
Choreographing agent encounters in the
Semantic Web using rules
Kalliopi Kravari*, Nick Bassiliades and Christos Papavasileiou

Dep. of Informatics, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
{kkravari, nbassili, cpapavas} AT csd.auth.gr

Abstract. In order for automated agent-based e-Commerce transactions to blossom, well-defined, analyzable and easily cus-
tomizable interaction protocols or choreographies of involved parties need to be developed. Although, several domain-
depended protocols have already been developed, efficient methodologies and technologies for facilitating the definition, de-
ployment, reuse and maintenance of interaction protocols should be developed. This paper proposes a rule-based, reusable, an-
alyzable and easily comprehensible by the user choreography definition methodology, called K-SWAN. Τhe proposed chore-
ography scheme separates the definition of the agent shared interaction protocol from the private agent interaction strategy and
enables agents to choose the appropriate protocol for the transaction, from a library of re-usable interaction protocols, and au-
tomatically combine it with their personal strategy, from a private library, by using SW technologies for both. Complying with
K-SWAN methodology will let agents participate seamlessly in different interaction processes and/or modify their behavior
with a minimal programming effort. Finally, this paper presents the integration of the K-SWAN methodology into EMERALD,
a multi-agent knowledge-based framework based on SW standards, which maximizes reusability and interoperability of behav-
ior between agents.

Keywords: Semantic Web, Intelligent Agents, Reactive Rules, Agent Interaction Choreographies, Agent Policies

*Corresponding author. Kalliopi Kravari, Department of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
E-mail: kkravari AT csd.auth.gr, Tel: 00302310998231, Fax: 00302310998433.

1. Introduction

E-Commerce has become a specialized discipline
and it is clear that it will continue to grow [13]. How-
ever, the parties involved face difficulties in interact-
ing correctly and efficiently, since they have to col-
lect information, interact and safely execute transac-
tions. To this end, well-defined interaction protocols
or choreographies of involved parties are needed.
However, the modeling, deployment and interopera-
bility of protocols are really challenging tasks [15].
Several domain-depended protocols have already
been developed, but efficient methodologies and
technologies for facilitating the definition, deploy-
ment, reuse and maintenance of interaction protocols
(or otherwise “choreographing the involved parties”)
should further be developed. Despite state of the art
achievements, there is still a lack of a comprehensive
integrated end-to-end solution. An open issue to this
end is the use of Intelligent Agents (IAs), since their

use could lead to an alternative intelligent interaction
environment for the future [18].

IAs can benefit from Semantic Web (SW) technol-
ogies, such as RDF and RuleML for data and policy
exchanges, facilitating interoperable interactions [14].
SW offers capabilities that can make services more
interoperable, adaptable and cheaper to maintain. So
far, sophisticated tasks, such as negotiation and bro-
kering services, are already carried out efficiently by
IAs since they are able to comprehend relevant in-
formation and satisfy task requests unsupervised.

In this context, this study proposes first of all the
use of IAs, which use is constantly increasing as they
are gradually enriched with SW technologies. In such
an agent-based world, each agent encounter is charac-
terized by the interaction protocol (or choreography
as it is usually called in the web services world [15]),
which is shared among participating agents, and its
private “negotiating” (or otherwise) strategy. In other
words, each agent is able to manage a private policy,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357543048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a set of rules representing requirements, obligations
and restrictions, personal data that meet its user’s in-
terests and a set of interaction rules that outline
among others restrictions on the parties involved.

In order agents to reach their maximum efficiency,
a well–formed modeling or choreography of the in-
teractions between participants is needed. So far, hav-
ing both protocol and strategy jointly hard-coded in
each agent was a common practice; however, it was
neither convenient nor flexible. Hence, the choreog-
raphy of interactions should be separated from agents'
strategies. This is a better practice since agent policy
is private and any disclosure of it could lead to incal-
culable loss, thus it should stay hidden. On the other
hand, each interaction protocol should be a common
resource since agents must comply with the same
protocol in order to interact. To this end, this study
proposes a rule-based, reusable, analyzable and easily
comprehensible by the user choreography definition
methodology, called K-SWAN that promotes interac-
tion automatization and agent usage.

The proposed choreography scheme separates the
definition of the agent shared interaction protocol
from the private agent interaction strategy and ena-
bles agents to choose the appropriate protocol for the
transaction (from a library of re-usable interaction
protocols) and automatically combine it with their
personal strategy (from a private library) by using
SW technologies for both. Hence, this article also
proposes the use of SW languages for representing
both protocol and strategy in addition to separating
them. Complying with K-SWAN methodology will
let agents participate seamlessly in different interac-
tion processes and/or modify their behavior with a
minimal programming effort.

Although the proposed methodology is a fully au-
tomated procedure for choreographing SW agent
transactions, an appropriate framework providing
compliance with the proposed SW technologies
should be used. Hence, this article presents the inte-
gration of the K-SWAN methodology into EMER-
ALD, a multi-agent knowledge-based framework
[10] based on SW standards, which maximizes reusa-
bility and interoperability of behavior between agents.

The rest of the paper is structured as follows: Sec-
tion 2 gives an overview of the approach, while Sec-
tion 3 overviews EMERALD and presents the inte-
gration of the K-SWAN methodology in the system.
Section 4 illustrates two use case scenarios based on
the FIPA CNet and Brokering Protocol, demonstrat-
ing the potential of the approach. The paper con-
cludes with references to related work, conclusions
and directions for future improvements.

2. The K-SWAN methodology

An agent interaction involves private strategies
that describe what parties want to accomplish in the
particular encounter and public protocols that involve
two or more agent roles and address specific purposes,
focusing on the rules of encounter and omitting indi-
vidual agent decision making details. Our methodol-
ogy, called K-SWAN, is based on the claimed as-
sumption that both strategies and protocols can be de-
scribed using rules. Hence, they have to be separated
and expressed in an appropriate (possibly different)
rule language that will enable a knowledge-based
agent interaction management approach.

2.1. Reaction RuleML

Studying web interactions reveals two important
factors; efficient message exchange and flexible rep-
resentation of the interaction rules. Hence, this study
proposes the use of the Reaction RuleML language
for expressing both the protocol and the strategy rules
[5]. Reaction RuleML is a general, practical and user-
friendly language and rule interchange format. It is
based on RuleML, a unifying family of XML-
serialized rule languages that covers the entire rule
spectrum, from derivation to reaction rules. It is used
for research and industry purposes while it has al-
ready built interoperation bridges between other rule
languages. Specifically, it covers constructs for com-
plex events, actions and states/fluents/transition defi-
nition and processing/reasoning for different deriva-
tion rule, production rule and reaction rule programs.

This rule language was chosen because it is flexi-
ble in rule representation and its syntax supports a
message structure that can include all message mod-
ules provided by the FIPA specifications provided by
FIPA, a widely known IEEE Computer Society or-
ganization that promotes agent-based technology [19].
Figures 1-2 present the similarity of message struc-
ture in RuleML and FIPA; both contain predicates for
Sender, Receiver, Content (Payload), Protocol and
Conversation Identifier (oid and conversation-id).
cfp
:sender (agent-identifier: name “..”)
:receiver (set(agent-identifier :name “..”))
:content ".."
:ontology ontology1
:language fipa-acl
:protocol fipa-“..”-protocol
:conversation-id conv0001

Fig. 1. Message structure according to FIPA.

<Message mode="outbound" directive=“.”>
 <oid><!--conversation ID--></oid>
 <protocol><!--protocol--></protocol>
 <sender><!--agent/service--></sender>
 <receiver><!--agent/service--></receiver>
 <content><!—message payload--></content>
</Message>

Fig. 2. Message structure in Reaction-RuleML syntax.

Using appropriately these structures, agents are
able to exchange from simple facts to rulebases (sets
of rules), while due to the conversation-id module,
agents will be able to get involved in longwinded and
usually asynchronous communications, being flexible.
In this context, the Reaction RuleML SendMsg and
rcvMsg predicates are considered as appropriate for
message exchange in any agent interaction:
sendMsg(XID, Protocol, Agent, Performative,
 Payload|Context)
rcvMsg(XID, Protocol, From, Performative,
 Payload|Context)

where XID is the conversation-id, Protocol is the
specific type of the communication protocol, Per-
formative is the type of the message, while Payload is
the content of the message. Additionally, Reaction
RuleML enables two types of rules, namely produc-
tion and reactive. The former are used for agents’
strategy, allowing them to act according to their us-
er’s will while reactive rules are used for the protocol,
allowing agents to adjust to their partner’s behavior,
based on events related to message exchanges.

2.2. Protocol and Strategy Libraries

Having protocols and strategies separated and ex-
pressed in a language like Reaction RuleML enables
flexibility and reusability. In accordance to the gen-
eral principle of information reuse, reference libraries
of rulebases could be an appropriate solution for hav-
ing the available data easily accessible. A public li-
brary containing rulebases that represent agent inter-
action protocols and a private library (for each agent)
containing similar rulebases for agent interaction pol-
icies could implement the idea above. The former
will ensure that protocols are well-defined and can be
easily accessed by any agent or service whereas the
latter will allow each agent optimally and privately to
manage its strategies. Following this philosophy, we
propose the use of both a public protocol library and
a private strategy library where protocols and strate-
gies expressed in Reaction RuleML will be stored.

In other words, separating each agent’s private
strategy from the protocol leads to two main rule sets.
The first is related to the Strategy (agent’s personal

policy) while the second is related to the Protocol.
The Strategy rule set defines the agent’s personal
preferences whereas the Protocol rule set mainly cho-
reographs message exchange among agents. Hence,
whenever a new agent interaction incident occurs
each agent should use the protocol library to choose
the most appropriate protocol (rule set) for the trans-
action, ensuring that it will act properly throughout
the overall procedure. Additionally, agents should use
their private library to choose an appropriate strategy
(rule set) that could maximize their utility.

Specifically, we propose the use of a public proto-
col library that will retain each available protocol
with its name and information about how many times
and when it was used. Hence, agents will identify
among others popular protocols or newly available,
acting adaptively upon each case. For instance, an old
and widely used protocol should be more reliable and
well-formed than a new one. Hence, agents will be
able to adjust their strategy accordingly, becoming
for instance more cautious. On the other hand, an old
and not used lately protocol should be outdated. This
knowledge can save them a lot of trouble, time and
money. Additionally, we propose the use of a private
strategy library where each agent will name and store
its strategies along with information about its use
(when, in which case and for which protocol) and its
personal opinion about it, here called rank.

Strategies should also be reused but having stored
an old strategy does not mean that it is successful.
Agents should evaluate their strategies for future use,
hence rank is needed. Usually agents base their eval-
uation on qualitative values like unacceptable or poor.
In this context, we firstly associate each qualitative
value with a numerical value (Table 1) which ranges
from -2 (absolutely negative) to +2 (absolutely posi-
tive), with 0 indicating insignificance. We use both
positive and negative values in order to reflect the
win or loss feeling after an encounter as happens in
real life. Hence, we define as rank the score of each
used strategy while a newly stored strategy will get
the default 0 value. Each time a strategy is used, it is
evaluated and the value is added to the stored rank.

A strategy’s rank may be reduced since the sum
value could be negative. Hence, using this infor-
mation any private agent algorithm could deal with
the strategy selection issue. For instance, some could
always choose the strategies with the highest rank
while others could prefer the newest strategy that ex-
ceeds a rank threshold. A variety of such algorithms,
which are out of the scope of this study, could be
used by an agent in order to build its behavior over
time depending on its user’s personal perception.

However, this does not mean that the encounter will
always be satisfied but it will have the best possible
strategy among the available strategies.

Table 1. Qualitative to quantitative evaluation values

Evaluation values Qualitative Quantitative
Qualitative Quantitative insignificant 0

poor -1 good 1
unacceptable -2 excellent 2

2.3. Combining Protocol with Strategy

Agents’ final behavior is a combination of protocol
and strategy. Hence, the two rule sets have to be
combined and executed in a compact way that will let
agents react to their environment knowledge using
their behavior patterns. To this end, the FIPA compli-
ant JESS execution engine and language was chosen
[7]. JESS has become popular in agent programming
community since it was integrated by JADE [2], a re-
liable and widely used multi-agent framework. It is
considered as a very expressive language that can ex-
press complex logical relationships with very little
code. Figure 3 presents part of message structure in
JESS syntax, indicating its FIPA compliance.
(deftemplate ACLMsg
 (slot communicative-act) (slot sender)
 (multislot receiver) (slot reply-with)
 (slot in-reply-to) (slot envelope)
 (slot conversation-id) (slot protocol)
 (slot language) (slot ontology)
 (slot content) (slot encoding)
 (multislot reply-to) (slot reply-by))

Fig. 3. Message structure in JESS syntax.

In order to have a single rule set in JESS syntax
from the separated Reaction RuleML sets, domain
depended XSLT transformations are used. Following
our methodology, we set a public XSLT library
where all the available XSLT transformations will be
stored. A new library was needed since the available
protocol library cannot be used for both protocols and
XSLT transformations. Although, each transfor-
mation is associated with a specific protocol, each
protocol can be used in many cases hence a number
of XSLT stylesheets will be available for that proto-
col. Hence, each agent, as soon as it chooses the nec-
essary protocol and its preferable strategy, will get an
appropriate XSLT stylesheet from that library and
use it in the protocol-strategy fusion process (Figure
4). Notice that each protocol in the library should
have at least an associated transformation.

Fig. 4. Combing protocol with strategy.

3. Knowledge-based implementation

For practical grounds, this methodology was inte-
grated into EMERALD [10], maximizing its efficien-
cy. In this section we briefly review the features of
EMERALD needed for comprehension.

3.1. EMERALD

EMERALD is a multi-agent knowledge-based
framework built on JADE and based on SW and FI-
PA standards that enables reusability and interopera-
bility of behavior between agents. EMERALD sup-
ported so far the implementation of various applica-
tions, like negotiation and brokering [10-12]. It pro-
vides a generic, reusable agent prototype (Figure 5)
for knowledge-customizable agents (KC-Agents),
consisted of agent models (KC Models), a directory
service (Advanced Yellow Pages Service) and exter-
nal methods (Basic Java Library). AYPS provides a
service that groups and sorts the registered services
according among others their domain and type, al-
lowing agents to make complex queries and receive
the available services. Concerning KC Model, AYPS
returns the providers as Jess facts with a designated
format: (service_type (provider provider_name)).

Agents that comply with this prototype are
equipped with a Jess rule engine [7] and a knowledge
base (KB) that contains environment knowledge (in
the form of facts), behavior patterns and strategies (in
the form rules). Hence, the abstract specification of
the prototype contains facts and rules; the generic
(reaction) rule format is result ← rule (preconditions).
The agent’s internal knowledge is a set of facts:
F=FuÈFe, where Fu={fu1,…,fuk} are user-defined facts
and Fe={fe1,…,fem} are environment-asserted facts.
Agent behavior is a set of potential actions-produ-
ction rules P=AÈC, where A are fact derivation rules
and C are communication rules, while ACLMsg is a
Jess template for ACL messages:

A = {a | fe←a(fu1,…,fun) Ù {fu1,...,fun}ÍFu Ù fÎFe}

C = {c | ACLMsg←c(f1,…,fp) Ù {f1,...,fp}ÍF}

Using this prototype offers advantages, such as re-
usability, and interoperability of behavior between
agents, as opposed to having behavior hard-wired in-
to the agent’s code.

EM
ER

AL
D

BJL

AYPS

KC-Agents prototype

KC Model | extended KC Model

JESS KB

Fig. 5. KC-Agents prototype abstract architecture.

Additionally, EMERALD adopts a variety of repu-
tation mechanisms (e.g. [8]) that can also be used in
strategy/protocol evaluation and handles reasoning
interoperability. Since agents do not necessarily share
a common rule or logic formalism, it is vital for them
to find a way to exchange their position arguments
seamlessly. To this end, EMERALD proposes the use
of Reasoners [11], which are actually agents that of-
fer reasoning services to the rest of the agent com-
munity. This approach does not rely on translation
between rule formalisms but on exchanging the re-
sults of the reasoning process of the rule base over
the input data. The receiving agent uses an external
reasoning service to grasp the semantics of the rule
base, namely the set of entailments of the knowledge
base. Currently, EMERALD implements a number of
Reasoners that offer reasoning services in two major
reasoning paradigms: deductive and defeasible logic.
Following these specifications EMERALD commits
to SW and FIPA standards. It uses among others the
RuleML language [5] since it has become a de facto
standard and the RDF model [17] for data representa-
tion; both for the agents’ internal knowledge data and
the reasoning results generated during the process, as
used in contract agreement interactions in [12].

3.2. Integrating K-SWAN methodology to EMERALD

EMERALD’s KC-Agents prototype was extended
to implement the K-SWAN agent choreography
methodology. The set of derivation rules A is now:

A = {a | u1;u2;…;um←a(f1,…,fn) Ù {f1,...,fn}ÍF Ù

{u1,...,um}ÍF }
Rules can now derive (more than one) new (or up-

date existing) user-defined facts which can further
trigger other rules, and so on so forth. In this way
more complex decision making algorithms for the
agent strategies can be implemented. Furthermore,
the set of facts now also includes facts about messag-
es Fm received from other agents: Fm = {fm1,…, fmk},
F=FuÈFeÈFm. User-defined facts can be: a) interac-

tion management related parameters FIM, such as
conversation id, number of participants, etc., b) inter-
action content related parameters FCM, such as the
domain of a negotiation or other interaction (e.g. sell-
ing laptops online), the content of exchanged mes-
sages (proposed offer, accepted deals), c) current
state of the interaction protocol FST, d) information
exchanged between the strategy and protocol rulesets,
through so called API facts FAPI, and e) other general-
purpose facts FG: Fu=FIMÈFCMÈFSTÈFAPIÈFG.

The exact number and types of facts FIM and FCM
depend on the type of interaction (e.g. negotiation,
brokering, contract net, etc.) and is specified in the
template of the protocol library. Also the number of
states that the protocol goes into depends on the type
of the interaction. Usually there is one state for each
message exchange (pair of messages) of the protocol
for each interaction participant. Furthermore, there
are states FsST involving the strategy of the agent,
which are triggered when the protocol module needs
to switch to the strategy modules whenever decision
making is needed in order to formulate an answer to a
received message or to initiate a new message ex-
change. Thus: FST=FpSTÈFsST, where FpST are protocol
states. The API facts contain the type and the content
of the messages that the agent strategy ruleset infers
to be sent by the protocol ruleset, so it needs a way to
communicate such a decision:

FAPI={send(type,content,receiver,conversation-id)}
The equivalent “interface” facts between the pro-

tocol and the strategy are the interaction content re-
lated facts FCM.

As explained previously, the agent’s ruleset is
composed by merging the public protocol ruleset Pp
with the selected private strategy ruleset Ps: P=PpÈPs.
The two merged rulesets are composed as follows:
Pp=ApÈCp and Ps=As, i.e. strategy does not contain
agent communication rules. The components of the
two merged rulesets are further defined as follows:
Ap = {ap | u1;u2;…;um←ap(f1,…,fn) Ù

{f1,...,fn}ÍFpSTÈ FmÈFIM Ù

{u1,...,um}ÍFSTÈFIMÈFCM}

Cp = {cp | ACLMsg←cp(f1,…,fp) Ù

{f1,,...,fp}ÍFpSTÈ FIMÈFAPI}

As = { as | u1;u2;…;um←as(f1,…,fn) Ù

{f1,...,fn}ÍFsSTÈ FCMÈFG Ù

{u1,...,um}ÍFSTÈFAPIÈFG}

The above can be explained as follows: the proto-
col may initiate a communication cp because it has
reached some state (FpST), taking also into account in-
teraction management parameters (FIM) and/or trig-
gered by the strategy ruleset (FAPI). The protocol also
waits for messages (Fm), expected at some state (FpST),
and based on the interaction management parameters
(FIM), it may advance to the next state (protocol or
strategy, FST) or it may update the interaction man-
agement parameters (FIM) or the interaction content
parameters (FCM). On the other hand, the strategy
based on the current state (FsST), it checks the pa-
rameters of the content of the interaction (FCM) or an
intermediate result/initial data of the decision making
process (FG) and decides either to advance to the next
state (protocol or strategy, FST) or to formulate a mes-
sage that the protocol should send (FAPI) or just to
store an intermediate derived fact that could be used
later by another rule of the strategy ruleset (FG).

So far KC-Agents were limited in receiving one
file containing both strategy and protocol. The ex-
tended (K-SWAN) KC-agent receives two separate
files one for the protocol and one for the strategy or
just a set of keywords letting agent act independently.
Hence, whenever protocol or strategy is modified, no
extra programming cost is needed. The agent will re-
trieve the appropriate (new) files from the corre-
sponding libraries. The transformation and merging
of them will be executed automatically. Following
this approach new behaviors and protocols can be
added at any time to the libraries for future use.

Hence, three libraries were set as already de-
scribed; the private strategy, the public XSLT and the
public protocol library. The strategy library belongs
to a specific agent and retains its strategies. Each rec-
ord has the following properties; a name for the strat-
egy, date that it was added to the library, the strategy
itself (rulebase), description, date and case of use (for
each time it was used) and its rank value. Currently,
the rank variable holds just the final updated value,
however all rank values in respect to time could be
stored in future in order to check the fluctuation of
the value over time. Valuable conclusions can be de-
rived from studying it; defining if the decision mak-
ing process of a strategy is getting outdated or not.

On the other hand, the public protocol library is
managed by an independent agent and it is accessible
by all interacting agents. It holds each available pro-
tocol with the following properties; an official name
for the it, date that it was added to the library, the
protocol itself (rulebase), date of use, case of use,
agents involved and finally times of use (numerical
value). Additionally, the independent agent manages

a public XSLT library that holds each available trans-
formation with the following properties; a name, date
that it was added to the library, the transformation it-
self, date of use, case of use and times of use.

Each time, the user provides a file containing key-
word(s), describing the case that it is interested in; an
internal algorithm automatically looks up that key-
word in a case list and retrieves an appropriate proto-
col. A protocol can be used in many cases. Yet, each
case is associated with just a protocol. Similar, each
strategy is associated with just a case (and thus a pro-
tocol). In this context, the prototype provides an ex-
pandable list associating cases (e.g. house brokering)
with protocols (e.g. FIPA Brokering Interaction Pro-
tocol) and hence strategies. However, since a proto-
col describes more than one role, each agent has to
choose the appropriate role for the case. The involved
agents then agree on the protocol that will be used
throughout their encounter. Yet, if an agent has to in-
teract with a party, e.g. an online shop that enforces a
predefined protocol the above procedure is omitted.

Additionally, having the protocol and the case used,
each agent searches its personal library to find a
strategy previously used in a similar case with a satis-
fying rank. Many criteria can be used in this selection
algorithm; for instance the newest strategy associated
to the desired case with a high rank. To this end, the
extended prototype provides an internal algorithm
that associates the agent’s qualitative opinion to a
quantitative value, as described in Table 1. Then, that
value is used to update and store the new rank value
in the library. Finally, a similar search is carried out
in the XSLT stylesheet library in order to get the ap-
propriate transformation. Then, the involved parties
have what they need to interact properly and proceed.

4. Use Cases

Use case scenarios based on the FIPA Contract Net
and Brokering Protocol were implemented using the
K-SWAN methodology and are presented next in or-
der to demonstrate the potential of our proposal.

4.1. FIPA Contract Net Interaction Protocol

The Contract Net Protocol (CNET) is probably the
most widely used protocol, firstly introduced by
Smith [16]. In CNET negotiation is considered as a
two-way communication in which an agent evaluates
the offer of assigning a contract or receiving one
from its own perspective depending on its role. Alt-
hough CNET was proved valuable in a variety of sit-

uations, it had to be modified in order to reflect
changes in agent technology. In this direction, FIPA
provides the FIPA Contract Net Interaction Protocol
(Figure 6) [19]. Based on this protocol, a scenario is
presented clarifying why protocols and strategies
should be separated and how an automated combina-
tion procedure saves time and programming effort.

Fig. 6. Fipa Contract Net Interaction Protocol

This standardized protocol has been used over time
as the basis for a variety of use cases. According to
the FIPA specification in the contract net interaction
protocol, one agent (Initiator) takes the role of the
manager who wishes to have some task performed by
one or more other agents (Participants) and further
wishes to optimize a function that characterizes the
task. This characteristic could be the minimum price
or the soonest completion time. For a given task, the
Initiator has to send a call for proposal message
communicating its request. Next, any number of the
Participants may respond positively; the rest must re-
fuse. Negotiations then continue with the Participants
that accepted the call. A positive response however is
not a strict acceptance but rather a counter proposal.
Hence, the Initiator has to evaluate the offers and ig-
nore the refusals. Finally, it has to accept the best of-
fer by sending back an acceptance message whereas
reject messages should be send to the rest.

4.1.1. Use case implementation
A scenario based on this protocol was implement-

ed in EMERALD, using the K-SWAN methodology,
involving four parties; an initiator and three other
participants (Figure 7). All the involved parties com-
ply with the new prototype provided by EMERALD,
hence protocol and strategy are automatically com-

bined. Specifically, the Initiator is interested in the
best offer for a laptop; hence an appropriate strategy
in RuleML, based on the keywords provided by its
user and the highest rank value, is retrieved from its
library. Next, it finds the FIPA CNet Protocol in
RuleML for the initiator role in the protocol library. It
also retrieves the XSLT stylesheet from the XSLT li-
brary. Then, the procedure for combining the proto-
col with the strategy is executed and Initiator is ready
to start acting upon its goals.

Fig. 7. Fipa CNET use case abstract overview.

The Initiator uses the AYPS service provided by
EMERALD in order to locate potential e-shops.
Eventually, it gets three represented by the participant
agents. Following the protocol, the Initiator sends a
CFP (Call-for-proposal) message containing the
name of the used protocol, the name of the product
and a desired price in order to initiate the negotiation
procedure. Next, it waits for their response; either
positive (PROPOSE) or negative (REFUSE). The
participant agents have to decide if they are interested
in interacting with the Initiator agent. In this use case
they all are, because they are e-shops and their main
strategy is to interact with any potential buyer. Hence,
they retrieve the appropriate protocol, named in the
CFP, from the public library for the participant role
and the corresponding XSLT stylesheet from the li-
brary. Next, they search their strategy library in order
to find an appropriate for the case strategy with the
highest rank value. Using the KC-Agents automated
procedure, strategies are combined with the protocol.

Now being ready, they have to confirm that the
product is available and act accordingly; refusing the
call or proposing an offer. Since a positive response
is not a strict acceptance but rather a price proposal,
the participants may reply with proposal rather than
just accept the call. The Initiator by its side has to
evaluate the offers and ignore the refusals. According
to the protocol, next it has to accept one offer by
sending back an ACCEPT message whereas REJECT
messages should be sent to the rest. The protocol de-

fines the proper message exchange but it is the pri-
vate strategies that define the decision making.

The Initiator’s strategy, for instance, determines
the agent’s main restriction; the price offered by a
participant should be lower than the price it is willing
to pay. That price for the Initiator is the firstly indi-
cated price in the CFP (here 300 Euros) plus an
amount (here 50 Euros). If none of the participants
fulfill this restriction, the Initiator will reject all of
them. On the other hand, each participant has a list
(set of facts called Products) that contains their avail-
able products accompanied with the product type (e.g.
laptop) and its price (e.g. 500 Euros). Such a product
in JESS is: (products (type laptop) (price 200)).

Fig. 8. Flow of rule activation, triggering and execution.

Fig. 9. Use case scenario message exchange in EMERALD.

Using EMERALD and its extended prototype, we
activated the four agents. Next, following the CNET
protocol, a straight-forward procedure is performed
from the first call to the final acceptance. Figure 8
presents an overview of the flow of rule activation
and execution. A more detailed flow chart can be
found in [9]. Here, the transaction was successfully
completed when the Initiator chose the participant
called p by sending an Accept Proposal message, as

presented in the EMERALD’s execution diagram
(Figure 9). Participant p sent back an inform message,
which according to FIPA specifications is needed in
order to verify that the final decision is received.
Next, as soon as the interaction is finished, each
agent evaluates the strategy and updates its rank val-
ue. Investigating evaluation algorithms and complex
rank calculations is out of the scope of this study.

Finally, Reaction RuleML enables two types of
rules; production for agents’ strategy and reactive for
the protocol. A reactive rule of a participant that
when it receives a CFP message, it posts it as a fact in
the agent’s internal KB is presented in JESS (Figure
10) and RuleML syntax (Figure 11) for comparison
purposes; the same rule is more compact in JESS
than RuleML syntax. Figure 12 presents a production
rule of a participant that decides to participate in the
bidding by sending a proposal, if the required product
is available in its internal KB. Notice how the rules
interact through a predefined set of fact templates that
play the role of API (callforp and send), whereas
state indicates the current protocol or strategy state.
(defrule receive-cfp
 (ACLMsg (communicative-act CFP)
 (conversation-id ?cid) (sender ?init)
 (protocol fipa-contract-net) (content ?c))
 ?x <- (state (state start))
=>
 (assert (callforp(cid ?cid)
 (content ?c) (sender ?init)))
 (modify ?x (id ?cid) (state check)))

Fig. 10. JESS Protocol Reactive Rule: Participant receives call.

The two rules are expressed as follows in the ab-
stract KC-Agents/K-SWAN specification:

Callforp(cid,…); state(check, cid) ←
receive-cfp(state(start), ACLMsg(CFP,cid,…))

∈ Ap

send(PROPOSE,price,sender,cid); state(send_int,cid)
← check-cfp1(state(check,cid), Callforp(cid,
sender, product), product(product, price)) ∈ As

where state(start)∈FpST, state(check)∈FsST, ACLMsg
∈Fm, Callforp∈FCM, send∈FAPI and product∈FG.
<Rule>
 <oid><Ind>receive_cfp</Ind></oid>
 <on>
 <Message mode="inbound" directive="CFP">
 <oid><Var>cid</Var></oid>
 <protocol>
 <Ind>fipa-contract-net</Ind>
 </protocol>
 <sender>
 <Var>initiator_name</Var> </sender>

 <content><Var>call</Var></content>
 </Message>
 </on>
 <if><And>
 <Atom><Rel>state</Rel>
 <slot> <Ind>state</Ind>
 <Ind>start</Ind> </slot></Atom>
 <Atom><oid><Var>start_state</Var></oid>
 <Rel>state</Rel>
 <slot> <Ind>state</Ind>
 <Ind>start</Ind> </slot></Atom>
 /And></if>
 <do><Succession><Assert>
 <Atom><Rel>callforp</Rel>
 <slot> <Ind>cfp</Ind>
 <Var>call</Var> </slot>
 <slot>
 <Ind>cfp </Ind>
 <Var>initiator_name</Var> </slot>
 <slot> <Ind>cfp_cid</Ind>
 <Var>cid</Var> </slot></Atom>
 </Assert>
 <Update>
 <Atom><oid><Var>start_state</Var></oid>
 <Rel>state</Rel>
 <slot> <Ind>state</Ind>
 <Ind>check</Ind> </slot>
 <slot> <Ind>id</Ind>
 <Var>cid</Var> </slot></Atom>
 </Update></Succession></do>
</Rule>

Fig. 11. RuleML Protocol Reactive Rule: Participant receives call.

(defrule check-cfp1
 ?p <- (state (id ?cid) (state check))
 (callforp (cid ?cid)
 (sender ?name) (content ?prod))
 (products (type ?prod) (price ?price))
 =>
 (assert (send (act PROPOSE) (content ?price)
 (receiver ?name) (cid ?cid)))
 (modify ?p (state send_int) (id ?cid)))

Fig. 12. Production Rule (Strategy): Participant evaluates call and
prepares PROPOSE response.

4.2. FIPA Brokering Interaction Protocol

The FIPA Brokering Interaction Protocol [19] is
quite popular, designed to support brokerage interac-
tions. Generally speaking, a broker is an agent that
offers a set of communication facilitation services to
other agents using some knowledge about the re-
quirements and capabilities of those agents. A typical
example of brokering is one in which an agent can
request from a broker to find one or more agents who
can answer a query. The broker then determines a set
of appropriate agents to which to forward the query,
sends the query to those agents and relays their an-
swers back to the original requestor. The use of bro-
kerage agents can significantly simplify the task of

interaction with agents in a multi-agent system. Addi-
tionally, brokering agents also enable a system to be
adaptable and robust in dynamic situations.

Fig. 13. FIPA Brokering Interaction Protocol.

More specifically, the Initiator of the brokering in-
teraction (Figure 13) begins the interaction with a
proxy message which contains: a reference to the tar-
get, the request and a set of proxy conditions such as
the maximum number of agents to which the message
should be forwarded. The Broker processes the re-
quest and makes a decision whether to agree or refuse
and replies accordingly. Once the Broker has agreed
to be a proxy, it locates agents according to the de-
scription from the proxy message. If no such agents
can be found, the Broker returns a failure-no-match
and the interaction terminates. Otherwise, the Broker
may modify the list of matching agents based on the
proxy conditions specified by the Initiator and begins
interactions with the target agents (sub-protocol).
When these interactions end (successfully or not), the
Broker forwards the final response to the Initiator.

4.2.1. Use case implementation
A scenario based on the above protocol was im-

plemented in EMERALD following the K-SWAN
methodology, namely all parties comply with the new
prototype. This scenario is loosely based on one of
the most commonly used W3C’s SWS usage scenari-
os [6]. We adopt the main idea of a travel agency that
provides tourism services to end-users. Thus, we
have a virtual travel agency, called VTA for short,
which offers to clients the ability to book vacation
services. These services can support booking of

flights, hotels, rental cars, etc. Hence, this scenario
involves: the travel agency, a customer and a number
of target agents proving vacation services. The ab-
stract overall process is presented in Figure 14. The
Initiator (here the customer) is interested in booking a
vacation by targeting to the best combination of ser-
vices and prices for its needs. Hence, an appropriate
for the case strategy in RuleML with a rank value at
least 1 is retrieved from its private library. Next, the
Initiator searches the protocol library for the protocol
posted by the Broker in order to comply with the
same interaction protocol; the FIPA Brokering Inter-
action Protocol in RuleML for the initiator role. Ad-
ditionally, it retrieves the XSLT stylesheet from the
public library. Then, the procedure for combining the
protocol with the strategy is automatically executed.

Fig. 14. Fipa CNET use case abstract overview.

The Initiator, following the protocol, sends a proxy
message containing the desired services and some
proxy conditions. Specifically, it is interested in trav-
elling to Cuba during July and wants at least a 3* ho-
tel, a two-way air ticket and a travel insurance. Con-
cerning proxy conditions, it defines the minimum
number of agents to which the message should be
forwarded (here three) and an international travel in-
surance provider. Next, it waits for the response; ei-
ther positive (AGREE) or negative (REFUSE). The
Broker processes the request and decides to agree. It
has already retrieved the Brokering protocol for the
broker role and gets the corresponding XSLT
stylesheet and a promising strategy (highly ranked -
many times used) from its library. Strategy and pro-
tocol are combined by the automated procedure.

Being ready, the Broker informs the Initiator. At
the same time, it locates agents per the description
from the proxy message. Hence, the Broker, as soon
as it accepts the job, locates five service agents that
offer what it needs fulfilling Initiator’s conditions and
begins interacting with them. The service providers
communicate with the Broker and prepare an offer.
Having five different offers, the Broker forwards

them to the Initiator that eventually chooses the
cheapest. Figure 15 presents a flow overview of rule
activation and execution. Interaction among Broker
and the rest target agents is a recursive sub-protocol
procedure. Since multiple agents match, Broker initi-
ates multiple sub-protocols within the brokering pro-
tocol. Here, the Broker initiates five instances of the
FIPA CNet protocol presented above. In this case, the
Broker may collect the received responses and com-
bine them into a single reply-message-sub-protocol,
or may forward the reply-message-sub-protocol mes-
sages from the separate sub-protocols individually
(this is the case here). Hence, describing in detail
these cases is out of the scope of this example.

Fig. 15. Flow of rule activation, triggering and execution.

Finally, following the K-SWAN methodology, we
have two types of rulesets in Reaction RuleML; pro-
duction rules for the strategy and reactive rules for
the protocol. Figure 16 presents a reactive protocol
rule in JESS that is used by the broker to receive
proxy requests and store them in order to forward
them later if it decides so. The same rule is also pre-
sented in Figure 16 in Reaction RuleML syntax. This
rule allows the Broker to post as a fact in its internal
KB every received proxy request and prepare for the
next decision making step (agree or refuse).

This rule is expressed as follows in the abstract
KC-Agents/K-SWAN specification:

receive_proxy(cid, …)); state(decide_proxy, cid) ←
receive-proxy-request(state(start),
 ACLMsg(proxy,cid,…)) ∈ Ap

where state(start)∈FpST, state(decide_proxy)∈FsST,
ACLMsg∈Fm, and receive_proxy∈FCM.

(defrule receive-proxy-request
 (ACLMsg (communicative-act proxy)
 (conversation-id ?cid) (sender ?init)
 (protocol fipa-brokering) (content ?c))
 ?x <- (state (state start))
=>
 (assert (receive_proxy(cid ?cid)
 (content ?c) (sender ?init)))
 (modify ?x (id ?cid) (state decide_proxy)))

Fig. 16. JESS Reactive Rule: Broker receives proxy request.

<Rule>
 <oid>
 <Ind>receive-proxy-request</Ind> </oid>
 <on>
 <Message mode="inbound" directive="proxy">
 <oid><Var>cid</Var></oid>
 <protocol>
 <Ind>fipa-brokering</Ind> </protocol>
 <sender>
 <Var>initiator_name</Var> </sender>
 <content><Var>call</Var></content>
 </Message>
 </on>
 <if>
 <Atom><oid><Var>start_state</Var></oid>
 <Rel>state</Rel>
 <slot>
 <Ind>state</Ind>
 <Ind>state</Ind> </slot> </Atom>
 </if>
 <do><Succession><Assert>
 <Atom><Rel>receive_proxy</Rel>
 <slot>
 <Ind>content</Ind>
 <Var>call</Var> </slot>
 <slot>
 <Ind>sender</Ind>
 <Var>initiator_name</Var> </slot>
 <slot> <Ind>cid</Ind>
 <Var>cid</Var> </slot> </Atom>
 </Assert>
 <Update>
 <Atom><oid><Var>start_state</Var></oid>
 <Rel>state</Rel>
 <slot> <Ind>state</Ind>
 <Ind>decide_proxy</Ind> </slot>
 <slot> <Ind>state_id</Ind>
 <Var>cid</Var> </slot></Atom>
 </Update></Succession></do>
</Rule>

Fig. 17. RuleML Reactive Rule: Broker receives proxy request.

5. Related work

Τo the best of our knowledge our proposed meth-
odology is the first one to separate protocol and strat-
egy using a knowledge-based approach. Nevertheless,
[1] discusses rule-based price negotiation approaches
in multi-agent e-commerce systems, supporting that
rules are a feasible and scalable technology for auto-
mated negotiations. The authors summarize the state-
of-the-art in rule-based approaches to automated ne-
gotiations and present some initial experimental re-
sults using a rule-based price negotiation mechanism.
Yet, there is no implementation information about the
mechanism, except that it is based on the JADE
framework and JESS. Our work, on the contrary,
concerns modeling a specific reusable SW-compliant
procedure that could be used not only in price negoti-
ation but also in any other protocol case. Additionally,
K-SWAN methodology implementation is described
in detail and it is available to use in EMERALD. Yet,
both approaches deal with the idea of automating e-
commerce transactions. They consider IAs and rules
important for maximizing automation and efficiency
while multi-agent systems are claimed to be one of
promising technologies for achieving this goal.

Concerning defeasible logic, a related approach is
the DR-CONTRACT [3] architecture for representing
and reasoning on e-Contracts in defeasible logic. It
captures the notions relevant to execution and per-
formance of e-Contracts in defeasible logics. The au-
thors in order to integrate the DR-CONTRACT with
SW technology use a RuleML extension that com-
bines deontic notions with defeasibility and violations
and RDF/XML syntax for its exported conclusions.
Hence, although it focuses only on e-Contracts, omit-
ting separation of protocols and strategies, it is a SW
compliant approach like ours. We do agree in useful-
ness of rules and defeasible logic, although we do not
use the deontic defeasible logic of violation. Moreo-
ver, our approach is not limited to the use of defeasi-
ble logic or e-Contract transactions either. DR-
CONTRACT is more like a defeasible reasoning en-
gine but our K-SWAN methodology is an end-to-end
procedure for any kind of agent transaction in the SW.

Concerning interoperability, Rule Responder [3] is
quite similar to EMERALD. It builds a service-
oriented methodology and a rule-based middleware
for interchanging rules in virtual organizations, as
well as negotiating about their meaning. It demon-
strates the interoperation of distributed platform-
specific rule execution environments, with Reaction
RuleML as a platform-independent rule interchange

format. Although, it supports only web services act-
ing like agents, it deals with interoperability, reusa-
bility and even protocol-strategy separation issues
like our approach. More specific, it has a similar view
of rules, reasoning services and usage of RuleML but
it is not FIPA compliant. Yet, Rule Responder is lim-
ited to representing virtual organizations while EM-
ERALD enriched with the K-SWAN choreography
methodology is able to support any agent community.
However, they are both environments that support in-
telligent transactions in the sense that the parties in-
volved, regardless they are represented by agents or
services, can (re)use sets of rules and implemented
procedures to behave and interact.

6. Conclusions and future work

The article argued that the massive growth of e-
Commerce enabled new ways of transactions, which
are vital but rather complicated. We addressed this
problem by using IAs acting in the SW, as agents can
perform the same tasks unsupervised. To this end,
this article presented a modular and reusable frame-
work using SW technologies, such as RuleML and
RDF. Specifically, this article studied how separated
interaction protocols and strategies can be combined
through a rule-based choreography methodology, en-
abling reusability and thus agent participation in in-
teraction processes without the need of reprogram-
ming. Additionally, for practical grounds this chore-
ography methodology was integrated into EMER-
ALD, a multi-agent knowledge-based framework,
and two use case scenarios evaluated the approach.

As for future direction, our main interest is to pro-
vide a general-purpose framework for an automated
end-to-end choreography management in multi-agent
environments, letting agents maximize their autono-
my, flexibility and efficiency. For this purpose, more
protocols, like all FIPA compliant protocols, have to
be integrated in the proposed framework. Additional-
ly, we plan to use an ontology-based approach to ease
the selection of the appropriate protocol according to
the specific encounter properties, so that to extend
our methodology functionality to non-expected cases.

Acknowledgments

This work is partially supported by the Greek
R&D General Secretariat through a bilateral Greek-
Romanian project.

References

[1] C. Badica, M. Ganzha and M.L. Paprzycki, Implementing
Rule-Based Automated Price Negotiation in an Agent System,
Journal of Universal Computer Science 13(2) (2007), 244-266.

[2] F. Bellifemine, G. Caire, A. Poggi and G. Rimassa, JADE: A
white Paper, EXP in search of innovation, 3(3) (2003), 6-19.

[3] G. Governatori and D.H. Pham, DR-CONTRACT: An archi-
tecture for e-contracts in defeasible logic, Int. J. of Business
Process Integration and Management 4(3) (2009), 187–199.

[4] H. Boley and A. Paschke, Rule responder agents framework
and instantiations, Semantic Agent Systems, Studies in Com-
putational Intelligence 344 (2011), 3–23.

[5] H. Boley, A. Paschke and O. Shafiq, RuleML 1.0: The Over-
arching Specification of Web Rules, 4th International Web
Rule Symposium: Research Based and Industry Focused
(RuleML’10), Springer 6403 (2010), 162-178.

[6] H. He, H. Haas and D. Orchard, Web Services Architecture
Usage Scenarios, W3C Working Group Note, available at
http://www.w3.org/TR/ws-arch-scenarios/, 2004.

[7] JESS, the Rule Engine for the Java Platform, available at
http://www.jessrules.com/, 2008.

[8] K. Kravari and N. Bassiliades, HARM: A Hybrid Rule-based
Agent Reputation Model based on Temporal Defeasible Logic,
6th International Symposium, RuleML 2012, Springer, LNCS
7438 (2012), 193-207.

[9] K. Kravari, C. Papavasileiou and N. Bassiliades, Knowledge-
based e-Contract Negotiation among Agents Using Semantic
Web Technologies, Proceedings of the 5th International Con-
ference on Computational Collective Intelligence Technolo-
gies and Applications (ICCCI 2013), 2013.

[10] K. Kravari, E. Kontopoulos and N. Bassiliades, EMERALD:
A multi-agent system for knowledge-based reasoning interop-
erability in the semantic web, in: Artificial Intelligence, Theo-
ries, Models and Applications, SETN 2010, Springer, LNCS
6040/2010 (2010), 173-182.

[11] K. Kravari, E. Kontopoulos and N. Bassiliades, Trusted Rea-
soning Services for Semantic Web Agents, Informatica: Int.
Journal of Computing and Informatics 34(4) (2010), 429-440.

[12] K. Kravari, G.E. Kastori, N. Bassiliades and G. Governatori,
Contract Agreement Policy-Based Workflow Methodology for
Agents Interacting in the Semantic Web, Semantic Web Rules,
Proc. 4th International Web Rule Symposium (RuleML 2010),
Springer, LNCS 6403 (2010), 225 – 239.

[13] K. Laudon and C.G. Traver, E-Commerce 2013, 9/E, Prentice
Hall, New Jersey, 2012.

[14] L. Feigenbaum, I. Herman, T. Hongsermeier, E. Neumann and
S. Stephens, The Semantic Web in Action, Scientific Ameri-
can 297 (2007), 90-97.

[15] M. Baldoni, C. Baroglio, A.K. Chopra, N. Desai, V. Patti and
M.P. Singh, Choice, interoperability, and conformance in in-
teraction protocols and service choreographies. Proc. 8th Int.
Conf. on Autonomous Agents and Multiagent Systems
2(2009), 843-850.

[16] R.G. Smith, The contract net protocol: high level communica-
tion and control in a distributed problem solver, IEEE Trans-
actions on Computer 29(12) (1980), 1104-1113.

[17] Resource Description Framework (RDF), Model and Syntax
Specification, available at http://www.w3.org/TR/PR-rdf-
syntax/, 2004.

[18] S.J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach (2nd ed.), Prentice Hall, Upper Saddle River, 2003.

[19] The Foundation for Intelligent Physical Agents (FIPA), FIPA
Communicative Act Library Specification, available at
http://www.fipa.org/specs/, 2003.

http://www.citeulike.org/user/jucagi/author/Bellifemine:F
http://www.citeulike.org/user/jucagi/author/Caire:G
http://www.citeulike.org/user/jucagi/author/Poggi:A
http://www.citeulike.org/user/jucagi/author/Rimassa:G
http://www.w3.org/TR/PR-rdf-syntax/
http://www.w3.org/TR/PR-rdf-syntax/
https://en.wikipedia.org/wiki/Stuart_J._Russell
https://en.wikipedia.org/wiki/Peter_Norvig
https://en.wikipedia.org/wiki/Peter_Norvig
http://aima.cs.berkeley.edu/

	1. Introduction
	2. The K-SWAN methodology
	2.1. Reaction RuleML
	2.2. Protocol and Strategy Libraries
	2.3. Combining Protocol with Strategy

	3. Knowledge-based implementation
	3.1. EMERALD
	3.2. Integrating K-SWAN methodology to EMERALD

	4. Use Cases
	4.1. FIPA Contract Net Interaction Protocol
	4.1.1. Use case implementation

	4.2. FIPA Brokering Interaction Protocol
	4.2.1. Use case implementation

	5. Related work
	6. Conclusions and future work
	Acknowledgments
	References

