
An Adaptive Query Processing Method according to System
Environments in Database Broadcasting Systems

M. KASHITA T. TERADA T. HARA
Graduate School of Engineering, Cybermedia Center, Graduate School of Information

Osaka University Osaka University System and Tech., Osaka University
2-1 Yamadaoka, Suita, 5-1 Mihogaoka, Ibaraki, 2-1 Yamadaoka, Suita,
Osaka 565-0871, Japan Osaka 567-0047, Japan Osaka 565-0871, Japan

kashita@ise.eng.osaka-u.ac.jp tsutomu@cmc.osaka-u.ac.jp hara@ist.osaka-u.ac.jp
M. TSUKAMOTO S. NISHIO

Graduate School of Information System Graduate School of Information System
and Tech., Osaka University and Tech., Osaka University

2-1 Yamadaoka, Suita, 2-1 Yamadaoka, Suita,
Osaka 565-0871, Japan Osaka 565-0871, Japan
tuka@ist.osaka-u.ac.jp nishio@ist.osaka-u.ac.jp

Abstract
In the recent evolution of wireless communication

technology, there has been an increasing interest in
the database broadcasting system where a server pe-
riodically broadcasts contents of a database to mobile
clients such as portable computers and PDAs. There
are three query processing methods in the database
broadcasting system: the on-demand method, the
client method, and the collaborative method which
we have proposed. The performance of these meth-
ods is strongly affected by environmental conditions
such as query generation intervals and size of query
results. Since the system condition keeps changing, it
is difficult to choose the optimal method statically.
In this paper, we propose an adaptive query pro-
cessing method which dynamically chooses a method
which gives the best performance at the moment. Our
method chooses a method according to query genera-
tion intervals in order to reduce the response time and
to increase the query success rate. We also show simu-
lation results regarding performance evaluation of our
method.

1 Introduction
The recent evolution of wireless communication

technologies has led to an increasing interest in in-
formation systems in which data is disseminated via
broadcast channels. In such systems, a server broad-
casts various data periodically via a broadband chan-
nel, and a client picks out and stores necessary data.

Many studies have been done so far to improve the
performance of data broadcasting systems. They in-

clude data scheduling techniques at the server side
[1, 9], caching techniques at the client side [1], update
propagation techniques[2], integration of push-based
and pull-based techniques[3], and data pre-fetching
techniques[4]. Most of them deal with broadcast data
only as data items, and do not address performance
improvement by considering contents, characteristics,
and types of broadcast data. In this paper, we assume
a data broadcasting system in which a server broad-
casts contents of a relational database and clients issue
database queries to retrieve data from the database.
We call such a system a database broadcasting system.

Currently, there are three query processing meth-
ods in the database broadcasting system: the on-
demand method, the client method and the collabora-
tive method[6] we proposed. The performance of these
methods is strongly affected by environmental condi-
tions such as query generation intervals and size of
query results. Since the system condition always keeps
changing, it is difficult to choose the optimal method
statically. In this paper, we propose an adaptive query
processing method which chooses adaptively a method
which gives the best performance at every moment.
Our method chooses a method according to query gen-
eration intervals in order to reduce the response time
and to increase the success rate of queries.

The remainder of this paper is organized as fol-
lows. In section 2, we explain the outline of a database
broadcasting system and introduce three basic query
processing methods in the database broadcasting sys-
tem. In section 3, we explain the adaptive query pro-

Prepress
174



Up-link

Clients

Server
Broadcast data

Table

A B C
D

E…

Sub

Channel

Main

Channel

DB

Figure 1: Database broadcasting system.

cessing method we propose in this paper. In section 4,
we evaluate the performance of our method. Finally,
we conclude this paper in section 5.

2 Database broadcasting system and
query processing methods

Figure 1 illustrates the concept of the database
broadcasting system. The server broadcasts contents
of a relational database via a broadcast channel and
clients issue queries to retrieve necessary data from the
database. We also put the following assumptions:

Clients: Clients have a small storage, low battery,
and low CPU power.

Dual downlink channels: The broadcast channel
from the server to clients is divided into two chan-
nels: broadband main channel for sending the
contents of databases, and narrowband sub chan-
nel for sending the other data.

Uplink channel: There is a narrowband communi-
cation channel from a client to the server.

In the database broadcasting system, there are
three query processing methods, on-demand, client
and collaborative methods. In the following, we ex-
plain each of three methods.

2.1 On-demand method

The processing procedure in the on-demand method
is as follows:

1. A client sends a query described in SQL to the
server via the uplink.

2. The server processes the query and broadcasts the
query result via the sub channel.

In this method, since the query processing is com-
pletely done within the server, no workspace is re-
quired for query processing at the client. Moreover,
in case where there is no waiting data to be broadcast

for the sub channel, the client can receive the query
result immediately. However, since the sub channel is
exhausted when queries are issued frequently or when
the size of query results is very large, it takes long time
for the client to receive the query result.

2.2 Client method

The processing procedure in the client method is as
follows:

1. A client monitors the main channel and stores
broadcast tables which are necessary for process-
ing the query on its storage.

2. The client processes the query when all the nec-
essary tables are stored.

In this method, even if the number of clients inten-
sively increases, each client can receive all of necessary
data within one broadcast cycle. Moreover, since this
method uses no uplink, it can work even in environ-
ments without the uplink. However, since a client has
to store all necessary tables for query processing, a
large storage is required on the client. Accordingly,
there is the possibility that the client cannot process
the query in case that the storage size of the client is
small.

2.3 Collaborative method

The processing procedure in the collaborative
method is as follows:

1. A client sends a query to the server via the uplink.

2. The server allocates each tuple in the broadcast
database the query identifier and the combina-
tion identifier. The query identifier is a unique
identifier given by the server for each query. The
combination identifier is an identifier to match tu-
ples when a query result is constructed from mul-
tiple tables such as the case of a join operation.
The server investigates which tuples appear in the
query result. Then, the server writes the query
identifier and the combination identifier in those
tuples. By referring to these two attributes, the
client can store only tuples appearing in the query
result.

3. The server creates rules which specify how the
client receives only the necessary tuples for the
query result and reconstructs the query result.
Then the server broadcasts them via the sub chan-
nel.

Prepress
175



Table 1: Characteristics of three methods.
Response time Required

Method Query generation storage
interval: short long size

On-demand Bad Good Good
Collaborative Medium Medium Medium
Client Good Medium Bad

4. Based on the received rules, the client receives
necessary tuples and reconstructs the query result
automatically by combining these tuples.

Since the size of rules is generally much smaller than
that of a query result, the sub channel is rarely ex-
hausted in the collaborative method as compared with
the on-demand method. Moreover, since the client can
store only the necessary data by referring to the iden-
tifiers in the collaborative method, the storage size
required on the client is reduced as compared with the
client method.

2.4 Performances of each methods

Table 1 shows the characteristics of three meth-
ods. The response time, which is the elapsed time
from generation of a query to receipt of the query
result of the on-demand method, is strongly affected
by the frequency for query generations. The response
time of the collaborative method is little affected by
the frequency of query generations and that of the
client method is never affected by it. When queries
are issued with the low frequency, the server in the
on-demand method can broadcast the query results
immediately, and thus, the response time is short.

The response time of the collaborative method is
slightly longer than that of the client method since
the broadcast cycle becomes longer due to the added
identifiers.

The on-demand method requires no workspace to
process the query since the client receives only the
query result. On the other hand, the client method
requires a large free storage since clients have to store
all tables for query processing. In the collaborative
method, the necessary storage size is smaller than that
in the client method since clients store only tuples
which appear in the query results.

In the collaborative method, the response time is
slightly long compared with that of the client method
since the broadcast cycle becomes long by identifiers.

3 Adaptive method

As mentioned above, the system performance, when
each method is used individually, changes according
to environmental conditions. Thus, in this section,

we propose the adaptive method which dynamically
chooses the best method from three methods, on-
demand, the client, and the collaborative methods, ac-
cording to the change of environmental condition. The
proposed method improves the system performance
by choosing on the appropriate method according to
query generation intervals.

3.1 Processing procedure
The processing procedure in the adaptive method

is as follows:

1. A client sends a query to the server via the uplink.

2. The server chooses an appropriate method from
three methods by comparing the total size of
pending data to be broadcast the data size in the
broadcast queue.

3. The server inserts to the broadcast queue the data
produced by each method for query processing:

(a) If the server has chosen the on-demand
method, the server inserts the query result.

(b) If the server has chosen the collaborative
method, the server inserts the created rules.

(c) If the server has chosen the client method,
the server inserts a message, which is an in-
struction for the query issue client to process
the query by the client method.

3.2 Criteria of method choice
As mentioned in section 2.4, the system perfor-

mance of each method depends on the frequency of
query generations. In the adaptive method, we use
the size of pending data to be broadcast in the broad-
cast queue as the parameter which represents the fre-
quency of query generations. The system chooses the
on-demand method when the data size in the broad-
cast queue is small, the collaborative method when the
size is moderate, and the client method when the size
is large. By this means, the system can keep the aver-
age total size of pending data in the broadcast queue
almost a constant and can reduce the response time.

The adaptive method uses two thresholds, OC Th
and CC Th where OC Th ≤ CC Th. OC Th is a
threshold to make a choice between the on-demand
and collaborative methods. CC Th is that to make
a choice between the collaborative and client method.
The system chooses an appropriate method by com-
paring to these thresholds with the total size of pend-
ing data in the broadcast queue, S. The on-demand
method is chosen when S is smaller than OC Th,
the collaborative method is chosen when S is between

Prepress
176



OC Th and CC Th, and the client method is chosen
when S is larger than CC Th.

4 Evaluation
In this section, we evaluate our method by com-

paring with the on-demand, collaborative and client
methods from the following two view points:

Response time: The elapsed time from the query
initiation to the receipt of the query result. It
should be noted that the response time does not
include the time for processing the query locally
at the client side.

Success rate: The ratio of the number of queries
that the client could get the results to the number
of queries issued in the entire system.

4.1 Simulation model

We assume the following simulation environment:

• The database schema and the query model rep-
resents on an information service in a shopping
center. In this service, the server broadcasts the
information on shops, goods and so forth. Clients
walk around with PDAs and receive the broadcast
data.
There are two tables for each of genres such as
apparel, interior, and restaurant; one of the ta-
bles is a shop table {shopID, shop name, image}
and the other is a goods table {goodsID, shopID,
goods name, image}. For the sake of simplicity,
we suppose all tables are of the same size. More-
over, a client issues only natural join queries with
a shop table and a goods table in the same genre.

• The query generation intervals are given by
the exponential distribution, where the mean is
changed in the simulation experiments.

• The tuple usage rate, which represents the ration
of the number of tuples appearing in the query
result to the total number of tuples in a table, is
given by the normal distribution, and the mean
and the dispersion are changed in the simulation
experiments.

• The query fails in case that the client cannot get
the query result by the time limit and in case that
the necessary storage size for the query processing
is larger than the storage size of the client.

• Even if the query fails, the client does not issue
the same query again.

Table 2 shows parameters and their values used for
this evaluation.

Table 2: Parameters.
Name Value

Number of genres 10
Number of shops per a genre 40
Number of goods per a shop 100
Size of a tuple 5[KByte]
Size of a rule 140[B]
Bandwidth of the main channel 10[Mbps]
Bandwidth of the sub channel 1[Mbps]
Mean of the tuple usage rate 3, 5∗, 7[%]
Dispersion of the tuple usage rate 1
Storage size of a client 20[MByte]
Number of identifiers per a tuple 100
OC Th 0.5, 1∗, 3[MByte]
CC Th 2, 4∗, 8[MByte]
Time limit 200[s]
Query number 10000

∗ : default value

4.2 Simulation results

Figure 3 and Figure 6 show the simulation results
when using the default values. Figure 3 shows the
average response time in changing the mean of query
generation intervals. When queries are issued with low
frequency, the response time of the on-demand method
is smaller than that of the other methods. However,
the longer the mean of query generation intervals be-
comes, the longer the response time becomes exponen-
tially. This is because the sub channel is exhausted for
sending query results. In the client method, even if
query generation intervals change, the response time
does not change. In the collaborative method, the
response time does not change so much because the
size of rules is small and the sub channel is hardly ex-
hausted for sending them. Since the broadcast cycle
in the collaborative method, becomes slightly longer
due to added identifiers and extra waiting time for re-
ceiving rules, the response time is a little longer than
that in the client method.

The adaptive method always achieves the good re-
sponse time. When the mean of query generation
intervals is less than 3, the response time is slightly
longer than that in the client method. This is be-
cause some queries are processed by the collaborative
or on-demand method, while all queries should be pro-
cessed by the client method. Furthermore, when the
mean of query generation intervals is more than 20,
the response time is slightly longer than that in the
on-demand method. This is because some queries are
processed by the collaborative or client method due to
queries happened incidentally with short intervals.

Figure 6 shows the success rate in changing the
mean of query generation intervals. In the on-demand
method, as the frequency of query generation gets
higher, the size of pending data in the broadcast queue
gets larger rapidly, and thus, the response time gets

Prepress
177



much longer. As a result, many queries fail since the
response time becomes longer than the time limit. In
the client method, since queries fail only when the to-
tal size of data the client must store is larger than the
storage size of the client, the success rate is not af-
fected by query generation intervals. In the collabora-
tive method, when queries are issued with extremely
high frequency, the space for added identifiers runs
short, and thus, the response time becomes long for
waiting until the space is released.

In the adaptive method, when the mean of query
generation intervals is small, most queries are pro-
cessed by the on-demand method. On the other hand,
when the mean of query generation intervals is large,
most queries are processed by the client method. As
a result, both timeout and lack of storage space are
rarely happened, and thus, the success rate is always
high.

4.2.1 Evaluation in changing the tuple usage
rate

Figures 2, 4, 5, and 7 show the evaluation results in
changing the tuple usage rate, r. In the client method,
since a client stores the whole associated tables with
the query, the tuple usage rate does not affect both
the response time and the success rate. In the collab-
orative method, since the tuple usage rate does not
affect the time necessary for receiving rules and stor-
ing the data, it also does not affect both the response
time and the success rate. In the on-demand method,
when the tuple usage rate is large, the size of query re-
sults is also large, and thus, the response time is long.
Consequently, many queries fail and the success rate
is low. In the adaptive method, the response time is
affected by the tuple usage rate only in case where the
on-demand method is frequently chosen. Therefore,
the larger the tuple usage rate becomes, the response
time becomes longer slowly.

4.2.2 Evaluation in changing OC Th

Figure 8 and Figure 9 show the evaluation results
of our proposed method for three different values of
OC Th. In Figure 8, lines for three OC Th values
cross on the point where the mean of query genera-
tion intervals is about 10. When OC Th is small and
the mean of query generation intervals is large, most
queries are not processed by the on-demand method.
When OC Th is large and the mean of query genera-
tion interval is small, most queries are processed by the
on-demand method. In Figure 9, the larger OC Th be-
comes, the smaller the success rate becomes. This is
because more queries are processed by the on-demand
method as OC Th gets larger.

The above results show that, when the mean of
query generation intervals is large, the response time
is improved by setting OC Th small.

4.2.3 Evaluation in changing CC Th

Figure 10 and 11 show the evaluation results of our
proposed method for three different values of CC Th.
In figure 10, the larger CC Th becomes, the longer
the response time is. This is because queries are rarely
processed by the client method when CC Th is large.
In Figure 11, the larger CC Th becomes, the larger the
success rate becomes. This is because more queries are
processed by the client method as CC Th gets larger,
and thus, fewer queries fail due to lack of the storage
size.

These results show that the response time is re-
duced by setting CC Th small, and the success rate is
increased by setting CC Th large.

5 Conclusion

In this paper, we proposed the adaptive method for
efficient query processing in a database broadcasting
system. In the proposed method, the system chooses
adaptively a query processing method which gives the
best performance according to environmental condi-
tions such as query generation intervals.

Moreover, we evaluate the proposed method by sim-
ulation studies. The simulation results showed that
the adaptive method improves the response time and
the success rate compared with those in the case where
each of the conventional methods is used individually.

As part of our future work, we plan to extend the
proposed method by exploiting the queuing theory and
by considering the clients’ processing capacity.

Acknowledgements

This research was supported in part by “The 21st
Century Center of Excellence Program” of the Min-
istry of Education, Culture, Sports, Science and Tech-
nology of Japan, Special Coordination Funds for pro-
moting Science and Technology of the Ministry of Ed-
ucation, Culture, Sports, Science and Technology of
Japan, and Grant-in-Aids for Scientific Research on
Priority Areas numbered 13780331 and 14019063 from
Japan Society for the Promotion of Science.

References

[1] S. Acharya, M. Franklin, and S. Zdonik: “Broadcast
Disks: Data Management for Asymmetric Communi-
cation Environments,” Proc. ACM SIGMOD , pp. 199–
210 (1995).

Prepress
178



0

50

100

150

200

250

0 10 20 30 40

Interval of query generation [s]

R
e
sp

o
n
se

 t
im

e
 [

s]
Adaptive

On-demand

Collaborative

Client

Figure 2: Response time(r=3).

0

50

100

150

200

250

0 10 20 30 40

Interval of query generation [s]

R
e
sp

o
n
se

 t
im

e
 [

s]

Adaptive

On-demand

Collaborative

Client

Figure 3: Response time(r=5).

0

50

100

150

200

250

0 10 20 30 40

Interval of query generation [s]

R
e
sp

o
n
se

 t
im

e
 [

s]

Adaptive

On-demand

Collaborative

Client

Figure 4: Response time(r=7).

0

20

40

60

80

100

0 10 20 30 40

Interval of query generation [s]

S
u
cc

e
ss

 r
a
te

 [
%

]

Adaptive

On-demand

Collaborative

Client

Figure 5: Success rate(r=3).

0

20

40

60

80

100

0 10 20 30 40

Interval of query generation [s]

S
u
cc

e
ss

 r
a
te

 [
%

]

Adaptive

On-demand

Collaborative

Client

Figure 6: Success rate(r=5).

0

20

40

60

80

100

0 10 20 30 40

Interval of query generation [s]

S
u
cc

e
ss

 r
a
te

 [
%

]

Adaptive

On-demand

Collaborative

Client

Figure 7: Success rate(r=7).

0

20

40

60

80

100

120

0 10 20 30 40

Interval of query generation [s]

R
e
sp

o
n
se

 t
im

e
 [

s]

OC_Th=0.5[MB]

OC_Th=1[MB]

OC_Th=3[MB]

70

80

90

100

0 10 20 30 40

Interval of query generation [s]

S
u
cc

e
ss

 r
a
te

 [
%

]

OC_Th=0.5[MB]

OC_Th=1[MB]

OC_Th=3[MB]

0

20

40

60

80

100

0 10 20 30 40

Interval of query generation [s]

R
e
sp

o
n
se

 t
im

e
 [

s]

CC_Th=2[MB]

CC_Th=4[MB]

CC_Th=8[MB]

70

80

90

100

0 10 20 30 40

Interval of query generation [s]

S
u
cc

e
ss

 r
a
te

 [
%

]

CC_Th=2[MB]

CC_Th=4[MB]

CC_Th=8[MB]

Figure 8: Response time
in changing OC Th.

Figure 9: Success rate in
changing OC Th.

Figure 10: Response time
in changing CC Th.

Figure 11: Success rate
in changing CC Th.

[2] S. Acharya, M. Franklin, and S. Zdonik: “Disseminat-
ing Updates on Broadcast Disks,” Proc. VLDB Con-
ference, pp. 354–365 (1996).

[3] S. Acharya, M. Franklin, and S. Zdonik: “Balancing
Push and Pull for Data Broadcast,” Proc. ACM SIG-
MOD , pp. 183–194 (1997).

[4] D. Aksoy, M. Franklin and S. Zdonik: “Data Staging
for On-Demand Broadcast,” Proc. VLDB Conference,
pp. 571–580 (2001).

[5] Q. Hu, D. Lee, and W. Lee: “Performance Evalua-
tion of a Wireless Hierarchical Data Dissemination Sys-
tem,” Proc. The Fifth Annual International Confer-
ence on Mobile Computing and Networking , pp. 163–
173 (1999).

[6] M. Kashita, T. Terada, T. Hara, M. Tukamoto,
S. Nishio : “A Collaborative Query Processing

Method for a Database Broadcasting System,” Proc.
of IASTED Int’l Conf. on Communications, Internet
and Information Technology (CIIT 2002), (2002 to ap-
pear).

[7] G. Lohman, L. Bruce, P. Hamin, and K. Bernhard,
“Extentions to Starburst: Object, Types, Functions,
and Rules,” Communications of the ACM , vol. 34,
no. 10, pp. 94–109 (1991).

[8] W. Peng, and M. Chen: “Dynamic Generation of Data
Broadcasting Programs for a Broadcast Disk Array in
a Mobile Computing Environment,” Proc. Int’l Conf.
on Information Knowledge Management (ACM CIKM
2000), pp. 38–45 (2000).

[9] E. Yajima, T. Hara, M. Tsukamoto, and S. Nishio:
“Scheduling Strategies of Correlated Data in Push-
Based Systems,” Information Systems and Operational
Research (INFOR), pp. 152–173 (2001).

Prepress
179




