag of 100 rows in the data
package. Per toolbox input structure, we performed 10-fold

3http://www.mathworks.com/products/neural-network/
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cross validation with 50 runs on each fold (for this contri-
bution do not have time to re run EC-Star). Each neural
network’s training time was approximately 5 min and the
median accuracy was approximately 80%, which is approx-
imately as good as EC-Star’s. Direct comparison, because
of the slightly different data sets, is not possible but, very
roughly, the results are in the same realm. The search space
the neural network learner had to navigate was smaller while
the solutions from EC-Star are rules which can be easier to
interpret for humans. It is important to stress that we con-
sider these results preliminary because the data set we are
currently using is small and very unbalanced.

5.3 Analysing the Training Set Use
Two aspects of the training set in EC-Star are described.

First, EC-Star does not guarantee that an individual ha cov-
ered all the training cases. Although, when more training
cases are shown the probability of training on all increases.
In addition, when two individiuals are compared there is no
guarantee that they have trained on the same cases, i.e. the
symmetery is different. Again, if the number of training
cases that an individual has been exposed to increases, then
the probability of a symmetric comparison increases.

We first consider the expected coverage on the training
cases, i.e. number of fitness evaluations needed for an indi-
vidual to be evaluated on every case in the fitness suite. The
coverage can be studied in regards to the max evaluations
at the Evolutionary Coordinator. E.g. at what max eval-
uations is and individual expected to have been evaluated
on all data packages. The probability for a solution to pick
all the data packages is a version of the coupon collector
problem Motwani and Raghavan [17]. We ask how many
coupons (data packages) must be drawn with replacement
before all the coupons have been collected. E.g. N = 692
coupons, E[t = N ] is the expected number of draws to col-
lect N coupons, γ ≈ 0.5772156649.

E[t = N ] =1 +
N

N − 1
+

N

N − 2
+ · · · +N

=NlnN + γN + 1/2 +O(1/N)

E[t = 692] =692ln(692) + γN + 1/2 +O(1/N)

≈4862

Figure 5(a) plots the expected number of fitness evalua-
tions given different numbers of data packages. Our fitness
suite size of 692 gives 4862 as the number of packages needed
to be evaluated before all 692 have been evaluated.

We also considered symmetry given training case random-
ization, it is possible to calculate the probability that two
individuals see the same data package. i.e. the symmetry of
individuals’ training cases. We rely upon a variant of the
generalized birthday problem [26] which derives the likeli-
hood of two people’s birthdays, m and n, in a group of size d
occuring on the same day (i.e. a “collision”). We substitute
the (num evals) number of training cases two individuals
have been evaluated upon for the birthdays and the fitness
suite size for d and a “collision” is a common training case.
The probability of a collision can be approximated by:

p(m,n, d) =1 − (1 − 1/d)mn

The probability is plotted in Figure 5(b) with d = 692
and number of evaluations, m = n.

Symmetry is controlled by altering evals_per_generation

(a) data package coverage

(b) Same data package (total 692)

Figure 5: Coverage and symmetry approximations.

and in the lowest bracket of the Evolutionary Coordinator,
the likelihood of a common training case is lowest. As in-
dividuals flow up the evaluation brackets, i.e. coverage in-
creases, on the Evolutionary Coordinator. There are greater
odds that there will be some overlap in the training cases
which were evaluated by each individual gains higher cover-
age. The design of EC-Star allows the symmetry and cover-
age to increase as an individual is exposed to training cases.

6. CONCLUSIONS & FUTURE WORK
In this paper, we presented a new definition of a blood

pressure prediction problem involving 3 label classification.
Because the data for learning a LCS ruleset for this purpose
will eventually be very large in number of time segment and
wide in terms of features, we used a modest dataset and
started to examine how we could circumvent the very signif-
icant expense of fitness evaluation which would occur in the
future when we use EC-Star with very large training data.
We exploited comparing individuals early in their“life” on
the basis of a smaller fraction of the training set. Only
survivors are further tested and competition compares only
individuals of the same training set exposure through an
archive layering mechanism. We examined the impact of
our strategy on learning performance. The approach avoids
the overhead of predetermining the division of training cases
and the question of how we would split them deterministi-
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cally. It has a more modest demand on bandwidth between
the training case server and learners. It avoids centralized
management of sampling which would be needed if it was
not random avoids precise retrieval by the data server too.

For future work one improvement of the design would be
to have different selection pressure at the different layers,
e.g. using tournament or roulette wheel selection. We could
balance the data and fitness function costs. In addition, we
expect more challenge with a larger fitness suite (from more
patients) though we may not see any significant change in
(im)balance. This indicates we should try weighting the cost
of different types of errors. We also intend to investigate dif-
ferent thresholds for the features. For the EC-Star architec-
tur we will investigate how the unreliability of the volunteer
compute node network affects the results. Moreover, differ-
ent distributions of data packages can also be tested.
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