
Incorporating Feedback Mechanism to
Bayesian Networks-based Test Case Prioritization

By

Siavash Mirarab and Ladan Tahvildari
Software Technologies Applied Research (STAR) Group

Department of Electrical and Computer Engineering
University of Waterloo,

Waterloo, Ontario

TECH. REPORT UW-ECE#2007-27

Sept. 2007

c© Siavash Mirarab and Ladan Tahvildari, 2007

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357543143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table of Contents

1 Introduction 5

2 Test Case Prioritization 5
2.1 Feedback .6

3 Proposed Approach 6
3.1 Building Bayesian Network .7

3.1.1 Nodes .8
3.1.2 Arcs .8
3.1.3 Conditional Probability Table .9

3.2 Ordering Test Cases .10
3.2.1 Probabilistic Inference .10
3.2.2 Updating Bayesian Network .10
3.2.3 stp Parameter .11

4 Experimental Evaluation 11
4.1 Experiment Setup .11
4.2 Discussion on Obtained Results .12

5 Conclusions and Future work 14

2

List of Tables

1 Statistics on Apache Ant Case Study. .11
2 Prioritization Techniques .12
3 Comparison among Used Techniques .13

List of Figures

1 Steps of the Proposed Approach. .7
2 The Structure of the BN. .8
3 Boxplot Diagram of the Results .13
4 APFD versus Fault Counts .14

3

Abstract

An important aspect of regression testing is to prioritize the test cases for execution. This paper
presents a new technique for prioritizing test cases in order to enhance the rate of fault detection. This
new technique enhances our previously introduced approach based on Bayesian Networks (BN) [15].
The advantage of the new technique is in using a feedback mechanism to augment the model after each
test execution. As a proof of concept, the proposed technique is applied to eight consecutive versions of a
large-size software system. The obtained results indicate a strong increase in the rate of fault detection.

4

1 Introduction

Prioritizing existing test cases from earlier versions of a software system is one of the main tech-
niques used to address the problem of regression testing. Such a technique uses the test-suite devel-
oped for an earlier version of a software system to conform the new added requirements in the current
version. Selecting all or a portion of the test-suite to execute, so called Regression Selection Tech-
niques (RST), can be very costly. By using RST, testers do not have the option to adjust their test-effort
to their budget. To provide the necessary flexibility, researchers have introduced prioritization tech-
niques [17, 21] by which testers can order the test cases based on certain criteria, and then run them in
the specified order. During the past ten years, researchers have introduced many techniques for prioriti-
zation [9, 11, 13, 18, 19, 20].

Despite all the above-mentioned research, empirical studies indicate that there is a significant gap
between optimal solutions to prioritization problem and proposed techniques [11]. One can imply from
the past research that using more sources of information results in better performance. To fill this gap,
we previously proposed a new probabilistic approach which utilizes Bayesian Networks (BN) [16] to
incorporate three sources of information into one unified model: i) source code modification information,
ii) univariate measures of fault-proneness, and iii) test coverage data [15]. We compared our technique
to other common techniques from literature and found that when there are reasonable number of faults
(more than one in that study) in the source code, our proposed technique achieves better values of APFD
(Average Percentage of Faults Detected) [17].

However, the proposed technique did not employ a feedback mechanism [11], as opposed to other
high-performance techniques. In this report, we present a novel test-case prioritization technique which
is based on our previous approach, but makes use of feedback. Here, feedback means that after adding
each test case to the order, other test-cases which cover the same elements as the added test-case get less
chance of selection.

The rest of this article is organized as follows. Section 2 introduces test case prioritization in more
detail. In Section 3, our proposed approach to solve the prioritization problem is presented. Section 4
discusses the obtained results after applying our techniques on our case study. Finally, we make our
conclusions and point out some future directions for this research work.

2 Test Case Prioritization

The classic definition of test case prioritization is based on finding a permutation of test cases which
can maximize an award function reflecting the goal of prioritization [17]. Kimet al. look at the same
problem from a probabilistic point of view. Adopting the probabilistic nature of their description, a
prioritization can be considered as:

1. Gathering “useful” evidencesEis from software system

2. Using a “prioritization technique” to assign a probability of success to each test caseTi in test-suite
T, given all the evidencesP (ti|E1, . . . , En)

3. Selecting and running test cases fromT based on the defined probability model

5

“Useful” evidence in step 1 refers to all information the “prioritization technique” of step 2 is in-
terested in (e.g. test coverage information). In step2, the main part of this process, we have a set of
random variablesti, each of which reflect the outcome of a test caseTi fromT. These variables have two
possible values: “Success” (meaning that a defect is detected) and “Failure”. The event of “Success”
in Ti is denoted asti. A “prioritization technique” is a systematic way to estimate allP (ti|E1, . . . , En)
values. For example, in coverage-based techniques, the number of elements covered by any test case is
used to estimate the probability of success for that test case:

P (ti|E) =
the number of elements covered by ti

total number of elements

In step3, the estimated probabilities are used to select test cases for execution. The simplest way to do
so would be ordering test cases according to the probabilities and then starting from the beginning of
the ordered list. The other way is to choose test cases randomly but based on the estimated probability
distribution. This view of prioritization is a simplified version of the one presented in [15]. Our approach
in prioritizing test cases is based on this view of the prioritization problem and hence makes use of
probabilistic tools.

2.1 Feedback

Many of the prioritization techniques make use of a “feedback” mechanism. These techniques, often
called “additional” techniques, have a greedy and iterative approach where after adding each test case to
the order they estimate the effects of this selection for further selections. Conceptually, feedback means
updating our beliefs about the system after adding each test case to the prioritized order.

For example, lets assume we have a system with six elements:e1 . . . e6. Consider the coverage
relation between test cases and elements is as follows:t1 → {e2, e5}, t2 → {e1, e3}, t3 → {e4, e5, e6}.
If our prioritization is merely based on coverage, the first chosen test case would bet3 because it covers
three elements while the others cover two. Then, we have two test cases left both of which cover
two elements and hence we should select randomly between them. However, we know thate5 is already
covered byt3; therefore we can sayt1 has merely oneadditionalcoverage whereast2 has two. Therefore
it is wiser to first chooset2 and then go tot1. This notion of usingadditionalcoverage illustrates what
feedback mechanism means. After addingt3, we can update our beliefs about the coverage power of
each test case such that already tested elements do not effect later selections.

3 Proposed Approach

Figure 1 illustrates a high-level schema of our approach for test case prioritization. The first step,
Extracting Evidences, gathers all useful information that needs to be included in the model. Our current
solution exploits three sources of information:software quality metrics, test coverage measures, and
change analysis data. In the next step,Building Bayesian Network, we build an inclusive probabilistic
model to relate the data. The details of how the model is built will be elaborated further.

The third step,Ordering Test Cases, is where feedback mechanism can be incorporated to the tech-
nique. This step consists of two tasks. The first task,Probabilistic Inference, employs the probabilistic
inference algorithms to associate to each test case its probability of success given the collected evi-
dences. On the non-additive version of our approach, here the process terminates and the final order

6

is determined using the extracted probabilities. On additional version, however, after the inference, the
test case with the highest probability of the success is selected and added to the final order. Then, we
go to Updating Bayesian Networkstep, where the BN model gets updated based on the test case just
added to the final order. This update should be such that other test cases which cover similar parts of
the code get less probability of selection. The details of how this goal is archived will be described in
section 3.2.2. Then, we go back to theProbabilistic Inferencestep and a new iteration begins. These
iterations continue until all test cases are added to the final order. This loop is what brings the feedback
mechanism to our approach.

Test-Suite

Building

Bayesian

Network

Evidences
BN

Model
Software

System

Data Flow

Process

Measuring

Fault-proneness

metric

Analyzing

source code

changes

Tracing

Test case

coverage

Extracting Evidences

Test Case

Order

Probabilistic

Inference

Ordering Test Cases

Updating

Bayesian

Network

U
p

d
a

te
d

B
N

 M
o

d
e

l

Figure 1. Steps of the Proposed Approach.

Note that the first step of our approach is already well established, and we will just make use of the
existing contributions to implement it. In the rest of this section, we elaborate on the second phase of
our proposed process (with a short introduction to Bayesian Networks) and then explain the third step
through which the feedback mechanism is introduced.

3.1 Building Bayesian Network

A Bayesian Network (BN) [16] is a directed acyclic graph consisting of three elements:nodesrep-
resenting random variables,arcs representing probabilistic dependency among those variables, and a
Conditional Probability Distribution Table (CPT)for each variable, given its parents. The nodes can be
either evidence or latent variables. An evidence variable is a variable where in we know its values (i.e.
it is measured). Arcs specify the causal relation between variables. Each node has a table called CPT
which includes the probabilities of outcomes of its variable given the values of its parents.

Bayesian Networks reflect the expert belief about the problem domain. They can be used to answer
probabilistic queries. For example, based on the evidence (observed) variables, the posterior proba-
bility distributions of some other variables can be computed (probabilistic inference). There are two
facets to building a BN,designing the structureandcomputing the parameters. Regarding the first is-
sue, the notions of conditional independence and causal relation can be of great help. Intuitively, two
events (variables) are conditionally independent if knowing the value of some other variables makes
the outcomes of those events independent. For computing the parameters, expert knowledge, statistical
learning, and probabilistic estimations can be used. One potential problem is that we may know how a
variable is dependent on each of its parents, but we do not have its distribution conditioned on all parents.
In these situations, the “noisy-OR” assumption can be helpful. The “noisy-OR” assumption gives the

7

Fault-proneness Test CoverageChange Data

Figure 2. The Structure of the BN.

interaction between the parents and the child a causal interpretation and assumes that all causes (parents)
are independent of each other in terms of their influence on the child [16].

Modeling is the main focus in solving the problems using BN. A description of how three basic
elements of a BN (nodes, arcs, and CPTs) are designed in our approach is as following:

3.1.1 Nodes

There are three categories of nodes in our models:
• ce : These variables represent change in the elements of the program. Each software element in

the considered level of granularity (i.e. a class) has a node of this type. These variables can take a value
of “Changed” (denoted to bycei) or “Unchanged”(denoted to by¬cei).

• fe : This category reflects our belief whether each element is faulty. Each element of the program
has one node of this type and each node can have the values of “Faulty” (fei), or “Non-Faulty”(¬fei).

• t : These variables represent the outcome of a test case which can be “Success”(ti) or “Failure”(¬ti).
Each test case has one node of this type.

3.1.2 Arcs

Each arc in a BN indicates a causal relation between variables of two connected nodes. There are two
set of arcs in our network:

• ce− fe : Eachfe node is the child of the corresponding (i.e. of the same code element)ce node.
The existence of these arcs reflect the causal relation that changes to elements of software can introduce
faults in the same element.

• fe− t : Eacht node can be child of somefe nodes. These arcs imply the causal relation between
presence of fault in a software element and success the of test cases that examine that element.

In Figure 2, the overall structure of the designed model is illustrated. Eachce node is connected to
onefe node and thefe nodes are connected to an arbitrary number oft nodes.

8

3.1.3 Conditional Probability Table

Each node type has its own Conditional Probability Table (CPT):
• P (cei) : ce nodes are not the child of any other node, so their distribution is not conditional. In

our model,cei variables mean the effective change of the element.

P (cei) = ChangeIntensity(ei)

In this formula,ChangeIntensity(ei) is a function which returns how much semantic change the el-
ementei has gone through. This function can be implemented with algorithms as simple as Unixdiff
command. In our study, we have used an algorithm presented in [7] which uses byte code to estimate
similarity between two versions of a program.

• P (fei|cei) : Considering that bothfe andce can take two values, the CPT will contain 4 values,
two of which are trivial, sinceP (fei|cei) = 1 − P (¬fei|cei). Therefore, we need to estimate two
values:P (fei|cei) andP (fei|¬cei). In general, the probability of presence of fault in software is called
fault-proneness. It is empirically shown that one can approximately predict the fault-proneness of code
elements using software metrics [5]. The aforementioned studies (and also an empirical study on the
relation between APFD and software metrics [10]) indicate that measures of complexity and coupling
are better indicators of fault-proneness. One specific study [12] has shown that coupling is a significantly
better measure than other metrics. Here, we use measures of coupling as an indicator of fault-proneness:

P (fei|cei) =
α CBO(ei)

max(CBO(ex))
+ δ1, (α + δ1 ≤ 1)

In this formula, CBO (Coupling between Objects) is an object-oriented metric from Chidamber
and Kemerer suite [6] which counts the number of classes to which a given class is coupled (i.e. uses its
methods and/or fields). The choice of this metric is based on the above-mentioned empirical studies [12].
The dominator is a normalization factor andα andδ1 bound the probability of fault introduction.

As for P (fei|¬cei), estimating this value is harder because it represents the less probable situation
that an element is faulty, even though it is not changed. In our modelling, we use the following formula:

P (fei|¬cei) =
β DIT (ei)

max(DIT (ex))
+ δ2 , (β + δ2 ¿ α + δ1)

Here,DIT (Depth of Inheritance Tree) is another metric from Chidamber and Kemerer suite [6]
which measures the maximum length of a path from each class to a root class in the inheritance struc-
ture. We use this metric in order to capture change impacts from super classes to child classes. The
important invariant is that the probability of fault presence in unchanged elements should be much less
than in changed elements. Letγ = α+δ1

β+δ2
. By adjustingγ (the change effect factor) we can control the

degree to which the presence of change in an element raises our belief in its fault-proneness.

• P (ti|fe1 . . . fen) : t nodes can have more than one parent because a test case may be able to find
faults from different elements of the software. The probability of fault detection for each test case can
be estimated using its coverage of faulty elements. Having test coverage values, we estimate:

P (ti|fej) = Cov(ti, ej)

9

whereCov(ti, ej) is a function returning the percentage of the code elementej covered by test case
Ti. This formula estimates the relation between a test case and one single element. However, to build
the CPT we need the probability of success for a test given all combinations of values of its parentfe
variables. In order to cope with this problem, we make the noisy-OR assumption, explained above. In
simple terms, the assumption is that the relation of a test case to an element is independent from its
relation to any other element. It can be argued that the ability of a test case to reveal a fault in one
element is not related to its fault revealing ability in other elements, hence the assumption. Having
the noisy-OR assumption, we can find allP (ti|fe1 . . . fen) values. The detailed description of how the
noisy-Or assumption works can be found in [16].

3.2 Ordering Test Cases

Once the BN models are built, we need to use them to order test cases. This is done iteratively, where
in each iteration:

1. Using probabilistic inference the probability distribution ofti variables are found.

2. a certain number (stp) of test cases with the highest probabilities are selected and added to the
prioritized order.

3. the model is updated based on the added test cases (feedback).

In Figure 1, we saw two steps which correspond to first and third tasks in this loop. In the following,
we first elaborate more on the two mentioned steps and then describe some interesting facts about the
second item and how thestp parameter can be used.

3.2.1 Probabilistic Inference

In this step we estimate theP (ti) values using the probabilistic inference described in section 3.1. A
BBN can be used to answer probabilistic queries. That is, given some new knowledge for some observed
variables (evidence variables), we can request the updated probability distribution for other variables.
This process is called probabilistic inference and many algorithms have been developed in BN literature
to perform it [16]. These algorithms fall into two categories: exact and sampling algorithms. While
exact algorithms are guaranteed to find the exact probabilities, the sampling algorithms estimate those
values through iterative sampling of data. Depending on the structure of the network and also how many
times the sampling is performed, the sampling algorithms can provide less execution time.

3.2.2 Updating Bayesian Network

This step is introduced to add feedback to the approach. After each round of inference the element that
has the most probability of success would be added to the order. Next, inUpdating Bayesian Network
step, the variable corresponding to that node would be marked as an evidence node. The value of this
evidence node would be “Failure”. This way, the probability of existence of fault in elements covered
by that test will be reduced and the other test cases that test the same elements will see a decrease in
the probability of success. Note that regardless of whether a test case succeeds or not, we mark it as a
“Failure”. There are two reasons for this: first, during prioritization we do not know yet whether the test

10

case is going to succeed. Second if we mark a node as “Success”, then the other test cases that cover the
same elements will have a greater chance of selection. This is not desirable because we already know
that a bug exists in those elements.

3.2.3 stp Parameter

Task 2 from from the aforementioned loop is a trivial task except for an interesting parameter that it
introduces:stp. This parameter controls how often the inference step is performed while adding the
test cases to the order. On one head of the spectrum if wet the parameter to the size of the test suit, the
technique gets reduced to non-additional and no feedback would be used. On the other end when we
set the parameter to 1, feedback is used each and every selection. This parameter gives the practitioners
the flexibility to adjust the running time of the technique itself. If they need the prioritization task to be
finished very fast they can set the parameter high, otherwise they can use lower values forstp.

By adjusting parameters such asstp, the described approach can be used to develop many alternative
BN-based prioritization techniques. Here we aim at evaluating the feedback mechanism and hence
consider two different options: first,BN which does not use feedback at all (i.e.stp = |testsuit|).
Second, BNA (A for additional) which utilizes feedback mechanism. The performance of these two
techniques are the subject of our experimental evaluation.

4 Experimental Evaluation

To evaluate the proposed approach, we built a semi-automated environment for test case prioritiza-
tion. As a proof of concept, eight consecutive versions of Apache Ant [1] with a catalogue of several
prioritization techniques were examined.

4.1 Experiment Setup

• Subject Program: As our subject program, we used Apache Ant from “Software-artifact Infras-
tructure Repository (SIR)” built by Doet al. [8]. Like all other Java programs in SIR, Apache Ant has
hand-seeded faults. We choose this program for our study because it has the largest number of faults and
also is of a reasonable size (Table 1).

Table 1. Statistics on Apache Ant Case Study.
Metric
Name

v0 v1 v2 v3 v4 v5 v6 v7

Faults
Count

0 1 1 2 4 4 1 6

Test-suit
Size

0 28 34 52 52 101 104 105

LOC (K) 23 37 57 57 95 97 97 124

• Prioritization Techniques: In this study, nine prioritization techniques listed in Table 2 are ex-
amined. The first three of them are control techniques: Optimal is the best possible order computed in

11

a greedy manner; Random orders randomly (the average of 50 runs); and Original is the original order
of test cases. The next four techniques are conventional techniques based on [9] and all use coverage
information. Two of them make use of change information (in addition). All of the techniques use class
level coverage information. These techniques can use method and basic block level information as well,
but previous experiments show this dimension does not affect the results significantly [15].

BN technique represents non-additive BN-based approach where the parameters of the technique are
set as:α = 0.8, δ1 = 0.1, β = 0.1 andγ = 8. Finally, BN A is the new proposed technique wherestp
parameter is set to1. In all cases exact algorithms are being used.

Table 2. Prioritization Techniques
Name Evidences Feedback
Optimal Fault Matrix Yes
Random Nothing No
Original Nothing No
C Cov Coverage No
C A Cov Coverage Yes
Chg Cov Coverage+Change No
Chg A Cov Coverage+Change Yes
BN Coverage+Change+Fault-proneness No
BN A Coverage+Change+Fault-proneness Yes

•Used/Developed Tools: To implement our approach, a semi automated framework is built. In some
steps, we used available tools. To collect software metrics, ckjm [3] is used; for gathering coverage
information Emma [4] is utilized and the change information is obtained from Sandmark [7]. Also,
we built and manipulated Bayesian Networks using Smile Library [2]. The rest of the approach was
developed by us.

• Measurement Criteria: To be able to compare our results to other empirical studies (esp. those
of [9]), APFD is used as the evaluation metric. This metric aims at calculating the fault detection rate by
measuring the weighted average of the percentage of faults detected over the test-suite execution period.
Its precise definition can be found in [17]. However, this metric has some drawbacks; for example, it
neither takes into account the cost of each individual test nor the severity of faults.

4.2 Discussion on Obtained Results

The results of the case study are depicted in Figure 3 as a Boxplot diagram. In this diagram, for
each of the techniques, we can see the distribution of gained APFD measures computed over the eight
consecutive versions of Apache Ant. Also, Table 3 shows the average and standard deviation of APFD
values over different versions for each technique.

From the Table 3 and Figure 3, it is evident that all techniques perform better than the “random” and
“original” (the control techniques). It is also observable that techniques that use change information do
not produce a significantly better result. On the other hand, those that employ the feedback mechanism
(or “additional techniques”) bring about much better results than other techniques. They result in around
20% improvement on average compared to corresponding techniques. More interestingly, BN is the best

12

Figure 3. Boxplot Diagram of the Results

technique among all non-additional techniques while BNA is the best among additionals. These two
proposed techniques outperform the other techniques of their family by almost 5% on average (Table 3)
and almost same value in median (Figure 3). In particular, the BNA technique archives better average
and median APFD values than any other technique. This technique has shortened the gap between the
optimal solution and the practical techniques.

Table 3. Comparison among Used Techniques
Technique Average Standard Deviation
Optimal 100.48 1.03
Original 52.63 24.44
Random 58.97 10.78
C Cov 60.19 30.76
C A Cov 79.80 10.56
Chg Cov 59.80 29.16
Chg A Cov 81.85 11.74
BN 66.68 29.40
BN A 85.70 10.05

We believe the reason why BN and BNA techniques are performing better than others is that they use
three sources of information. Furthermore, they model the causal relation between the used information
as conditional probabilities. However, the fact that these two models use many sources of information
leads to higher costs because the main cost of prioritization process is associated with the information
extraction part. Therefore, the decision on which technique to use calls for a cost-benefit analysis.
Models of cost-benefit analysis for prioritization techniques have been already proposed [9, 14].

Another interesting aspect of the obtained results is the effect of the number of faults in the system on
the performance of techniques. We depicted APFD values of non-control techniques versus the number
of faults in Figure 4. This figure suggests when the number of faults in the system grows, the APFD
value of “additional” techniques decreases; whereas the others see an increase in their value of APFD.

13

This suggests that the feedback employing techniques perform better when smaller numbers of faults
are available, but as the potential number of faults grows, non-additional techniques are more promising.
This finding should be further inspected empirically on the systems that contain a larger variety of fault
counts. If approved, this phenomenon can have a very important practical implication. If the software
system is expected to contain many bugs, then non-additional techniques are of more use. On the other
hand, so called “additional” techniques are more appropriate for the more steady stages of software
development where developers struggle to find the last residual faults.

Figure 4. APFD versus Fault Counts

In conclusion, the two techniques that are based on our proposed approach are the best in their family
of techniques. BN technique is performing better than all non-additional techniques. Also, BNA, the
proposed technique of this paper, resulted in the best prioritization according to APFD metric.

5 Conclusions and Future work

In this paper, we introduced a new technique for test case prioritization. This new technique adds a
feedback mechanism to our previously introduced approach utilizing Bayesian Networks to solve the test
case prioritization problem. We described our modelling approach in detail and introduced a framework
to implement the approach. We performed a case study on eight versions of a large-size Java system
and presented its results. The results suggest that the two techniques that are based on our proposed
approach can produce the highest values of APFD in their category of techniques (two categories of
additional and non-additional techniques). BNA, the new technique introduced in this paper, prioritizes
test cases better than any other technique as evaluated by APFD metric.

In future research, first the results should be further inspected using empirical experiments and taking
into account cost-benefit models. Also, the software faults in this case study are all hand-seeded and
their representativeness of real faults may be argued, therefore it is critical to evaluate this approach on
programs that contain a reasonable number of real faults. The other way to extend this work is to use
metrics for fault-proneness and change analysis and compare their performance with the presented ones.
Finally, the impact of different parameters in the approach such asstp should be further inspected.

The presented work indicates using more mathematical approaches to model regression testing can
result in significant improvements.

14

References

[1] Apache Ant, 2005. http://ant.apache.org.

[2] Genie/Smile, 2005-2006. http://genie.sis.pitt.edu/.

[3] CKJM, 2006. http://www.spinellis.gr/sw/ckjm/.

[4] Emma, 2006. http://emma.sourceforge.net/.

[5] L. Briand and J. Ẅust. Empirical studies of quality models in object-oriented systems.Advances
in Computers, 56:98–167, 2002.

[6] S. R. Chidamber and C. F. Kemerer. Towards a metrics suite for object oriented design. InPro-
ceedings of the Annual ACM SIGPLAN Conference on Object-oriented Programming Systems,
Languages, and Applications (OOPSLA), pages 197–211, 1991.

[7] M. S. Christian Collberg, Ginger Myles. An empirical study of java bytecode programs. Technical
Report TR04-11, Department of Computer Science, Univeristy of Arizona, 2004.

[8] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation with testing tech-
niques: An infrastructure and its potential impact.Empirical Software Engineering: An Interna-
tional Journal, 10(4):405–435, 2005.

[9] H. Do, G. Rothermel, and A. Kinneer. Prioritizing JUnit test cases: An empirical assessment and
cost-benefits analysis.Empirical Software Engineering: An International Journal, 11(1):33–70,
2006.

[10] S. Elbaum, D. Gable, and G. Rothermel. Understanding and measuring the sources of variation in
the prioritization of regression test suites. InProceedings of the IEEE International Symposium on
Software Metrics (METRICS), pages 169–179, 2001.

[11] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioritization: A family of empirical
studies.IEEE Transactions on Software Engineering, 28(2):159–182, 2002.

[12] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-oriented metrics on open
source software for fault prediction.IEEE Transactions on Software Engineering, 31(10):897–
910, 2005.

[13] J.-M. Kim and A. Porter. A history-based test prioritization technique for regression testing in
resource constrained environments. InProceedings of the ACM International Conference on Soft-
ware Engineering (ICSE), pages 119–129, 2002.

[14] A. G. Malishevsky, G. Rothermel, and S. Elbaum. Modeling the cost-benefits tradeoffs for regres-
sion testing techniques. InProceedings of the International Conference on Software Maintenance
(ICSM), pages 204–213, 2002.

15

[15] S. Mirarab and L. Tahvildari. A prioritization approach for software test cases based on bayesian
networks. InFundamental Approaches to Software Engineering (FASE), LNCS 4422, pages 276–
290. Springer-Verlag, 2007.

[16] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[17] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test cases for regression testing.
IEEE Transactions on Software Engineering, 27(10):929–948, 2001.

[18] D. Saff and M. D. Ernst. Reducing wasted development time via continuous testing. InProceedings
of the IEEE International Symposium on Software Reliability Engineering (ISSRE), pages 281–292,
2003.

[19] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in development environment. In
Proceedings of the ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), pages 97–106, 2002.

[20] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos. Timeaware test suite prioritization.
In Proceedings of the IEEE International Symposium on Software Testing and Analysis (ISSTA),
pages 1–12, 2006.

[21] W. E. Wong, J. R. Horgan, S. London, and H. A. Bellcore. A study of effective regression testing in
practice. InProceedings of the IEEE International Symposium on Software Reliability Engineering
(ISSRE), pages 264–274, 1997.

16

