
This paper is included in the Proceedings of the
2015 USENIX Annual Technical Conference (USENIC ATC ’15).

July 8–10, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-225

Open access to the Proceedings of the
2015 USENIX Annual Technical Conference
(USENIX ATC ’15) is sponsored by USENIX.

Bolt: Faster Reconfiguration in Operating Systems
Sankaralingam Panneerselvam and Michael M. Swift, University of Wisconsin—Madison

https://www.usenix.org/conference/atc15/technical-session/presentation/panneerselvam

USENIX Association 2015 USENIX Annual Technical Conference 511

Bolt: Faster Reconfiguration in Operating Systems

Sankaralingam Panneerselvam1, Michael M. Swift1, and Nam Sung Kim2

1Department of Computer Sciences
2Department of Electrical and Computer Engineering

University of Wisconsin-Madison
1{sankarp,swift}@cs.wisc.edu

2nskim3@wisc.edu

Abstract
Dynamic resource scaling enables provisioning extra re-
sources during peak loads and saving energy by reclaim-
ing those resources during off-peak times. Scaling the
number of CPU cores is particularly valuable as it allows
power savings during low-usage periods. Current sys-
tems perform scaling with a slow hotplug mechanism,
which was primarily designed to remove or replace faulty
cores. The high cost of scaling is reflected in power
management policies that perform scaling at coarser time
scales to amortize the high reconfiguration latency.

We describe Bolt, a new mechanism built on existing
hotplug infrastructure to reduce scaling latency. Bolt also
supports a new bulk interface to add or remove multiple
cores at once. We implemented Bolt for x86 and ARM
architectures. Our evaluation shows that Bolt can achieve
over 20x speedup for entering offline state. While turn-
ing on CPUs, Bolt achieve speedups of 1.3x and 21x for
x86 and ARM. The speedup is limited by high latency
hardware intialization. On an ideal processor with zero-
latency initialization, the speedup on x86 rises to 10x.

1 Introduction
Most operating system policies focus on improving per-
formance given a fixed set of resources. For example,
schedulers assume a fixed set of processors to which as-
sign threads, and memory managers assume a fixed pool
of memory. However, this assumption is increasingly
violated in the current computing landscape, where re-
sources can be added or removed dynamically during
runtime for reasons of energy reduction, cost savings,
virtual-machine scaling or hardware heterogeneity [11].

We refer to changing the set of resources as resource
scaling and our work focuses on scaling the set of proces-
sors available to the operating system. This scaling may
be helpful in virtualized settings such as cloud comput-
ing [7] and disaggregated servers [14, 2] where it is pos-
sible to add or remove CPUs at anytime within a system.
Scaling can improve performance during peak loads and
minimize energy during off-peak loads [8]. Dynamically
reconfigurable processors (e.g., [16]), which allow pro-
cessing resources to be reconfigured at runtime to meet

application demands, can also benefit from scaling the
set of available CPUs [21].

Current operating systems assume that the processor
cores available to them are essentially static and almost
never change over runtime of the system. These systems
support scaling through a hotplug mechanism that was
primarily designed to remove faulty cores from the sys-
tem [10]. This mechanism is slow, bulky and halts the
entire machine for a few milliseconds while the OS re-
configures. The current Linux hotplug mechanism takes
tens of milliseconds to reconfigure the OS [21]. In con-
trast, processor vendors are aiming for transitions to and
from sleep states in the order of microseconds [25, 23],
making OS the bottleneck in scaling. In spite of these
drawbacks, hotplug is being widely used by mobile ven-
dors as a means to scale the number of processor cores
to save energy [22] due to the lack of better alternatives.

We propose a new mechanism, Bolt, that builds on the
current Linux hotplug infrastructure with the assumption
that scaling events are frequent and a goal of low latency
scaling mechanism. Bolt classifies every operation car-
ried out during hotplug as critical or non-critical oper-
ations. The critical operations are performed immedi-
ately for proper functioning of the system whereas non-
critical operations are done lazily. Bolt also supports a
new bulk interface to turn on/off multiple cores simulta-
neously, which is not supported by the current hotplug
mechanism.

We implemented Bolt for both x86 and ARM proces-
sors, and find that Bolt can achieve over 20x better la-
tency over native hotplug offline mechanism. For getting
a CPU to online state, speedup is limited to 1.3x for x86
due to hardware overhead whereas the software overhead
is reduced by 10x. The concurrency allowed through the
bulk interface achieves speedup of 4x-67x when adding
or removing 3 cores.

2 Motivation

2.1 Processor Scaling

Many current and future systems will support a dynamic
changing set of cores for three major reasons.

512 2015 USENIX Annual Technical Conference USENIX Association

Energy Proportionality. This property dictates that en-
ergy consumption should be proportional to the amount
of work done and is getting a major focus in all forms
on computing from cloud to mobile devices. Low power
(P-states) and sleep state (C-states) support from proces-
sors help achieve energy proportionality by reducing en-
ergy consumption when the processor is not fully uti-
lized. However, in many processors further power sav-
ings could be achieved by turning off cores to a deeper
sleep state, turning off an entire socket or allowing to
enter package level sleep state. These deeper states re-
quire OS intervention, as the core is logically turned off
and not available for scheduling threads or processing
interrupts. For example, most mobile systems turn off
cores during low system utilization to conserve battery
capacity by reducing static power consumption. Some
processors (e.g. Exynos [18]) provide a package-level
deep sleep state that is enabled when all but one core
is switched off. Operating systems may use core park-
ing [12] to consolidate tasks in a single socket to switch
off other sockets completely. Quick scaling support by
the OS can allow rapid transitions into and out of deep
sleep states.
Heterogeneity. Many processors support heterogeneity
either statically [1] via different core designs or dynam-
ically [16] through reconfiguration. On dark silicon sys-
tems [5], not all processors could be used at full perfor-
mance together, and hence the OS must decide which
processors to enable based on the application character-
istics. Processors like Exynos [3] and Tegra [20] em-
ploy ARM’s big.LITTLE architecture, with a mix of high
performance and high efficiency cores. In systems with
these processors, the OS must choose the type of proces-
sor core based on the performance need. The OS must
change the processor set when switching between differ-
ent CPU types.
VM Scaling. Virtual machines are widely used in cloud
environment, and many hypervisors provide support for
scaling the number of virtual CPUs in a virtual machine
(VM) [19]. IBM supports VM scaling through DLPAR
(dynamic logical partitioning [17]) and VMware sup-
ports them through hot add/remove interfaces. Some ap-
plication like databases benefit from scaling up of vir-
tual machines by provisioning more resources rather than
scaling out where more virtual machines are spawned.
These techniques can be used at finer scale if the guest
OS provides quick processor scaling.

2.2 OS Support

There are several mechanisms an OS can use to scale the
number of CPUs in use.
Virtualization. An extra layer of indirection through vir-
tualization decouples the physical execution layer from
rest of the operating system and exposes only virtual

CPUs to the OS. To scale down, multiple virtual CPUs
(VCPU) can be multiplexed on a single physical CPU
(PCPU). In terms of latency, virtualization could provide
an ideal support where it could switch VCPUs from a
PCPU that is being switched off to a different physical
CPU instantly by saving and restoring context of those
virtual CPUs.

However, the drawbacks of using virtualization-based
techniques are two-fold. First, virtualization adds over-
head in the common case, particularly for memory ac-
cess [6]. Second, multiplexing VCPUs on a physical
CPU can hurt performance due to context switches dur-
ing critical sections [26].

Power Management. OS support for idle sleep states
(C-states) can be used to move unused cores to a sleep
state and wake up when needed. The latency of entering
and exiting such sleep state is very low when compared
to the hotplug mechanism. However, OS power man-
agement support requires that cores can still respond to
interrupts, which is not the case for all deep sleep states
or for non-power uses of scaling. Furthermore, the OS
may accidentally wake up a sleeping core unnecessarily
to involve them in regular activities like scheduling or
TLB shootdowns [24].

Processor Proxies. Chameleon [21] proposed a new al-
ternative to hotplug called processor proxies that is sev-
eral times faster than hotplug. A proxy represents an of-
fline CPU and runs on an active CPU making the sys-
tem believe that the offline CPU is still active. However,
proxies can only be used for a short period because they
handle interrupts and Read-Copy-Update (RCU) opera-
tions only, and do not reschedule threads from a CPU in
offline state.

Scalability-Aware Kernel. Ideally, an OS kernel could
natively support changing the set of CPUs at low la-
tency and with low overhead. Rather than assuming that
scaling events are rare, a scalability-aware kernel would
spend little time freeing resources during a scale-down
event when they are likely to be re-allocated during an
upcoming scale-up event.

2.3 Hotplug

Hotplug is a widely used mechanism available in Linux
to support processor set scaling. It offers interfaces for
any kernel subsystem to subscribe to notifications for
processor set changes. However, handling of notifica-
tions by every subsystem follow the assumption that hot-
plug events are rare. The shortcomings of the mechanism
are discussed below.

Repeat Execution. A direct implication of the above as-
sumption is that most kernel subsystems free or reinitial-
ize the software structures during hotplug event. Out of
the 50 subscriptions to the hotplug from various subsys-

USENIX Association 2015 USENIX Annual Technical Conference 513

tems, 8 of them remove or initialize sysfs structures
and 14 of them to free and create software structures
needed for the subsystem. However, all these operations
become redundant if the CPU set changes frequently.
Synchronous. All operations performed in response to
the notifications are synchronous. For example, subsys-
tems like slab allocator frees the slab memory from its
per-CPU queue when the CPU is moved to offline state,
per-CPU statistics values are aggregated into a global
structure, and the hotplug operation is blocked until sys-
tem threads move into sleep state. However, these oper-
ations need not be synchronous for the correct execution
of the system.
Hotplug Prevention. Hotplug events can be prevented
by disabling preemption or interrupts on any CPU, sim-
ilar to grabbing a lock. So, the hotplug mechanism
ensures that preemption and interrupts are enabled on
all CPUs by scheduling a special kernel thread on ev-
ery CPU in the system. This special form of locking
(through preemption) avoids the overhead of acquiring a
lock and releasing during normal execution.

As a result of these properties, Linux’s current hotplug
mechanism is too slow for rapid scaling. As we show in
Section 4, it takes orders of milliseconds to reconfigure,
while current hardware can transition from sleep states
in the order of microseconds [25].

3 Bolt
Bolt is a reconfiguration mechanism that can be used as
a replacement for hotplug. The functionality of Bolt is
similar to that of hotplug in getting the system from one
stable state to another after processor scaling. However,
Bolt aims to offer stability at very low latency and is built
by refactoring the existing hotplug infrastructure.

Bolt achieves low latency by separating hotplug notifi-
cations into critical and non-critical operations. The for-
mer needs to be handled synchronously to ensure correct-
ness of the system whereas the latter could be removed
from the critical path and performed after the CPU goes
online/offline.

3.1 Critical Operations

Every action taken by hotplug, including handling of no-
tifications by kernel subsystems is classified based on its
criticality. Bolt defines critical operations as those that
need to be executed immediately for correct running of
the system.
State Migration. In the event of CPU removal, impor-
tant software state associated with that CPU has to be
migrated to another active CPU. Such software states in-
clude softirq or bottom halves and threads in the CPU’s
runqueue. The softirqs are queued in a per-CPU structure
that are moved to a different active CPU for them to be
processed. Similarly, threads from the runqueue are mi-

grated synchronously to avoid performance degradation
for running programs.

Hardware Management Functions. Certain hardware
dependent features need to be disabled or enabled during
scaling (hotplug) events. For example, machine check
has to be disabled before the CPU is put to offline state
since any fault in the offline CPU should not affect the
remaining system. Similarly when a CPU is started, it’s
microcode need to be updated and MTRR registers need
to be initialized for proper functioning of the system.

Bitmask Updates. Linux maintains a few impor-
tant global bitmasks of CPU state. These include
cpu online mask and cpu active mask, which are
accessed frequently across the system. These masks
should be updated immediately during scaling events for
correct functioning of the system.

We consider subscriptions from a few subsystems like
workqueue and perf as critical since we are still in the
process of adapting those subsystems to Bolt.

3.2 Non-Critical Operations

Bolt defines non-critical operations as those that can ei-
ther be performed lazily or not performed at all. Bolt
makes a best effort to push many of the non-critical op-
erations out of the critical path and thus reduce latency.

Interrupt Migration. Handling of interrupts is a time
critical event and it might be surprising to see interrupt
handling as a non-critical operation. Interrupts affini-
tized to a CPU are moved to a different CPU when the
CPU is removed. However, from our observation on a
Nexus mobile device, all I/O interrupts are always deliv-
ered to the base CPU (CPU 0). This was not the case
on a desktop machine where the network interrupts were
distributed across multiple CPUs.

Bolt currently affinitizes all interrupts to the base CPU
to avoid interrupt migration during processor scaling
event. However, this will result in performance degrada-
tion for servers receiving high number of interrupts. On
such systems, the high-traffic interrupts (e.g., network or
SSD) can by distributed across multiple CPUs through
the irq migration daemon, while lightly loaded in-
terrupts can be handled by the base CPU to avoid migra-
tion during scaling. But Bolt does not support this opti-
mization and implementing it is part of the future work.

Memory. Many kernel subsystems, upon receiving noti-
fications of scaling events, free or allocate memory struc-
tures such as per-CPU structures or buffer queues. Bolt
elides these operations and instead saves memory to be
re-used if and when the CPU comes back online. Most
kernel subsystems support a master thread that is invoked
during memory pressure to release all per-CPU struc-
tures. Bolt uses this master thread to avoid any memory
leak if a CPU stays offline for an extended time period.

514 2015 USENIX Annual Technical Conference USENIX Association

Sysfs. Volatile filesystems like sysfs and procfs ex-
pose kernel settings and metrics through virtual file sys-
tem interface in Linux. Processor-core based file or di-
rectory nodes are removed or created during processor
set scaling. However, Bolt does not perform these oper-
ations but instead it prevents access to CPU dependent
files by verifying if the CPU is online during file open.
Thread Operations. Earlier versions of Linux destroyed
and spawned system threads during hotplug. More re-
cent versions of Linux use thread parking [9], which sus-
pends threads indefinitely. System threads like watch-
dog threads are moved to a parked state during processor
scaling. Parking the thread involves waking the thread,
even if it is in sleep state, invoking a registered function
pointer to perform cleanup, and then moving the thread
to the sleep state synchronously. Bolt instead employs
an asynchronous approach and it does not wait for the
thread to enter sleep state after sending the parking mes-
sage. The benefits are that it improves latency and park-
ing could be avoided if the CPU returns back online be-
fore the thread wakes up and sees the parking message.

3.3 Bulk Interface

Bolt adds a new bulk interface support to allow scaling
multiple CPUs simultaneously; existing APIs only sup-
port adding or removing a single CPU. The API takes
a cpumask argument, indicating which CPUs to add or
remove rather than the index of an individual CPU. To
accomplish a bulk offline with native hotplug, each CPU
is moved to offline state sequentially and with no over-
lap; the online case is similar. Bolt leverages the fact
that certain operations can be done once even if multi-
ple CPUs change state. Bolt makes two optimizations.
First, updates to global structures are made as a single
operation. For example, Bolt reorganizes the schedul-
ing domain related structures once for all CPUs. Second,
Bolt performs some operations in parallel. For example,
during CPU online it clears caches and register sets con-
currently on all CPUs.

4 Evaluation
Our evaluation focuses on the performance of Bolt, but
we speculate on the potential energy benefits as well.
Experimental Platform. We performed our experi-
ments on two different processor architectures. First,
an x86 based machine with an Intel i5-2500K (Sandy
bridge) processor running Linux kernel 3.17.1. Second,
an Odroid development board [13] with Exynos 5410
processor running Android 4.4 with Linux kernel 3.4.
The Exynos is a big.LITTLE architecture provisioned
with A15 and A7 4-core clusters. We disable Turbo
Boost in the x86 machine to avoid any performance vari-
ability. All experiments were performed in an idle sys-
tem without any active workloads. For all the experi-

ments, we ran the processors at highest frequency: x86
at 3.3 GHz and A15 at 1.6 GHz.

End-End Latency. The CPU state (on-
line/offline) is accessed through the sysfs file
/sys/devices/system/cpu/cpu*/online—
writing ’0’ initiates the offline process and ’1’ brings the
cpu to an online state. We measure latency as the time
taken from the write to when it returns, at which point
the CPU becomes invisible to the OS or it is actively
available to the OS.

Figure 1 show the end-to-end latency for an offline
operation. The legend represents the individual com-
ponents of the hotplug operation. (a) Down prepare,
dead and post dead are different notifications sent to
the kernel subsystems. The down prepare is costly due
to a synchronous thread creation by workqueue subsys-
tem in the critical path. Bolt avoids this behavior by
reusing threads. (b) Park refers to the thread parking
operation that is classified by Bolt as non-critical and
handled appropriately. (c) Reduction in the latency of
take cpu down is achieved by avoiding interrupt mi-
gration and thus, saving 0.7ms. The remaining over-
head is caused by stop machine interface, which is not
optimized by Bolt. (d) RCU denotes the protection of
cpu active mask bitmask through RCU synchroniza-
tion and this is costly since read-copy-update (RCU) has
to wait till all CPUs undergo a context switch. Bolt re-
places RCU-based synchronization with regular locks.
The impact of this change is limited to very few inter-
faces as can be seen in this commit log [27].

Figure 2 show the latency breakdown for an online
operation. Interestingly, the major source of latency in
Exynos is software, and in x86, hardware. In the Exynos
system, thread creation causes overhead similar to the
offline case and Bolt avoids this by parking threads and
re-using them during the online operation. However, the
x86 incurs substantial delay when the init IPI (to start the
core) is sent. Intel documentation [15] specifies that OS
should wait for a period of 10ms after the init message is
sent to perform hardware initialization. The speedup of
Bolt over the native system is thus limited to 1.3x.

Software Entry/Exit Latency. The entry latency refers
to the time taken for the CPU core to be switched off
during offline operation. This gives an idea on how
soon the energy savings begin. The native system takes
around 12.5ms (x86) and 6.7ms (Exynos) whereas Bolt
takes 0.45ms (x86) with a speedup of 27.8x and 0.38ms
Exynos) with a speedup over native being 17.6x. The
exit latency is the time taken for the core to schedule the
first thread after it is woken up. This gives an idea of
the interactivity of the system. The native system takes
around 13.8ms (x86) and 12ms (Exynos) whereas Bolt
takes 10.27ms (x86) and 0.22ms (Exynos).

USENIX Association 2015 USENIX Annual Technical Conference 515

13.3	

0.53	

7.5	

0.57	
0	

2	

4	

6	

8	

10	

12	

14	

x86	 x86	 -‐	 Bolt	 Exynos	 Exynos	 -‐	 Bolt	

Ti
m
e	
in
	 M

ill
is
ec
on

ds
	

DOWN	 PREPARE	 TAKE	 CPU	 DOWN	 RCU	

PARK	 DEAD	 POST	 DEAD	

Figure 1: Native hotplug vs. Bolt during offline.

Energy Savings. Bolt does not offer a new power man-
agement policy but it relies on the processor sleep states
for any energy savings. In the Exynos 5410, the of-
fline state and deep sleep state—C2— consume almost
same power: 97mW when all cores are in sleep state.
However, the processor cluster is allowed to enter C3
(package-level deep sleep state), it consumes 55mW,
which is a 43% reduction in power compared to C2. The
constraint is that all on-chip cores but one should be in
hotplug offline state to enable C3 state.

The default power management policy used for
Exynos employs a conservative approach that ensures a
minimum of two CPU cores is online for better interac-
tivity. We believe that Bolt could help in implementing
a more aggressive policy for more energy savings while
preserving interactivity by retaining only one online core
and entering C3 in the remainder. On the other hand,
hotplug offline on an Intel i5-2500K puts the CPU core to
deep sleep state (C6). In this case, hotplug does not result
in additional power savings than Linux’s cpuidle subsys-
tem [4] but hotplug can still be beneficial by avoiding
interrupt handling and scheduling threads on idle cores
and extending their idle period.
Bulk Interface. The current bulk interface implemen-
tation is available only for x86 architecture and not for
Exynos. We specify an input cpumask marked with three
CPUs. On the native system, we simulate bulk opera-
tions by performing scaling operations sequentially. The
native system took 39.2ms and 43.1ms for offline and
online operations. Bolt using the same simulation tech-
nique took 1.6ms and 31.2ms, while the bulk interface in
Bolt took 0.58ms and 10.84ms. The new interface exe-
cutes the take cpu down concurrently and avoids mul-
tiple time re-organization of schedule domain structures
during offline. Overlapping hardware initialization and
processing notification messages while waiting for the
hardware initialization speed the online operation.
Speculated Hardware. To appreciate the benefits pro-
vided by Bolt during an online operation in x86, we em-

14	

10.38	

12.6	

0.58	
0	

2	

4	

6	

8	

10	

12	

14	

16	

x86	 x86	 -‐	 Bolt	 Exynos	 Exynos	 -‐	 Bolt	

Ti
m
e	
in
	 M

ill
is
ec
on

ds
	

UP	 PREPARE	 CPU_UP	 ONLINE	

Figure 2: Native hotplug vs. Bolt during online.
ulated a hardware that can perform instant initialization
without incurring the 10ms hardware delay. We achieve
this by prematurely sending init IPI and removing hard-
ware initialization from critical path. Though this moves
the core out of sleep state to running state at increased
power, this is acceptable since we are trying to model
only the performance without the hardware overhead.
Bolt finishes online operation in 0.38ms compared to
4ms for native providing a speedup of 10.5x, and the on-
line bulk interface takes 0.71ms compared to 13.1ms pro-
viding a speedup of 18x. The native latency values – 4ms
and 13.1ms – are achieved by removing the hardware ini-
tialization delay of 10ms from original latency values.
These numbers show that hotplug latency will be domi-
nated by software overhead in future processors and Bolt
makes significant reduction in the software overhead.

5 Conclusion
Processor set scaling is important for energy efficiency,
throughput improvement, cost savings and VM scal-
ing. However, the current hotplug mechanism is slow
and cannot support frequent changes. We propose Bolt,
which classifies hotplug operations as critical and non-
critical. This separation helps Bolt achieve low latency
by removing non-critical operations from the critical
path. Bolt also supports a bulk interface that allows scal-
ing at granularity of multiple cores. The low latency
mechanism and the new interface support through Bolt
enable future systems to scale at much finer time-scales.

Acknowledgements
This work is supported in part by National Science Foun-
dation (NSF) grant CNS-1302260. We would like to
thank our shepherd, Dan Tsafrir, and the anonymous re-
viewers for their invaluable feedback. We would also like
to thank Venkat, Sanketh and Thanu for their comments
on the earlier draft of the paper. Swift has a significant
financial interest in Microsoft, and Nam Sung Kim has
financial interests in Samsung Electronics and AMD.

516 2015 USENIX Annual Technical Conference USENIX Association

References
[1] ARM big.LITTLE Processing. http://www.arm.

com/products/processors/technologies/
biglittleprocessing.php.

[2] AMD - SeaMicro, Inc. Seamicro sm15000 fabric compute sys-
tems. http://www.seamicro.com/sites/default/
files/SM_DS06_v2.1.pdf, 2012.

[3] H. Chung, M. Kang, and H.-D. Cho. Heterogeneous multi-
processing solution of exynos 5 octa with arm R© big.little
technology. http://www.arm.com/files/pdf/
Heterogeneous_Multi_Processing_Solution_
of_Exynos_5_Octa_with_ARM_bigLITTLE_
Technology.pdf.

[4] J. Corbet. The cpuidle subsystem. http://www.
linuxplumbersconf.org/2012/wp-content/
uploads/2012/08/cpuquiet.pd://lwn.net/
Articles/384146/, April 2010.

[5] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger. Dark Silicon and the End of Multicore Scaling. In
Proc. ISCA, June 2011.

[6] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated
performance comparison of virtual machines and linux contain-
ers. technology, 28:32, 2014.

[7] Gartner. Case studies in cloud computing.
https://www.gartner.com/doc/1761616/case-studies-cloud-
computing.

[8] H. R. Ghasemi and N. S. Kim. Rcs: Runtime resource and core
scaling for power-constrained multi-core processors. In Proceed-
ings of the 23rd International Conference on Parallel Architec-
tures and Compilation, PACT ’14, pages 251–262, 2014.

[9] T. Gleixner. Kthread: Implement park/unpark facility. https:
//lwn.net/Articles/500338/, 2012.

[10] T. Gleixner, P. E. McKenney, and V. Guittot. Cleaning up linux’s
cpu hotplug for real time and energy management. SIGBED Rev.,
pages 49–52, Nov. 2012.

[11] A. Gupta, E. Ababneh, R. Han, and E. Keller. Towards elastic op-
erating systems. In Proceedings of the 14th USENIX Conference
on Hot Topics in Operating Systems, HotOS’13, 2013.

[12] C. Hameed. Windows 7 and windows server 2008 r2:
Core parking, intelligent timer tick and timer coalescing.
http://blogs.technet.com/b/askperf/archive/2009/10/03/windows-
7-windows-server-2008-r2-core-parking-intelligent-timer-tick-
timer-coalescing.aspx, 2009.

[13] HardKernel co., Ltd. Odroid-xu+e. http://www.
hardkernel.com/main/products/prdt_info.
php?g_code=G137463363079, 2013.

[14] Hewlett-Packard Development Company. Hp moonshot system.
http://www8.hp.com/us/en/products/servers/
moonshot/index.html.

[15] Intel Corporation. Intel multiprocessor specification,
v1.4. http://www.intel.com/design/pentium/
datashts/24201606.pdf, 1997.

[16] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core fu-
sion: Accomodating software diversity in chip multiprocessors.
In Proc. of the 34th ISCA, June 2007.

[17] J. Jann. Dynamic logical partitioning for power systems. In
D. Padua, editor, Encyclopedia of Parallel Computing, pages
587–592. Springer US, 2011.

[18] B. Klug. Samsung announces exynos 5 octa soc.
http://www.anandtech.com/show/6602/samsung-
announces-exynos-5-octa-soc-4-cortex-a7s-
4-cortex-a15s, 2013.

[19] M. Nishikiori. Server virtualization with vmware vsphere 4. Fu-
jitsu Scientific and Technical Journal, pages 356–361, 2011.

[20] NVIDIA. Nvidia tegra x1 nvidia’s new mobile superchip.
http://international.download.nvidia.com/
pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf, 2015.

[21] S. Panneerselvam and M. M. Swift. Chameleon: operating sys-
tem support for dynamic processors. In Proceedings of the sev-
enteenth international conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’12,
pages 99–110, 2012.

[22] Schrijver, Peter De and Miettinen, Antti P. Cpuquiet:
A framework to manage cpus. http://www.
linuxplumbersconf.org/2012/wp-content/
uploads/2012/08/cpuquiet.pdf.

[23] A. L. Shimpi. Intel’s haswell architecture analyzed: Building a
new pc and a new intel. http://www.anandtech.com/
show/6355/intels-haswell-architecture/3,
2012.

[24] V. Srinivasan, G. R. Shenoy, S. Vaddagiri, D. Sarma, and V. Pal-
lipadi. Energy-aware task and interrupt management in linux. In
Ottawa Linux Symposium, 2008.

[25] A. V. D. Ven. Absolute power. https://software.intel.
com/sites/default/files/absolute_power.pdf.

[26] P. M. Wells, K. Chakraborty, and G. S. Sohi. Dynamic hetero-
geneity and the need for multicore virtualization. ACM SIGOPS
Operating Systems Review, 43(2), Apr. 2009.

[27] P. Zijlstra. Sched: Remove get online cpus usage.
https://github.com/torvalds/linux/commit/
6acce3ef84520537f8a09a12c9ddbe814a584dd2,
2013.

